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Abstract: The monitoring of forest resources is crucial for their sustainable management, and tree
species identification is one of the fundamental tasks in this process. Unmanned aerial vehicles
(UAVs) and miniaturized lightweight sensors can rapidly provide accurate monitoring information.
The objective of this study was to investigate the use of multitemporal, UAV-based hyperspectral
imagery for tree species identification in the highly diverse Brazilian Atlantic forest. Datasets were
captured over three years to identify eight different tree species. The study area comprised initial
to medium successional stages of the Brazilian Atlantic forest. Images were acquired with a spatial
resolution of 10 cm, and radiometric adjustment processing was performed to reduce the variations
caused by different factors, such as the geometry of acquisition. The random forest classification
method was applied in a region-based classification approach with leave-one-out cross-validation,
followed by computing the area under the receiver operating characteristic (AUCROC) curve. When
using each dataset alone, the influence of different weather behaviors on tree species identification
was evident. When combining all datasets and minimizing illumination differences over each tree
crown, the identification of three tree species was improved. These results show that UAV-based,
hyperspectral, multitemporal remote sensing imagery is a promising tool for tree species identification
in tropical forests.

Keywords: tree species classification; semideciduous forest; hyperspectral multitemporal information; UAV

1. Introduction

Forests play an important role in biodiversity, carbon stocks, the water cycle, and feedstock,
but they are rapidly being degraded. Knowledge about the tree species of a forest is fundamental
information. Tree species mapping can be performed through fieldwork campaigns, but generally,
this practice has limitations, since it is expensive and laborious. Remote sensing, together with
automatic analysis techniques, has become a prominent tool for tree species mapping.

Satellite sensors [1] and airborne passive and/or active sensors [2,3], combined with the use of field
spectroscopy [4], provide valuable information for the identification of tree species. Support vector
machine (SVM) [5] and random forest (RF) [6] are examples of machine learning algorithms that have
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been successfully applied to identify tree species in urban environments [7], savannas [2], and different
types of forests, including northern, boreal, temperate, and tropical forests [1,8–12]. Recently, these
algorithms, with images acquired using unmanned aerial vehicles (UAVs), have become a powerful
tool for forest monitoring [13–15].

UAVs enable fast information acquisition, and despite their constraints regarding the trade-off

between resolution and coverage, they are low-cost alternatives for capturing information in areas that
are endangered or need constant monitoring, such as mines or agricultural crops. UAVs can fly over
many areas that are challenging for field data acquisition, such as water surfaces or dense forest areas.
UAV missions can be quickly configured according to the user’s needs. Furthermore, in the past few
years, UAVs have been rapidly developed to fly for several hours; an example of such a platform is the
fixed-wing Batmap II UAV, which is able to fly for more than 2 h [16]. UAVs can capture very high
or ultrahigh spatial resolution data with ground sampling distances (GSD) ranging from centimeters
to decimeters [17–20] using small-format multispectral or hyperspectral cameras, such as MicaSense
RedEdge-MX [21], Rikola hyperspectral imager [22], and Cubert FireflEYE [21]. Beyond that, UAVs can
repeatedly acquire information through surface targets, such as trees, which is a highly promising
option in forest monitoring, since it can measure dynamic phenological behavior according to seasons
and tree characteristics.

Although most of the previous studies conducted with multiseasonal information have not
employed UAVs, they have shown spectral differences within tree species and reported whether the tree
species classification was improved [7,23–30]. Moreover, most of them have been performed in northern
forests [31]. There is a lack of studies in forests such as the Brazilian Atlantic forest, which encompasses
different ecosystems, such as mixed ombrophilous, dense ombrophilous, open ombrophilous,
semideciduous seasonal, and deciduous seasonal forests [32]. Sothe et al. [14] studied a mixed
ombrophilous forest whose characteristics differ from those of other types of Brazilian Atlantic forest,
especially the semideciduous and deciduous seasonal forests. Their floristic compositions and forest
structure are different [32], which highlights the importance of studying them separately.

