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Abstract: Tropical peatland ecosystems are known as large carbon (C) reservoirs and affect spatial 

and temporal patterns in C sinks and sources at large scales in response to climate anomalies. In this 

study, we developed a satellite data-based model to estimate the net biosphere exchange (NBE) in 

Indonesia and Malaysia by accounting for fire emissions (FE), ecosystem respiration (Re), and gross 

primary production (GPP). All input variables originated from satellite-based datasets, e.g., the 

precipitation of global satellite mapping of precipitation (GSMaP), the land surface temperature 

(LST) of the moderate resolution imaging spectroradiometer (MODIS), the photosynthetically active 

radiation of MODIS, and the burned area of MODIS fire products. First, we estimated the 

groundwater table (GWT) by incorporating LST and precipitation into the Keetch–Byram Drought 

Index (KBDI). The GWT was validated using in-situ measurements, with a root mean square error 

(RMSE) of 24.97 cm and an r-squared (R2) of 0.61. The daily GWT variations from 2002 to 2018 were 

used to estimate respiration (Re) based on a relationship between the in situ GWT and flux-tower-

observed Re. Fire emissions are a large direct source of CO2 from terrestrial ecosystems into the 

atmosphere and were estimated by using MODIS fire products and estimated biomass. The GPP 

was calculated based on the MODIS GPP product after parameter calibration at site scales. As a 

result, averages of long-term (17 years) Re, GPP, FE, and NBE from whole peatlands in the study 

area (6˚N–11˚S, 95–141˚E) were 66.71, 39.15, 1.9, and 29.46 Mt C/month, respectively. We found that 

the NBE from tropical peatlands in the study area was greater than zero, acting as a C source. Re 

and FE were influenced by El Niño, and the value of the NBE was also high in the El Niño period. 

In future studies, the status of peatland degradation should be clarified in detail to accurately 

estimate the C budget by applying appropriate algorithms of Re with delineations of types of 

anthropogenic impacts (e.g., drainages and fires). 

Keywords: groundwater table; peat decompositions; fire emissions; gross primary production; net 

biosphere exchange; Southeast Asia 

 

1. Introduction 

Carbon dioxide (CO2) is one of the gases causing global warming [1]. Peatland ecosystems are 

expected to play an essential role in global warming mitigation as carbon reservoirs [2]. The impacts 

of peatlands on greenhouse gas emissions have been examined [3,4]. Despite covering only 3% of the 

global land area, peatlands contain about one-third of global soil organic carbon [5]. Peat soils contain 

a high carbon density and consist of undecomposed carbon that is induced by a large amount of 

biomass under shallow groundwater table (GWT) conditions [6]. Recent disturbances in the 

ecosystem due to deforestation, wildfires, and groundwater drainages have significantly altered their 
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CO2 budget [3]. Therefore, estimating their carbon budget and proposing methods to suppress CO2 

emission across peatland regions have become main issues in environmental research [7]. 

Additionally, according to the United Nations Framework Convention on Climate Change 

(UNFCCC) and the Kyoto Protocol, a country-based assessment of carbon emissions is politically 

required for full carbon accounting (FCA) and carbon offset as a measure of the reduction of carbon 

emissions [8]. The Paris Agreement has been accelerating intergovernmental climate actions [9]. The 

Intergovernmental Panel on Climate Change (IPCC) published the Guidelines for National 

Greenhouse Gas Inventories and included calculations for carbon emission in their greenhouse gas 

model algorithm in 2006 [10].  

The organic matter content in tropical peat forest is estimated at up to 70 Pg C, which accounts 

for 20% of the global peat soil carbon and 2% of the global soil carbon [11,12]. Lowland peatlands in 

Southeast Asia cover 27.1 Mha, of which more than 22.5 Mha are in Indonesia, where peatlands 

account for 12% of the land area and over 50% of the lowland area [13]. In Indonesia, CO2 is 

increasingly being released into the atmosphere due to drainage and fires associated with the 

expansion of plantations and illegal logging due to the Mega Rice Project of 1999 [14–16]. The fires 

and drainages are associated with changes in groundwater levels represented by the GWT. The GWT 

is an essential factor influencing the fluctuation of CO2 emissions from peatlands, because if the GWT 

declines, the peat decomposition is promoted and fires can occur, which could then result in more 

CO2 being released [12,17,18]. Wösten et al. [19] investigated the distribution of groundwater by using 

a hydrological model, showing that fire risk is higher in dry areas within peatlands. Remote sensing 

techniques are suitable for generating maps of the spatial distribution of moisture conditions by using 

meteorological information. The Keetch–Byram drought index (KBDI) is a typical index for 

estimating the possibility of fire occurrence and is derived by the empirical relationship between 

surface dryness and vegetation types [20]. A previous study successfully modeled the long-term 

dynamics of the GWT in tropical peatlands in Indonesia on a daily basis by using satellite-based land 

surface temperature (LST) and precipitation (P) data [21]. The spatial distributions of the GWT found 

in [21] can be used to upscale point-based ecosystem respiration (Re) observations to whole tropical 

peatland areas in Indonesia since the estimation relies on satellite data.  

CO2 fluxes observed at site scales when using the eddy covariance technique and the 

accumulated data shared via a global network of flux observations (e.g., a global network of flux 

measurement sites (FLUXNET)) [22] are useful to model CO2 fluxes and to upscale these fluxes to 

large scales [23,24]. Hirano et al. [25] measured net ecosystem CO2 exchange (NEE) and estimated Re 

and gross primary production (GPP) in tropical peatlands in Indonesia from 2004 to 2008. The inverse 

relationships between the GWT and Re, where a low GWT is related to a high Re, were demonstrated 

by the flux tower observation data in Palangkaraya of Kalimantan Province, Indonesia [26]. 

Previous studies have investigated the temporal and spatial distribution of CO2 emissions from 

peatlands via bio-geophysical modeling and long-term CO2 flux observations [27–30]. Hooijer et al. 

[13] discussed uncertainties and research needs in this field, e.g., accurate peatland area information, 

peat thickness distribution, drainage area classification, groundwater depths, and CO2 emission rates. 

Another source of uncertainty in determining the CO2 emissions from a terrestrial ecosystem on a 

peatland is in anthropogenic emissions, such as fire emissions (FE) [31]. Apart from the Re that is 

related to the decomposition of soil and surface moisture conditions, FE contribute to drastic 

increases in CO2 emissions [32]. The loss of biomass and the combustion of peat soils are huge sources 

of CO2 emissions due to the high ratio of organic matter in peat soil [33]. Finally, the GPP, such as the 

moderate resolution imaging spectroradiometer (MODIS) GPP product [34], is required to balance 

the CO2 budget. 

In this study, we established an empirical bio-geophysical model with inputs of satellite-based 

datasets to reveal the dynamics of the CO2 budget of tropical peatlands. The ultimate goal of this 

study was to better understand the net carbon budget in the tropical peatland ecosystems via the 

more accurate estimated carbon balance components created by using satellite observations. The 

specific objectives of this study were (1) to estimate the spatial and temporal GWT of tropical 

peatlands in Indonesia including Borneo of Malaysia; (2) to compute fire emissions by using 
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physically estimated aboveground biomass, soil organic matter (SOM), and thermal anomaly data 

from MODIS; (3) to calibrate the satellite-based GPP of MODIS by fitting it to the flux tower-observed 

GPP; and (4) to integrate emission (Re, FE) components and an absorption (GPP) component into a 

CO2 budget of target peatland areas.  

2. Materials and Methods 

2.1. Study Area 

Southeast Asia (SE Asia) region is known as a hotspot for tropical peatlands, accounting for half 

of the global peatland emissions due to rapid deforestation and drainage [14]. Within SE Asia, 

Indonesia has the highest CO2 emission rate due to peatland decomposition and fires. The target area 

for this study was the peatlands in Indonesia and Malaysia in the Borneo Island region (6 ˚N–11 ˚S, 

95–141 ˚E) (Figure 1). In the study area, the total peat forest area was 205,408 km2, as reported by the 

Global Forest Watch collected from the Ministry of Agriculture (2012) and Wetlands International 

(2004) for Indonesia and Malaysia [35,36]. The locations of flux towers are shown in Figure 1. The 

information of latitude and longitude is as follows: undrained forest (UF) (2° 20' 42" S, 114° 2' 11" E), 

drained forest (DF) (2° 20' 59" S, 114° 8' 13" E), and burned forest (BF) (2° 20' 14" S, 114° 2' 13" E). 

 

Figure 1. Spatial distribution of tropical peatlands in this study (colored by brown). The global forest 

watch database (GFW) [36] was used as a peatland map. The locations of the flux towers are marked 

as red circles. UF, DF, and BF denote undrained forest, drained forest, and burned forest, respectively. 

2.2. Data 

2.2.1. KBDI–Based GWT 

The GWT was an essential factor for estimating Re in this study. To estimate the spatially 

distributed GWT, we used satellite-based data in the computation of the KBDI. As the input data, we 

used LST from a multi-functional transport satellite (MTSAT) (4 km spatial resolution) and 

precipitation (P) from global satellite mapping of precipitation (GSMaP) (10 km spatial resolution). 

Since no MTSAT-based LST data in 2002–2006 were available due to the satellite’s pre-observation 

period, we instead used MODIS LST (MOD11A1, 1 km spatial resolution) for these years. MTSAT is 

a geostationary satellite. MODIS sensors are onboard a polar-orbiting Terra satellite. Therefore, their 

observation frequencies are different. The maximum LST (LSTmax) was calculated by using the 

hourly LST by MTSAT data and the daytime product by Terra MODIS data. The merit of the use of 

MTSAT LST is that an accurate LSTmax could be obtained due to its high temporal observation. 

However, for analyzing the relationship between climatic factors and Re, the long-term interannual 

variations were also crucial. Therefore, the MODIS LST altered the MTSAT one. As an ancillary 

dataset, the land surface water coverage (LSWC) of the Advanced Microwave Scanning Radiometer 

for Earth Observation System (AMSR-E) was used with a 10 km spatial resolution for confirming the 
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existence of surface water [21]. The LSWC was calculated by combining MODIS normalized 

difference water index (NDWI) and the AMSR-E daily normalized difference polarization index 

(NDPI) [37].  

2.2.2. Flux Tower Observations 

The study area contained three sites: an undrained forest (UF), a drained forest (DF), and a 

drained burnt forest (BF) on flat terrain within 15 km [25] in Palangkaraya, Kalimantan, Indonesia 

(Palangkaraya drained forest (PDF) site in AsiaFlux database). The available observation periods are 

as follows: DF was from 2001, and UF and BF were from 2004. The heights of the flux towers are 35, 

50, and 4 m for UF, DF, and BF, respectively. The DF and BF towers were drained and located about 

400 and 200 m from the canals [25]. UF is a relatively intact forest site located in a national park along 

the Sebangau River. The compositions of land cover types in the UF, DF, and BF based on MODIS 

land cover types (MCD12Q1) by the international geosphere-biosphere programme (IGBP) scheme 

were evergreen broadleaf forest (EBF) (in UF and DF), woody savannas (WSAV) (in DF), and 

grasslands (GL) and savannas (SAV) (in BF). The spatial representativeness of flux tower is usually 

known as 100–1000 m [38]. CO2 flux data were generated every 30 minutes. Each 5-minute CO2 

concentration that was recorded with a closed-path CO2 analyzer (LI7500, Li-Cor Inc., Lincoln, NE, 

USA) was interpolated for estimating the 30-minute CO2 fluxes. The observed GWT was also used 

and was observed in 30-minute intervals. Flux partitioned Re and the observed GWT were used for 

modeling Re. The GWT was used for the validation of the RS-based GWT. The flux partitioned GPP 

was also used to calibrate parameters in the MODIS GPP algorithm.  