In addition to their application in northern forests in which coniferous tree species are predominant,
most studies have investigated well-developed forests or forests in which trees with different heights
are spatially distinguished. Plots containing tree species in different development stages can present
similar heights, and thereby cause spectral mixing due to leaf mixture and the effect of neighborhood
spectra, since the number of emergent trees is smaller. Notwithstanding the importance of monitoring
mature forests, monitoring fragments that are in the initial regeneration process is considered a key
element in the connection of forest patches, and contributes to the maintenance of biodiversity [33,34].

The objective of this study was to develop and assess UAV-based remote sensing techniques
to improve tree species identification in Brazilian Atlantic forest areas with vegetation stages that
range from initial to advanced restoration. A further objective was to study whether multitemporal
spectral information acquired over multiple years in the same season but under different moisture
conditions could improve tree species classification. UAV-based hyperspectral images were acquired
over three years during the winter season. Additionally, the classification performance of two different
spectral features was compared. The findings in this paper are expected to provide information
about the use of spectral features with minimized effects from illumination differences to classify
tree species in the highly diverse Brazilian Atlantic forest, and demonstrate the use of hyperspectral
multitemporal information.

2. Materials and Methods

2.1. Study Site

The transect forest sample used in this study is centered at 22◦23′55.21”S, 52◦31′18.31”W, in the
municipality of Euclides da Cunha Paulista, western part of São Paulo State, Brazil (Figure 1). The
transect has an approximate length and width of 500 m × 130 m, and comprises a variety of tree species
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in different successional stages. The study area was established inside the Ponte Branca forest fragment,
a protected area belonging to the Black Lion Tamarin Ecological Station. According to the Brazilian
Institute for Geography and Statistics (IBGE), it is an area of the submontane, semideciduous seasonal
forest [35]. The regional climate is considered a tropical zone with dry winters (Aw), according to the
Köppen classification [36]. The mean temperature during the dry season is 21 ◦C, with less than 60 mm
of total precipitation [37]. The weather patterns differed between the years 2017, 2018, and 2019 and
the flight campaigns (Figure 2). The season was wetter in 2017, with precipitation of 69 mm before
the flight campaign, whereas the precipitation was 18.6 mm before the flight campaign of 2018 and
51 mm before the flight campaign of 2019; however, rain did not occur for at least 8 days before image
acquisition [37].
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Figure 1. Study area and tree species recognized in the field in the 2017 dataset. The red rectangle
represents the imaged area, and the yellow rectangle is a zoom of the study area.
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Figure 2. Climograph of Paranapoema station from the National Institute of Meteorology. Bars
represent the accumulated rainfall per month (mm), and dashed lines represent the mean monthly
temperature (◦C).
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2.2. Reference Data

More than 25 tree species with a diameter at breast height (DBH) greater than 3.8 cm were detected
during fieldwork [38]. Tree species were in different successional stages, with the northernmost part
of the study area containing trees in the initial stage of succession and the southernmost in a more
advanced stage [39]. Moreover, we located 90 trees of eight species that emerged from the canopy
(Tables 1 and 2). Their crowns were manually delineated through visual interpretation of RGB image
composites of each dataset (R: 628.73 nm; G: 550.39 nm; B: 506.22 nm). Figure 1 shows examples
of delineated individual tree crown (ITC) polygons in the 2017 dataset, and Figure 3 shows canopy
examples of each tree species in the mosaic of images acquired during the 2017 flight campaign. These
tree species were chosen because they are important for characterizing the successional stage of the
forest, e.g., Syagrus romanzoffiana (SR), which can be associated with the faunal composition [40]. It is
important to note that smaller tree species were excluded from analysis because the lianas that cover
and mix among individuals negatively affect the classification accuracy. From now on, tree species will
be called by their abbreviations from Tables 1 and 2.

Table 1. The number of samples recognized in the field and the average number of pixels per crown for
each tree species and its sum.