2.2.3. MODIS GPP 

The GPP is the largest carbon flux into terrestrial ecosystems. Many peatlands include forests in 

the area. The PDF flux tower site also has a large forested area of ~50 km2. As usual for tropical forests, 

the photosynthesis in this area is high (more than 10 g C/m2/day). The 8-day MODIS GPP product 

(MOD17A2H) with 500 m resolution was used to estimate from the regional to national scales of 

GPPs for a long-term period (2002–2018). MOD17A2H (Collection 6) has improved its spatial 

resolution by using high-resolution reanalysis meteorological data (modern era-retrospective-

analysis for research and applications (MERRA)-2 of Global Modeling and Assimilation Office of the 

National Aeronautics and Space Administration (NASA)) [39]. The MODIS GPP algorithm is a typical 

biochemical model that uses light use efficiency for each biome type based on the land cover map 

(MCD12Q1). Temperature and water stresses are the factors suppressing the potential GPP for the 

vegetation type. Absorbed photosynthetically active radiation (APAR) was calculated with solar 

radiations of reanalysis data, and the fraction of APAR (fAPAR) was multiplied with the incident 

PAR (IPAR) on the vegetative surface. Uncertainties in the data exist due to low PAR under the cloud-

covered situations [40]. The MODIS sensor was installed on a Terra satellite, and its revisit time was 

every 10:30 in local time [34]. 

2.2.4. Fire Emissions Based on MODIS 

Satellite-based thermal information is suitable to detect fire events. We estimated CO2 emissions 

from anthropogenic-induced and wildfires as another flux in the calculation of CO2 balance. During 

a fire event, various kinds of trace gases are released [41]. In this study, we focused on CO2 emissions. 

CO2 emissions from fire events were estimated by using biomass, burned areas, fuel types, 

combustion severities, and emission factors. For biomass, we used the vegetation integrative 

simulator for trace gases (VISIT), a process-based model, with 0.5° spatial and monthly temporal 

resolutions [28,42,43]. In the VISIT, aboveground biomass (AGB) and SOM are calculated through 

process-based algorithms of the terrestrial carbon cycle. The MODIS normalized difference 

vegetation index (NDVI) (a 1 km spatial resolution) was used to downscale the VISIT-based biomass 

estimation into a 1 km resolution by using logistic regression functions for each IGBP biome type in 

MCD12Q1 (Table A1) [44]. Burned areas and their dates were obtained from a MODIS fire product, 



Remote Sens. 2020, 12, 250 5 of 21 

 

MCD45A1 [45]. Fuel types were obtained from the MCD12Q1 500 m land cover map. Differences in 

the NDVI before and after fire events were directly reflected the loss of AGB. Combustion severities 

were represented by fire radiative power (FRP) in MODIS fire products. Wooster et al. [46] derived a 

combustion completeness ratio by using FRP. The merits of using FRP include its ability to describe 

daily temporal dynamics of fire severity. In addition, its spatial resolution is high (1 km). Emission 

factors were obtained from the global fire emissions database (GFED) 4.1s [47], meaning the 

proportion of CO2 emissions within biome-specific carbon gases by biomass burning. For the CO2 

emission ratios of AGB and SOM, 0.49 and 0.57 were applied, respectively [33]. 

2.3. Methods 

2.3.1. GWT Calculations 

The KBDI was originally developed by Keetch and Byram in 1968 for a wildfire monitoring 

system [20]. It explains how the interaction between P (mm) and air temperatures (Tair, °C) changes 

and how the evapotranspiration differs in specific vegetation types interpreting in situ measurements 

from various fire events:  

dQ = 
(800−𝑄0)(0.968 exp (0.0486 𝑇𝑎𝑖𝑟)−0.830)𝑑𝜏

1+10.88exp (−0.0441𝑃)
× 10−3 (1) 

where dQ is a drought factor, Q0 is the initial moisture deficiency (mm) at time zero, Tair is air 

temperature, P is precipitations, and dτ is a time interval (1 day in this study). The index ranges from 

0 (moist) to 800 (dry) (unitless) [20]. The range of the index is determined by assuming that fully 

saturated soil has 8 inches of moisture readily available to vegetation [21]. The original index was 

derived from field observations. For further application to satellite-based data, a previous study-

modified KBDI referring to in situ measurements of the GWT [21] and the equations were used in 

this study:  

𝑚𝐾𝐵𝐷𝐼 = 𝑚𝐾𝐵𝐷𝐼0 × 100𝑝𝑑𝑎𝑦 +  
0.968(800−𝑚𝐾𝐵𝐷𝐼0)exp (0.486𝐿𝑆𝑇𝑚𝑎𝑥)

1.00+10.88exp (−0.441𝑃𝑎𝑛𝑛)
   (2) 

GWT (m) = −0.0045 ×  𝑚𝐾𝐵𝐷𝐼   (3) 

where mKBDI is the modified KBDI for using satellite-based data; mKBDI0 is an initial value that was 

calibrated with in situ measurements of the GWT, pday is a daily precipitation (mm/day), LSTmax is 

maximum daily LST (degrees in Celsius), Pann is an annual precipitation in each year (mm/year), and 

the previous study [21] added it to account for spatial variations in regional climatic moisture 

conditions. The initial value (mKBDI0) was determined by comparing a consistency of estimated 

inundation timing (i.e., GWT > 0) and the AMSR-E inundation map. CO2 emissions are associated 

with changes in local hydrology, such as fluctuations in groundwater levels. CO2 emissions from 

peatlands are highly related to the GWT [25], and this study used the GWT as an explanatory variable 

of Re (Figure 2). Exponentially regressed pday, LSTmax, and Pann are factors that represent the daily 

water recharge, evaporation, and climatic long-term water recharge, respectively. In this study, the 

Tair of original KBDI (Equation 1) was altered by the satellite-based LST in the mKBDI (Equation 2), 

since it is straightforward to use satellite-based LST, and the usefulness has been evaluated for 

substituting with Tair, showing high correlation coefficient over 0.80 (r2) [48,49].  

A linear regression function, established by the relationship between the satellite-based daily 

mKBDI and in situ GWT measurements, was used to estimate the GWT spatial variation (Equation 

(3)) [21]. The AMSR-E-based LSWC, which represents land surface inundation, was used as 

supplemental data to generate the GWT map [21]. If an LSWC existed and the modelled GWT showed 

above 0 m, the initial value of the GWT of the day was set to 0. 