Abbreviation Specie ITCs Average
Pixels/Crown Sum of Pixels

AL Apuleia leiocarpa 10 2328 23,278
CL Copaifera langsdorffii 17 2148 36,520
EP Endlicheria paniculata 7 1254 8776
HA Helietta apiculata 10 1669 16,689
HC Hymenaea courbaril 11 2800 30,799
IV Inga vera 8 1288 10,302
PP Pterodon pubescens 7 2715 19,007
SR Syagrus romanzoffiana 20 1315 26,293
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Figure 3. Canopy examples of each tree species identified in the field and delineated in the images
acquired in 2017 (R: 780.49 nm; G: 565.10 nm; B: 506.22 nm; automatic contrast from QGIS software,
version 3.0.0). (a) Apuleia leiocarpa (AP), (b) Copaifera langsdorffii (CL), (c) Endlicheria paniculata (EP),
(d) Helietta apiculata (HA), (e) Hymenaea courbaril (HC), (f) Inga vera (IV), (g) Pterodon pubescens (PP),
(h) Syagrus romanzoffiana (SR).
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Table 2. Tree species identified in the field and their characteristics 1.

Abbreviation Species Family Height (m)/Trunk Diameter (cm) Characteristics

AL Apuleia leiocarpa Fabaceae: Caesalpinioideae 25–35/60–90
Deciduous and heliophyte. Blooms with the tree

completely without leaves, usually in
August–September

CL Copaifera langsdorffii Fabaceae: Caesalpinioideae 10–15/50–80
Semideciduous, heliophyte, xerophyte selective. Blooms

between December to March, fruits ripen in
August–September with the tree almost without leaves

EP Endlicheria paniculata Lauraceae 5–10/30–50
Evergreen, cyophyte, and hygrophyte selective. Blooms
during the summer, January–March, and fruits ripen in

May–July depending on the season

HA Helietta apiculata Rutaceae 10–18/30–50
Evergreen, heliophyte, and hygrophytic selective.

Blooms between November–December and fruits ripen
in March to May, outside the dry season

HC Hymenaea courbaril Fabaceae: Caesalpinioideae 15–20/up to 100 Semideciduous, heliophyte, xerophyte selective. Blooms
in October–December and fruits ripen from July

IV Inga vera Fabaceae: Mimosoideae 5–10/20–30
Semideciduous, heliophyte, pioneer, and hygrophyte

selective. Blooms in August–November and fruits ripen
during the Summer, December to February

PP Pterodon pubescens Fabaceae: Faboideae 8–16/30–40
Deciduous, heliophyte, xerophyte selective. Blooms

between September to October and the fruits ripen with
the tree almost without leaves

SR Syagrus romanzoffiana Arecaceae 10–20/30–40
Evergreen, heliophyte, and hygrophyte selective.

Blooms almost during the entire year and fruits ripen
mainly in February to August

1 Information extracted from [41,42].
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The number of samples was low for some species because of challenges in acquiring reference
data. First, our study area comprised different successional stages; thus, the species composition varied
over the area. Second, we used tree samples that emerged from the canopy. In tropical forests, the tree
heights can be modeled by the DBH, which can be related to the number of trees per hectare [43–45].
According to Lima et al. [44] and d’Oliveira et al. [45], the relationship between the DBH and the
frequency of trees in tropical forests has an “inverted J shape”, because the number of trees per hectare
decreases substantially as the DBH increases, so the number of taller trees also decreases.

2.3. Remote Sensing Data

Hyperspectral images were acquired with a 2D-format camera based on the tunable Fabry–Pérot
Interferometer (FPI) from Senop Ltd, model DT-0011 [46–48]. The camera has two sensors, both of
which have 1017 × 648 pixels with a pixel size of 5.5 µm. The total weight of the camera is around 700 g
with its accessories, which include an irradiance sensor and a Global Positioning System (GPS) receiver.
Spectral bands can be selected from the visible (VIS) to near-infrared (NIR) region (500–900 nm),
which are acquired sequentially, i.e., the air gap of the FPI moves to acquire the different spectral bands
of the same image. The spectral range of the first and second sensors are 647–900 nm and 500–635 nm,
respectively. A total of 25 spectral bands were chosen, with the Full-Width at Half Maximum (FWHM)
varying from 12.44 to 20.45 nm (Table 3 and Figure 4). For this spectral setting, each image cube needs
0.779 s to be acquired. The exposure time was set to 5 ms, and the image blocks were divided into two
flight strips, ensuring more than 70% and 50% forward and side overlaps, respectively.

Table 3. Spectral settings of an FPI camera, model DT-0011, with the respective FWHM, both in nm (λ
represents the central wavelength of the band).

Band λ

(nm)
FWHM
(nm) Band λ

(nm)
FWHM
(nm) Band λ

(nm)
FWHM
(nm) Band λ

(nm)
FWHM

(nm)

1 506.22 12.44 8 609.00 15.08 14 679.84 20.45 20 740.42 17.98
2 519.94 17.38 9 620.22 16.26 15 690.28 18.87 21 750.16 17.97
3 535.09 16.84 10 628.73 15.30 16 700.28 18.94 22 769.89 18.72
4 550.39 16.53 11 650.96 14.44 17 710.06 19.70 23 780.49 17.36
5 565.10 17.26 12 659.72 16.83 18 720.17 19.31 24 790.30 17.39
6 580.16 15.95 13 669.75 19.80 19 729.57 19.01 25 819.66 17.84
7 591.90 16.61
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Figure 4. Normalized sensitivities of each spectral band set in the FPI camera. Responses were
calculated from the central wavelength and FWHM.

The FPI camera was mounted onboard the UX4 UAV, which is a rotary-wing quadcopter developed
by the company Nuvem UAV. The UX4 UAV is almost 90 cm in diameter and 30 cm in height without
counting the GPS antenna, which is approximately 15 cm. It is controlled by a PixHawk autopilot. The
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energy source for the UAV system and its sensors is one six-cell battery of 22 volts and one smaller
three-cell battery of 11 volts, which allow the UAV to fly for up to 30 min, depending on payload,
battery, and weather conditions. A flight speed of 4 m/s was used to limit the maximum gap between
the first and last band of the hyperspectral imager to 3.1 m in a single cube.

During the field campaigns, three radiometric reference targets were placed in the area to enable
reflectance calibration. Flight campaigns were performed over the study area (Figure 1) on 1 July 2017,
16 June 2018, and 13 July 2019, with an above-ground flight height of approximately 160 m and flight
speed of 4 m/s. The flight height was selected so that a GSD of 10 cm was obtained. This ensured a
good representation of tree crowns that were predominantly over 3 m in diameter. Table 4 provides
more details about the flight time of each campaign and the mean zenith and azimuth angles of the
Sun during the image acquisitions.

Table 4. Details of the image acquisition in each flight campaign.

Flight Campaign Time (UTC-3) Sun Zenith Sun Azimuth

1 July 2017 10:14–10:24 56.35◦ 38.46◦

16 June 2018 11:47–11:54 46.75◦ 12.55◦

13 July 2019 14:27–14:34 52.32◦ 325.61◦

Images were geometrically and radiometrically processed to obtain hyperspectral image
orthomosaics. First, the images were radiometrically corrected from the dark current and nonuniformity
of sensors using a dark image acquired before each flight and laboratory parameters [47,49].

The geometric processing was performed using the Agisoft PhotoScan software (version 1.3)
(Agisoft LLC, St. Petersburg, Russia). In the orientation process, for each year, the exterior orientation
parameters (EOPs) of four reference bands (band 3: 550.39 nm; band 8: 609.00 nm; band 14: 679.84
nm; and band 22: 769.89 nm) were estimated in the same Agisoft PhotoScan project in order to reduce
misregistration between the datasets. The EOPs of the other bands were calculated using the method
developed in [49,50]. Positions from the camera GPS were used as initial values and refined using
a bundle block adjustment (BBA) and ground control points (GCPs). The number of GCPs varied
between datasets, with 3, 3, and 4 used in 2017, 2018, and 2019, respectively. GCPs were placed outside
the forest since it was not possible to see the ground from imagery acquired over the forested area.
Initially, the base station was defined near the study area, and the global navigation satellite system
(GNSS) observations from GCPs were collected and processed in differential mode.