A bilinear method was used to generate the 1 km GWT data from P (10 km) and LST (4 km). The 

discrepancy of spatial resolutions between the input data sources might cause the presence of mixed 

information at the sub-pixel scale in complex terrain, e.g., mountainous areas. Notably, most of the 
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target areas in this study are located coastal or lowland regions, and the response of the GWT to the 

surface moisture condition was relatively rapid and simple once we considered that the KBDI-GWT 

represents a shallow GWT [50]. 

 

Figure 2. Flowchart of this study. As CO2 fluxes emit to the atmosphere, ecosystem respiration (Re), 

and fire emissions (FE) were calculated with groundwater table (GWT) and moderate resolution 

imaging spectroradiometer (MODIS) fire products, respectively. As a CO2 flux from the atmosphere 

into plants, the gross primary production (GPP) of the MODIS product was used. Especially, the 

MODIS GPP was calibrated via flux tower observation in Palangkaraya in Indonesia. Finally, the net 

biosphere exchange (NBE) was calculated by balancing Re, FE, and GPP. Dashed rectangles indicate 

corresponding sections in this paper. 

2.3.2. Ecosystem Respiration 

Re was calculated by using Equations (4)–(6). These equations were determined from 

observational data in a previous study [25] and the data distribution was visualized (Figure 3). Flux 

tower observations measure the total carbon budget at heights more than 40 m above the land surface. 

The eddy covariance method is used to determine Re and the GPP by basically calculating daytime 

and nighttime carbon fluxes. In the flux tower sites of this study, observed half-hourly nighttime net 

ecosystem CO2 exchange (NEE) was used as nighttime Re. A look-up-table (LUT) method combining 

environmental factors (e.g., soil moisture below 5 cm and GWL) was applied to model nighttime Re. 

For the next step, nighttime Re was extrapolated to daytime Re by using the established model. The 

estimated Re was used to infer the daytime GPP by combining an LUT with PAR [25]. Finally, Re in 

this study represents the CO2 emissions of the biological activity of plants including soil respiration 

[25,51]. By using Equations (4)–(6) for UF, DF, and BF, the Re values from whole tropical peatlands in 

Indonesia and Borneo of Malaysia were simulated. Furthermore, we discussed the potential impacts 

of peatlands conditions that had undergone drainage and fires. Finally, we used the equation of Re 

(UF) (Equation (4)) when the Re values of the whole peatland area were calculated, assuming that all 

peatlands from the GFW (reference map) were intact (natural) forest (e.g., evergreen broadleaf forest 

(for more land cover types information of DF and BF, refer to section 2.2.2)). Notably, we assumed 
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that all peatland regions in this study were dense forest since a relevant dataset for describing the 

spatial distribution of disturbance levels (drainages, fires, and post-fire regrowth) was not available. 

𝑅𝑒𝑈𝐹
= −0.864(𝐺𝑊𝑇)2 − 3.5652(𝐺𝑊𝑇) + 10.449 (4) 

𝑅𝑒𝐷𝐹
= 0.6851(𝐺𝑊𝑇)2 − 0.5641(𝐺𝑊𝑇) + 10.029 (5) 

𝑅𝑒𝐵𝐹
= −4.7917(𝐺𝑊𝑇)3 − 5.9058(𝐺𝑊𝑇)2 − 1.9878(𝐺𝑊𝑇) + 5.2006 (6) 

 

 

Figure 3. Relationships between the groundwater table (GWT) and ecosystem respiration (Re), in 

three different types of peatlands; (a) undrained forest (UF), (b) drained forest (DF), and (c) burned 

forest (BF). The regression equations were applied to estimate Re by using a satellite-based GWT in 

this study. 

2.3.3. GPP Calibration 

The MODIS-based GPP (MOD17A2H) time series underestimated the GPP derived from flux 

towers when it was validated with the GPP of flux towers for three conditions (i.e., UF, DF, and BF) 

in Palangkaraya. In all cases, the MODIS GPP underestimated flux tower one, and the R2 in DF was 

around 0.29 based on the least squares regression [52] between the MODIS GPP and the flux tower-

derived GPP (Equation (7), and Figure 4).  

It has also been reported that the least squares regression method is sensitive to outliers [52]. To 

overcome this problem, we applied the robust regression method. This method has the following 

advantages. The robust regression method judges whether a point is an outlier or not. The coefficients 

of regression function are calculated by minimizing the absolute error. Furthermore, a weight 

function derived by the data distribution was applied to remove the excessive effects that were 

induced by outliers [53]. Hence, the weight function of each data point in a robust regression is useful 

to represent a best fitting line. Consequently, the linear equation with the robust regression method 

can reflect a more robust data distribution, removing the effects of outliers. In this study, some ranges 

in the MOD17A2H GPP, when the flux tower GPP was from 4 to 6 g C/m2/day, distributed likely 

outliers on the scatter plot (Figure 4). Underestimation in the low-end ranges of the MOD17A2H GPP 

compared with the flux tower GPP (e.g., the MOD17A2H GPP showed almost 0 g C/m2/day, but the 

flux tower GPP was more than 4 g C/m2/day), might have been caused by diffuse PAR [54]. Diffuse 

PAR generally provides more photosynthesis activity than that of direct PAR, and the MOD17 GPP 

algorithm does not account for this effect. On the other hand, higher values in the MODIS than flux 

the tower GPP could be produced by an overestimation of the MOD17 GPP algorithm. A clear sky 

condition with excess solar radiation might increase the potential GPP of MODIS, which is induced 

by incident PAR; however, the real photosynthesis activity would be saturated [55]. If a robust 

regression method [53] was applied to generate the linear regression for the calibration of the MODIS 

GPP, the R2 would be increased around 0.37 (Equation (8), and Figure 4). A function in MATLAB 

software named the “robustdemo” was used to perform a robust regression method.  
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The two regressions were applied to the empirical parameter calibration in this study. As a 

result, the linear fitting function of robust regression (Figure 4) seemed to explain more plots than 

that of the least squares regression method. The root mean squared error (RMSE) and standard 

deviation values of the original MODIS GPP data, Modified GPPleast, and Modified GPProbust were 3.91 ± 

2.95, 1.47 ± 1.59, and 1.33 ± 1.40 g C/m2/day (± standard deviation), respectively. We concluded the 

linear fitting equation of robust regression was more suitable for explaining flux tower GPP when 

using MOD17A2H. Based on the comparison, we modified the MODIS GPP by using the result of the 

robust regression method (Equation (8));  

𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝑮𝑷𝑷𝒍𝒆𝒂𝒔𝒕 = 𝟏. 𝟖𝟓𝟖𝟒(𝑴𝑶𝑫𝟏𝟕𝑨𝟐𝑯 𝑮𝑷𝑷) – 𝟏𝟎. 𝟒𝟐𝟑𝟕 (7) 

𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝑮𝑷𝑷𝒓𝒐𝒃𝒖𝒔𝒕 = 𝟐. 𝟏𝟏𝟒𝟐(𝑴𝑶𝑫𝟏𝟕𝑨𝟐𝑯 𝑮𝑷𝑷) − 𝟏𝟐. 𝟓𝟖𝟗 (8) 

where Modified GPPleast and Modified GPProbust are the results from modification with the flux tower GPP 

by using the least squares and the robust regression method, respectively, and MOD17A2H GPP is 

results of the MODIS GPP product (Figure 4). Finally, the Modified GPProbust (Equation (8)) was used 

for estimating the NBE in whole tropical peatland area in this study. We used a model established at 

the DF flux tower because the GPP in DF showed the highest R2 among the three towers.  

 

Figure 4. Scatter plots of the daily gross primary production (GPP) data (g C/m2/day) derived from 

the drained forest (DF) tower (x-axis) and MODIS (y-axis). Linear fitting equations were obtained 

from the results of least squares method (red line) and robust regression method (green line). 

2.3.4. Net Biosphere Exchange 

The NBE is determined from Re and FE as carbon sources and the GPP as a carbon absorption 

(Equation (9), Figure 2). To effectively conduct validation within mixtures of positive (+) and negative 

(–) values of CO2 fluxes, the RMSE of the NBE was normalized (NRMSE) by using ymax – ymin (Equation 

(10)) where y is the result of Re, FE, GPP, or NBE in this study. 

NBE = ( Re + FE ) – GPP (9) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 (10) 
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3. Results 

3.1. GWT 

Daily GWT averages from the KBDI and the in-situ measurements in UF, DF, and BF were 23.5, 

14.72, 55.6, and 12.18 cm, respectively. RMSEs between the KBDI-based and in-situ GWTs were 24.97, 

39.32, and 21.03 cm, respectively. The largest discrepancy was shown in DF among the three sites, 

since the GWT was artificially decreased through drainage canals. When only UF and BF were 

considered, the RMSE of the KBDI-based and in-situ GWTs was 20.65 cm. Inundated seasons, which 

showed a GWT greater than zero, usually appeared from November to April. As results of linear 

fitting between the KBDI-based and in-situ GWTs, the R2 values of the UF, DF, and BF sites were 0.61, 

0.64, and 0.66, respectively (Figures 5b–d). In terms of the slope of linear fittings, the GWTs at the UF 

site were closer to a 1:1 relationship. In contrast, the in-situ GWT at the BF site showed less variations 

in data distributions than the variations of KBDI-based GWT with a slope of the linear function of 

0.77. The R2 of BF was the highest; both the GWTs matched well under very dry (low GWT) 

conditions. Since BF had undergone disturbance events (e.g., wildfires) and less vegetation cover than 

other sites, the characteristics of evapotranspiration could be simply explained. 

 

 

Figure 5. Satellite-based groundwater table (GWT) created by using the Keetch–Byram Drought Index 

(KBDI) and in situ measurements of the GWT at the Palangkaraya flux tower, Kalimantan, Indonesia. 

(a) Time series of the GWTs. Scatter plots of the GWTs between the KBDI-based one and the in situ 

one in (b) undrained forest (UF), (c) drained forest (DF), and (d) burned forest (BF) sites. 

3.2. Ecosystem Respiration 

The RMSE and bias of satellite-based Re were 1.12 and 0.09 g C/m2/day, respectively, for the all 

three sites. In detail, the RMSEs of UF, DF, and BF were 1.31, 1.22, and 0.82 g C/m2/day, respectively. 

The biases were –0.15, 0.45, and –0.02 g C/m2/day for UF, DF, and BF, respectively. The standard 

deviations were 1.14, 0.8, and 0.5, respectively. As shown in Figure 6, the variances of flux tower-

based Re were highest in UF and lowest in BF, which was related to their vegetation coverages. UF 

and DF are relatively dense forests; however, BF has lost its vegetation due to fires, resulting in a 

sparse vegetation area. DF is a reforested area that is covered by secondary forests for logging [25]. 

The GPP values of DF and BF were obviously lower than those of the intact site (UF). Natural forests 
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usually have more dense vegetation coverages. Vegetation productivities are related to the amount 

of biomass, including leaves, foliage, branches, plant body, and litter. Consequently, Re is also high 

in natural forests.  

The RMSE, bias and standard deviation of UF were higher than the others. The NRMSEs for UF, 

DF, and BF were 0.01, 0.01, and 0.02, respectively. From this result, BF showed more uncertainties in 

Re, when considering original data distributions, than the other sites. For DF, a trend of a lower GWT 

caused by drainage was already confirmed in Section 3.1. The lower GWT of DF than that of UF had 

the effect of increasing Re, as well. The in situ Re of DF showed a high positive bias (0.45 g C/m2/day) 

due to drier conditions that promoted the decomposition of peat soil. Note the KBDI-based GWT for 

Re calculation in DF did not consider the effects of drainage canals. Hence, we concluded that UF 

provided the most suitable model to extrapolate Re flux observations to spatial estimations. From the 

annual average maps of Re from 2002 to 2018, the carbon (C) emissions by Re were high (814.63 Mt 

C/year), middle (754.76 Mt C/year), and low (404.70 Mt C/year), in the UF, DF, and BF sites, 

respectively (Figure 7). Pixels with values larger than 1000 g C/m2/year were not confirmed in the Re 

maps. This means that the method proposed in this study to estimate Re only depends on a formula 

that represents the groundwater condition in peatlands. Choosing appropriate ground conditions is 

necessary and affects spatial distribution of Re. However, we only considered a baseline of Re when 

using the data at the UF site, assuming that all peatlands were intact and the Re was high due to the 

forest productivity and autotrophic respiration being high, since those are related to vegetation 

growth rate [56].  