A self-calibrating bundle adjustment was used to estimate the interior orientation parameters
(IOPs) of each sensor and for each year of the dataset. After initial image alignment, parameter
estimation was optimized with automatic outlier removal using a gradual selection of tie points based
on reconstruction uncertainty and reprojection error, together with the manual removal of points. The
final products of this step were the calibrated IOPs, EOPs, sparse and dense point clouds, and digital
surface model (DSM) of the area with a GSD of 10 cm. These were used in the following radiometric
block adjustment and mosaic generation.

Radiometric adjustment processing aims to correct the digital number (DN) of pixels of images
from the bidirectional reflectance distribution function (BRDF) effects and differences caused by the
different geometries of acquisition due to the UAV and Sun movements. Thus, nonuniformities among
images were compensated for by the radBA software, developed at the Finnish Geospatial Research
Institute (FGI) [49,50]. Equation (1) shows the model used in the software to extract the reflectance
value from the DN of each pixel.

DN jk = arel j
(
aabs·R jk(θi,θr,ϕ) + babs

)
, (1)

where DN jk is the digital number of pixel k in image j; R jk(θi,θr,ϕ) is the corresponding reflectance
factor with respect to the zenithal angle θ of the incident and reflected light, i and r, respectively, and
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with the relative azimuthal angle ϕ (ϕr −ϕi), where ϕr refers to the reflected azimuthal angle, and ϕi
denotes the incident azimuthal angle; arel j is the relative correction factor of illumination differences
with respect to the reference image; and aabs and babs are the empirical line parameters for the linear
transformation between reflectance and DNs.

According to a previous study by Miyoshi et al. [47], for the study area, the best initial relative
correction factor (arel j) was one (1), with a standard deviation equal to 0.05. It is worth noting that
an exception was necessary for the dataset from 2018 because of higher density differences in cloud
covering. The 2017 and 2019 flights were carried out in almost blue-sky conditions, with slight
differences compensated for by the radiometric block adjustment. The radiometric block adjustment
was performed in two steps for the 2018 dataset. First, an initial radiometric block adjustment was
performed using initial values of arel j = 1. In sequence, the final values of arel j were used as the initial
values for the second radiometric block adjustment. Then, the reflectance factor values were estimated
using the empirical line method [51]. The empirical line parameters (aabs and babs) were estimated
from the linear relationship between the DN values of three radiometric reference targets with a mean
reflectance of 4%, 11%, and 37%. Radiometric reference targets were 90 cm × 90 cm and composed
of light-gray, gray, and black synthetic material. Thus, the mosaics of hyperspectral images for each
dataset representing the reflectance factor values were obtained.

Additionally, point cloud data from airborne laser scanning (ALS) were provided by the company
Fototerra. ALS data were acquired in November 2017 using a Riegl LMS-Q680i laser scanner (RIEGL,
Horn, Austria) onboard a manned aircraft at a flight height of 400 m, which resulted in an average
density of 8.4 points/m2. The canopy height model (CHM) was obtained by extracting the digital
terrain model (DTM) from the DSM. The processing was performed using the LAStools software
(Martin Isenburg, LAStools—efficient tools for LiDAR processing) [52]. First, the lasnoise tool was
applied to withdraw possible noises in the point cloud. Then, the CHM was extracted using the
lasheight tool to obtain tree heights in the study area.

Figure 5 shows the mean height of each tree sample recognized in the field; most of the observed
samples fell within a similar height range. Additionally, taller trees were found in the more developed
successional stage of the area. Trees of the same species varied in age and were found in regions of
different successional stages. For example, PP trees had crown areas of around 25 m2 and mean heights
of 10–20 m. Similarly, HC samples had a mean height of almost 14 m, with tree crown areas ranging
from 16 to 90 m2. It is important to highlight that the ALS data were not used in the classification step,
since the objective of this research was to evaluate hyperspectral multitemporal data to improve tree
species identification.
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2.4. Extraction of Spectral Features

Spectral features were extracted using manually delineated crown polygons. We used spectral
features taken from the reflectance mosaics and normalized features extracted after pixel normalization.
The normalization reduced the differences between the sunlit and shadowed pixels, assuming a
uniform distribution across the crown [13,53]. The normalization process was performed to reduce the
spectral variability of spectra from the same tree species (within-species). The normalized pixel value
was calculated by dividing the pixel value of a band by the sum of values of this pixel in all bands [53].
The mean values of normalized and nonnormalized pixels in each polygon were extracted for use in the
region-based classification method. These values are referred to as MeanNorm and Mean, respectively.