 

Figure 6. Daily ecosystem respirations (Re) from the satellite-based approach in this study (gray solid 

line) and tower measurements (black dashed line) in three cases of flux tower sites: (a) undrained 

forest (UF), (b) drained forest (DF), and (c) burned forest (BF). 
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Figure 7. Spatial distributions of annual average ecosystem respiration (Re) from 2002 to 2018 in three 

cases created using (a) undrained forest (UF), (b) drained forest (DF), and (c) burned forest (BF) 

equations. 

 

3.3. GPP in Tropical Peatlands 

The daily average and the standard deviation of the modified GPProbust were 8.91 and 1.21 g 

C/m2/day, respectively, at the Palangkaraya DF site from 2002 to 2018 (Figure 8). The original data 

from the DF flux tower were 9.5 and 0.74 g C/m2/day for the daily average and the standard deviation, 

respectively. Before the modification of the GPP in this study, although the daily average was low 

(6.26 g C/m2/day), the standard deviation of the MODIS GPP was relatively high (2.57 g C/m2/day). 

The area’s average of the monthly GPP was 39.15 Mt C/month, and its standard deviation was 1.09 

Mt C/month). The mean annual GPP ranged from 2100 to 2400 g C/m2/year (Figure 9).  
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Figure 8. Time series of the gross primary production (GPP) from observations (flux tower derived 

GPP), the MODIS product (MOD17A2H GPP), and modified MODIS products (this study) (modified 

GPProbust) at a flux tower (drained forest; DF) in Palangkaraya. 

 

 

Figure 9. Spatial distributions of the annual averaged gross primary production (GPP) from 2002 to 

2018 based on the calibrated MOD17A2H created by using the drained forest (DF), flux tower-derived 

GPP in this study. 

3.4. Fire Emissions 

 The monthly average FE from 2002 to 2018 was 1.90 Mt C/month in the study area. The FE from 

SOM that represented the C emissions from burning soil organic biomass was 1.6 Mt C/month on 

average, which accounted for 84.17 % of the total FE including AGB and SOM. FE from AGB was 0.3 

Mt C/month and accounted for 15.83 % of the total FE. In this study area, FE from SOM was the main 

contributor to the total FE. Monthly time series of FE and GFED were compared (Figure 10a). The R2 

between both datasets was 0.74, the RMSE was 1.67 Mt C/month, and the slope of linear fitting 

function was 0.80 (Figure 10b). The spatial distributions of the average of yearly FE are shown in 

Figure 11. As a result, the FE values were higher in Sumatra and Kalimantan of Indonesia and Borneo 

of Malaysia than the other regions.  
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Figure 10. Fire emissions from tropical peatlands in the study region found by using global fire 

emissions database (GFED)4.1s data and satellite-based FE data in this study. The monthly averages 

of GFED and FE were 1.4 and 1.9 Mt C/month with standard deviations of 2.96 and 2.76, respectively. 

(a) Monthly time series and (b) a scatter plot of both datasets. 

 

 

Figure 11. Spatial distributions of the mean annual fire emissions (FE) from tropical peatlands in the 

study area from 2002 to 2018.  

3.5. NBE Results and Validation with Flux Tower Data 

The NBE of tropical peatlands was calculated based on Equation (9). By using the Re model 

established at the UF site, the monthly average and the standard deviation of the NBE were estimated 

as 29.46 and 6.26 Mt C/month, respectively. When the Re values of BF and DF were applied, the NBE 

values were estimated as –4.57 ± 4.12 and 24.91 ± 5.04 Mt C/month on average (± standard deviations), 

respectively. From this estimation, the monthly average GPP (39.15 Mt C/month) was equivalent to 

58.68% of Re (66.71 Mt C/month), and the FE (1.90 Mt C/month) accounted for 2.84% of Re. 

Consequently, the NBE and resultant emissions of the monthly time series (Figure 12) were always 

high.  
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Figure 12. Monthly time series of the GPP, Re (UF), FE, NBE, net ecosystem CO2 exchange (NEE) (Re 

– GPP), and the Niño.3 index from 2002 to 2018. GPP, Re, FE, and NBE refer to primary axis (left) with 

negative signs for the GPP and positive signs for the rest. The Niño.3 index is listed on the secondary 

axis (right). The net CO2 balance is positive, indicating that the tropical peatlands are net sources of 

CO2. The temporal fluctuation of FE seems to be the dominant factor to change the NBE. In addition, 

FE usually appeared in the on-set of the Niño.3 index. 

4. Discussions 

4.1. Spatial Distributions of GPP and Potential Uncertainties  

We observed small regional variations in the GPP (Figure 9). Similarly to Re distributions, 

meteorological conditions across the peatlands in the study area were evenly distributed, since the 

input variables of the MODIS GPP algorithm relied on a minimum of daily temperature (TMIN), 

vapor pressure deficit (VPD), and fPAR [39,40]. Underestimations of the MOD17A2H GPP compared 

with the flux tower-based GPP were related to uncertainties of input variables in the GPP algorithm. 

In particular, MODIS fPAR data were essential because they were used to estimate detailed spatial 

and temporal patterns in the vegetation status. However, the data are acquired once per day at 10:30 

am (local time). This may have caused a discrepancy between the MODIS GPP and the flux tower-

based GPP. The other input variables of the MODIS algorithm were obtained from reanalysis datasets 

(e.g., MERRA-2) through numerical calculations of, e.g., solar radiation and relative humidity. Since 

reanalysis datasets have a coarser spatial resolution (~12.5 km) than the GPP product, resampling 

methods could have caused additional uncertainties [39,40]. The accurate estimation of near-surface 

relative humidity or VPD is also challenging [57,58]. Discrepancies between fPAR and the real surface 

situation including land cover changes could have occurred, since the land cover maps are updated 

on an annual basis (MCD12Q1); however, flux tower observations provide daily or shorter-interval 

GPP. 

Some uncertainties could have been induced by the discrepancy between the spatial 

representativeness of the flux towers and the MOD17A2H GPP. As mentioned above, the footprints 

of flux towers vary (100–1000 m); however the MOD17A2H GPP shows a fixed spatial resolution (500 

m). Moreover, changes in sub-pixel scales might not be detectable for the MOD17A2H GPP [59], 

although flux towers can capture them. In addition, the spatial heterogeneity in both biome types 

could have resulted in the discrepancy in the process of calibration for whole peatland areas. For 

future studies, with more flux towers representing peatlands and associated biomes, the GPP 

calibration could be improved by considering a light use efficiency (LUE) and plant functional types 

by using satellite-based land cover maps [60]. 

We also compared our results with another study, the FLUXNET multi-tree ensemble (MTE) 

based GPP [24]. As a result of the comparison, averages and standard deviations were 33.07 ± 39.11 

and 1.21 ± 1.10 (Tg C/month), respectively, for FLUXNET-MTE and this study. The RMSE and bias 

were 6.31 and 6.03 (Tg C/month), respectively. Though the spatial resolutions of both GPP datasets 
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differed by 100 times, the amount of the GPP and the seasonal patterns between both datasets were 

demonstrably similar (Figure is not shown). 

4.2. FE Comparisons with GFED 4.1s 

Both the FE of this study and the GFED 4.1s showed a good agreement on fluctuation patterns 

and their magnitude (Figure 10a). Higher GFED values than those of FE in general cases were 

potentially due to the difference in spatial resolution (GFED has a 25 km resolution and that of FE is 

1 km). Another potential discrepancy was caused by the calculation of combustion completeness. 

GFED uses fixed values that are assigned to several regions globally [61]. In contrast, we used 

dynamic changes in the combustion ratio from daily FRP MODIS data. More fluctuations in C 

emissions from biomass burning were captured by FE in this study. As a result, the spatial 

distributions of FE in the study area were heterogeneous (Figure 11) compared to the GPP and Re. 

Fire emissions are usually dependent on fire ignition events and are episodic [14]. For these reasons, 

relatively lower values were produced than the GPP and Re when described with the NBE (Figure 

12). However, fires that destroy vegetation as potential carbon uptake sources and disturb the 

hydrological cycle through the subsidence of peatlands have the most impactful in changing the 

carbon balance of peatlands [62]. The FE in the Papua region was compared with GFED 4.1s (Figure 

A1) because the visual interpretation of the map in the national scale was difficult. The FE of this 

study and GFED 4.1s in Papua were less detected than those of the other regions (e.g., Kalimantan). 

Relatively small scales fires were more detected in this study than by GFED 4.1s.  

For future study, collecting more observations of carbon emission data during fire events is 

required for further validation. This study estimated FE based on the FRP of MODIS [46]; however, 

sub-daily scales of fire events might not be detectable. To estimate the total carbon emissions during 

one event from ignition to extinguishment, applications of geostationary satellite data are promising 

[46] to improve the FE due to their high temporal observation frequency. 

4.3. NBE and Niño.3 index 

As mentioned above, Re and the GPP are generated by meteorological input variables, and 

datasets represented relatively homogenous distributions of 461.65 and 283.77 g C/m2/year for the 

spatial standard deviations when using every pixel, respectively. In the NBE equation, Re and the 

GPP compensated for each other. Therefore, both datasets hardly contributed to NBE fluctuations. 

The temporal changes in the NBE seemed to be dominated by variations in the fire emissions because 

NEE (Re – GPP) was overall constant (Figure 12). In addition, climatic impacts were analyzed by using 

the Niño.3 index, which represents how the sea surface temperature (SST) in 5 ˚N–5 ˚S 90–150 ˚E 

differs from a reference SST. The Niño.3 index provided by the Japan Meteorological Agency (JMA) 

showed El Niño or La Niña if the index value was positive or negative (Figure 12). When the Niño.3 

index was positive and negative, the averages of the NBE were 30.60 and 28.35 Mt C/month, 

respectively. FE in the El Niño and La Niña months were 2.58 and 1.25 Mt C/month, respectively. 

Usually, in the study area, during an El Niño period, the air temperature and precipitations were 

high and low, respectively—and vice versa in a La Niña period [63]. El Niño years are known for 

droughts [64] and more severe fire events than in normal years [65]. From the analysis of this study 

with the Niño.3 index, higher emissions were consistently found in the El Niño years. Furthermore, 

the other studies also revealed that higher CO2 emissions occurred in El Niño years (2009–2010 and 

2015–2016) from tropical regions through the analysis of the column-averaged CO2 dry air mole 

fraction (XCO2) by using the orbiting carbon observatory-2 (OCO-2), and the greenhouse gases 

observing satellite (GOSAT) [66–68]. Hence, higher Re values due to high temperature and more fire 

emissions were considered as the reasons for the high NBE in the El Niño periods. 