Despite performing joint geometric processing, there were differences in the spatial position
of trees, especially when using very high spatial resolution imagery. These differences are mainly
caused by tree growth, changes in leaves with changing seasons, and weather conditions or projection
differences due to the characteristics of the surface used. Figure 6 shows the slight difference in the
spatial distribution of the leaves of SR trees.
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(c) 2019.

2.5. Tree Species Identification with RF

The RF method was used for tree species identification using only the spectral information,
since the objective was to verify whether the use of temporal information could improve tree species
detection. This method is based on multiple decision trees, and the class is determined by the most
popular vote [6]. Decision trees are composed of different samples, which are drawn with replacement,
i.e., one sample can belong to more than one tree [54]. The RF has been successfully applied for
image classification when working with high-dimensional data [8,13], and it is less sensitive to feature
selection [54]. The RF was applied using the default parameters of the Weka software version 3.8.3
(The University of Waikato, Hamilton, New Zealand) [55].

The classification process was carried out five times with four different datasets: (i) the 2017
spectral information (D17); (ii) the 2018 spectral information (D18); (iii) the 2019 spectral information
(D19); (iv) the combination of the 2017, 2018, and 2019 spectral information (Dall). For the D17, D18, and
D19 datasets, we used the normalized pixel values to extract the spectral features, which are referred
to as cases D17_MeanNorm, D18_MeanNorm, and D19_MeanNorm, respectively. Additionally, in
the case of the combined dataset (item (iv) in the previously described datasets), the classification
was performed using both the normalized and nominal values, referred to as Dall_MeanNorm and
Dall_Mean, respectively. Table 5 summarizes the number of features used in each case.

The number of samples of different species is relatively low and also unbalanced. The leave-one-out
cross-validation (LOOCV) method was used to circumvent this problem. LOOCV is a particular case
of k-fold cross-validation, where k is equal to the total number of samples of the dataset [13,56]. The
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classification model is trained k times, followed by testing with one subset and training with the
remaining subsets. In each iteration, the model is trained using k − 1 samples and tested with the
remaining sample. The final accuracy values are obtained by averaging the accuracy values of each
iteration [56]. LOOCV has been successfully applied in tree species classification studies with a small
sample size (e.g., less than 10 samples per class [14]) or an unbalanced number of samples per class [13].

Table 5. The number of features used in each test.

Cases Spectral Data From Number of Features
2017 2018 2019

D17_MeanNorm X 25
D18_MeanNorm X 25
D19_MeanNorm X 25

Dall_Mean X X X 75
Dall_MeanNorm X X X 75

The results were evaluated through the area under the receiver operating characteristic curve,
known as AUC (area under the curve) ROC (receiver operating characteristics) or AUCROC [57–59].
ROC is the relationship between the false positive rate (FPR), or “1-specificity”, and the true positive rate
(TPR), or sensitivity, and it is useful when working with unbalanced classes because it is independent
of the class distribution [59,60]. When using classifiers such as RF that provide probabilities or scores,
thresholds can be applied to acquire different points in the ROC space to form an ROC curve [60].
AUCROC is the area under the ROC curve, and represents the probability of the classification model
correctly classifying a random sample in a specific class. AUCROC varies from 0 to 1 for each
class, where a value of 0.5 indicates that the specific classification model is no better than a random
assignment, and a value of 1 represents perfect discrimination of a class from the remaining ones [59].
To the best classification (i.e., the one with highest value of average AUCROC value), the overall
accuracy (i.e., the percentage of correctly classified instances of the total number of samples), the user
accuracy, and the producer accuracy [61] were calculated as well.

3. Results

3.1. Spectral Response of Each Tree Species Recognized in the Field

The spectral variability within samples of the same tree species was verified through the mean,
minimum, and maximum values of Mean and MeanNorm (defined in Section 2.3). The mean values
are presented in Figure 7, showing similar spectral responses in the VIS region for both Mean and
MeanNorm. In the NIR region, the Mean spectra are visually similar between IV, HA, HC, and AL.
Despite smaller differences among the MeanNorm spectra, which may lead to higher classification
confusion, the spectral variability within the samples of Mean had a higher range (Figure 8). In Figure 8,
the range between the minimum and maximum values is visually the same for both the Mean and
MeanNorm spectra of all tree species in the VIS part of the electromagnetic spectrum. It is noted
that the number of samples of each tree species can affect this range of variation, as observed for SR
with 20 samples. However, this behavior was not observed for AL (10 samples) and HC (11 samples).
The range variation in the Mean values from the red-edge (700 nm) to near-infrared region (820 nm)
had a higher variability when compared with the MeanNorm values, leading to the conclusion that a
higher variability may influence classifier performance. Moreover, in Figure 7, an unusual peak may
be noticed at the spectral response at 650 nm, probably due to the fact that this spectral band is located
near the edge of the first sensor from the FPI, which acquires information from 647 nm to 900 nm.
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Figure 8. Values for each tree species considering the mean reflectance factor spectra (Mean) and the
mean normalized spectra (MeanNorm) calculated using pixels in the delineated crown polygons. The
blue line represents the Mean, the red line represents the MeanNorm, and the shaded area represents the
minimum and maximum values. (a) Apuleia leiocarpa (AP), (b) Copaifera langsdorffii (CL), (c) Endlicheria
paniculata (EP), (d) Helietta apiculata (HA), (e) Hymenaea courbaril (HC), (f) Inga vera (IV), (g) Pterodon
pubescens (PP), (h) Syagrus romanzoffiana (SR).

3.2. Identification of Tree Species Results

Table 6 provides the AUCROC values after applying the RF with LOOCV to each dataset.
Dall_MeanNorm presented the highest average AUCROC value (0.807), and thus, it can be considered
the best dataset with which to identify the tree species. Average AUCROC values for Dall_Mean,
D17_MeanNorm, D18_MeanNorm, and D19_MeanNorm were 0.783, 0.746, 0.754, and 0.682, respectively.
Next, a more detailed analysis was performed using AUCROC values of Dall_MeanNorm.
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Table 6. AUCROC values for each tree species identified in each dataset. AUCROC values are from
imagery data of (i) only 2017 (D17_MeanNorm); (ii) only 2018 (D18_MeanNorm); (iii) only 2019
(D19_MeanNorm); (iv) all years and the mean spectral values (Dall_Mean); and (v) all years and the
mean normalized values (Dall_MeanNorm).

Tree Species 1 AUCROC

D17_MeanNorm D18_MeanNorm D19_MeanNorm Dall_Mean Dall_MeanNorm

AL 0.608 0.438 0.313 0.754 0.613
CL 0.821 0.678 0.517 0.742 0.768
EP 0.818 0.827 0.664 0.743 0.836
HA 0.594 0.576 0.899 0.798 0.846
HC 0.800 0.809 0.847 0.699 0.847
IV 0.627 0.886 0.622 0.837 0.824
PP 0.713 0.817 0.680 0.758 0.723
SR 0.986 0.997 0.915 0.936 0.999

Average AUCROC 0.746 0.754 0.682 0.783 0.807
1 AL: Apuleia Leiocarpa; CL: Copaifera Langsdorffii; EP: Endlicheria Paniculata; HA: Helietta Apiculata; HC:
Hymenaea Courbaril; IV: Inga Vera; PP: Pterodon Pubescens; SR: Syagrus Romanzoffiana.