However, the peak of the NBE tended to appear slightly ahead of Niño.3 peaks. Moreover, the 

peak of the NBE usually happened in the dry season from November to April, while the Niño.3 index 

was still increasing until April. Many fires occurred in the timing of on-set of the Niño.3 index. It 

might be concluded that the annual peak of the NBE appeared during the dry season of this region, 

and the timing of its peak was related to the on-set stage of the Niño.3 index. 
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In terms of Re, there were drastically decreasing periods: November 2009, March 2011, February 

2016, and August 2019. The GWT data were investigated, since the GWT was only one factor for 

estimating Re in this study. The average (± standard deviation) of the GWT in the listed four months 

above and the other months were –0.14 (± 0.08) and –0.25 (± 0.34) cm, respectively. Anomalies of the 

two periods were also calculated. The averages of the anomalies of the selected periods (low Re) (0.59 

cm) were higher than the other months (0.26 cm). Therefore, we concluded that the low values Re in 

the listed four periods were induced by an abnormally shallow (high) GWT. Moreover, after the on-

set of the Niño.3 index, the GWT was increased; that is, P was increased. Some previous studies have 

mentioned the impact of fire haze to generate more rainfall or fog in inducing cloud condensation 

nuclei [69,70]. Consistently, in this study, the low Re in the listed periods appeared in the month after 

huge fire emissions. In addition, Davison et al. (2004) [71] found that haze from fires could remain in 

the atmosphere for 20 days-to-one month after a fire event in Malaysia. Therefore, the low Re values 

happened in the month after large fire events, and the haze from the fires could have provided cloud 

condensation nuclei for one month after the fire events. Consequently, high precipitation associated 

with haze as resultant in a high GWT, which led low Re values. 

4.4. NBE Reliability Comparing with Other Studies 

The annual averages of the NBE were compared with estimations in other studies. Joosten [72] 

estimated C emissions from degraded Indonesian peatlands as 136.36 Mt C/year in 2008 by using an 

inventory-based method and reported a 345.27 Mt C/year NBE. In the same study by Joosten [72], a 

set of emission factors was applied to estimate global CO2 emissions by multiplying the peatland 

areas for each country. Nation-wide comparisons were conducted in the study. However, the 

distribution of forest as the only source dataset hardly accurately depicts a carbon budget because 

SOM decomposition information could be omitted. Hooijer et al. [13] estimated 172.36 Mt C/year as 

a median of C emissions (with a possible range of 96.82–233.19 Mt C/year) in Indonesian peatlands 

in 2006. The satellite-based net C budget (NBE) in this study estimated the value as 411.12 Mt C/year 

in 2006. In the same study by Hooijer et al. [13], the C emissions from peatlands were estimated by 

using a linear relationship between the GWT and CO2 emissions from an empirically-derived look-

up table that assigned CO2 emissions to each land cover class. Though the estimation in this study 

was higher than in the other studies, this study has established a model to estimate various aspects 

including natural and anthropogenic emissions and absorptions, and this model was carefully 

validated with in situ observations by conducting spatiotemporal visualizations with satellite-based 

datasets. 

5. Conclusions 

In this study, we comprehensively evaluated the ecosystem carbon balance of tropical peatlands 

by using satellite-based data from 2002 to 2018 combined with in-situ observations in Indonesia. First, 

the GWT was estimated by using a typical drought index (KBDI). The implemented spatial 

distributions of the GWT were able to generate the spatiotemporal dynamics of Re. A MODIS-based 

FE dataset was used as a source of anthropogenic fire emissions. For the data for CO2 uptake, a 

product of the MODIS gross primary production (GPP) was applied to calculate the NBE after 

modification with flux tower-based GPPs in Palangkaraya by using a robust regression method. We 

compared three types of flux tower observations for modeling Re, i.e., undrained forest (UF), drained 

forest (DF), and burned forest (BF). The highest accuracy among the three equations was found in the 

UF site. Both DF and BF showed a lower respiration than that of UF because the forests were already 

degraded and productivities had decreased. As such, we used a calibrated model that used UF to 

estimate the NBE time series. As a result of maps of various factors, Re and the GPP showed even 

distributions across the whole study area, although FE showed a heterogeneous distribution because 

the fires are episodic. The NBE was always greater than zero, meaning peatlands are a net emitter of 

carbon to the atmosphere. The average NBE was 353.51 Mt C/year from 2002 to 2018 when the 

peatland ecosystems were considered intact (without any disturbances). To investigate the impact of 

climatic changes, the Niño.3 index was compared with the NBE. El Niño periods, during which 
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Niño.3 was greater than zero, might have accelerated Re and FE, which could have increased the NBE 

from tropical peatland ecosystems. The remote sensing-based diagnostic simulation of the C budget 

in this study provides spatiotemporal distributions of the net carbon balance, including natural 

emissions, anthropogenic-induced emissions, and natural absorptions in detail. The findings are 

expected to contribute to the creation of a feasible and robust assessment system for peatland 

ecosystems in terms of the daily carbon cycle by using satellite-based datasets. 
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Appendix A 

Table A1. Regression coefficient between a vegetation index (MODIS normalized vegetation index 

(NDVI)) and a biomass simulated by the vegetation integrative simulator for trace gases (VISIT) 

terrestrial biosphere model [28] in each land cover type of the MODIS land cover type product 

(MCD12Q1) to estimate biomass. Biomass = a * ln (NDVI) was used as a regression (where a is the 

regression coefficient). The fire emission estimation process was reported in detail in previous study 

[44]. 

Land cover type Coefficient 
Correlation Coefficient 

(R2) 

Evergreen Needleleaf Forest 157 0.50 

Evergreen Broadleaf Forest 176.4 0.64 

Deciduous Needleleaf Forest 93.1 0.53 

Deciduous Broadleaf Forest 106.4 0.53 

Mixed Forest 111.7 0.45 

Closed Shrublands 110.5 0.49 

Open Shrublands 151.3 0.34 

Woody Savannas 133.3 0.42 

Savannas 89.7 0.30 

Grasslands 78.9 0.36 

Permanent Wetlands 167.8 0.59 

Croplands 77.9 0.25 

Urban and Built-up 130.7 0.45 

Cropland/Natural Vegetation 

Mosaics 
125.4 0.33 

Permanent Snow and Ice 271.2 0.39 

Barren 85.6 0.22 
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Figure A1. Spatial distribution of mean annual fire emissions from 2002 to 2018 of (a) this study and 

(b) GFED 4.1s in the Papua region in Eastern Indonesia. The same color scheme was used for both (a) 

and (b). More fire emissions were confirmed in (a) FE in this study compared with (b) GFED 4.1s. 
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