Compared with the other datasets, Dall_MeanNorm had the highest AUCROC values for three of
the eight tree species, namely, EP, HC, and SR. HA was better modeled in the D19_MeanNorm
dataset, with an AUCROC value of 0.899, and it was worst modeled in the D18_MeanNorm
dataset (AUCROC = 0.576). In contrast, IV was best and worst identified in D18_MeanNorm
and D19_MeanNorm, respectively. Additionally, no significant differences were obtained when using
normalized pixels compared with unnormalized ones for this tree species since the AUCROC values
were 0.837 for Dall_Mean and 0.824 for Dall_MeanNorm. The identification of CL was similar between
Dall_Mean (AUCROC = 0.742) and Dall_MeanNorm (AUCROC = 0.768), and it was best modeled in
D17_MeanNorm (AUCROC = 0.821). AL had the lowest AUCROC value in D19_MeanNorm (0.313),
which probably affected its identification in the Dall_MeanNorm dataset, in which its AUCROC
was 0.613.

Since Dall_MeanNorm generated the best results in general, its ROC curves are shown in Figure 9,
and its confusion matrix and user and producer accuracies are presented in Table 7. Figure 9 reveals
different threshold values for each tree species, which are related to predictive probabilities [62].
For AL, which had the lowest AUCROC value (0.613), the FPR was higher than 0 (0.088), even when
the TPR was equal 0, which indicates that the RF performed poorly in identifying this tree species,
as confirmed by the confusion matrix, since none of AL were correctly identified. PP had the second
lowest AUCROC value (0.723), and its threshold varied from 0 to 0.46, i.e., similar to AL. As shown in
Figure 9 and in the confusion matrix of Table 7, only one tree species was correctly identified, and the
TPR was only higher than 0 (TPR = 0.143) when the FPR was 0.024 to a threshold of 0.4. The highest
AUCROC value, 0.999 for SR, corresponded to the tree species with the fewest false positives; that is,
it was less frequently confused with the other tree species. The ROC curve of SR in Figure 9 shows
that a TPR of 1 was obtained when the FPR was 0.014. This fact indicates that samples of this tree
species will always be correctly identified; however, even with a low degree of variation, they could be
confused with other tree samples, even in small proportions. Interestingly, for IV, that was not among
the highest AUCROC values, the FPR is equal to 0 until a threshold of 0.44, when the TPR is 0.375. This
fact is associated with the confusion matrix of Table 7, which has few false positives for this tree species.
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Figure 9. ROC curves of the identification of each tree species from the application of RF to all imagery
datasets (Dall_MeanNorm). (a) Apuleia leiocarpa (AP), (b) Copaifera langsdorffii (CL), (c) Endlicheria
paniculata (EP), (d) Helietta apiculata (HA), (e) Hymenaea courbaril (HC), (f) Inga vera (IV), (g) Pterodon
pubescens (PP), (h) Syagrus romanzoffiana (SR).

Table 7. Confusion matrix of the classification of 8 tree species and all datasets (Dall_MeanNorm) and
its user accuracy and producer accuracy.

Tree Species 1 AL CL EP HA HC IV PP SR User Accuracy (%)

AL 0 2 0 1 3 0 0 0 0
CL 3 8 2 3 0 2 2 0 40
EP 0 1 4 1 1 0 0 0 57.1
HA 2 2 0 3 0 0 2 0 33.3
HC 4 2 1 0 6 2 2 0 35.3
IV 0 2 0 0 0 3 0 0 60
PP 0 0 0 2 0 0 1 0 33.3
SR 1 0 0 0 1 1 0 20 87

Producer accuracy (%) 0 47.1 57.1 30 54.5 37.5 14.3 100 Overall Accuracy = 50%
1 AL: Apuleia Leiocarpa; CL: Copaifera Langsdorffii; EP: Endlicheria Paniculata; HA: Helietta Apiculata; HC:
Hymenaea Courbaril; IV: Inga Vera; PP: Pterodon Pubescens; SR: Syagrus Romanzoffiana.

Spectral Feature Importance

The feature importance in the Dall_MeanNorm dataset, which had the best classification results,
is given in Figure 10. The feature importance was scaled from 0 to 1, where 0 represents the least
important feature, and 1 represents the most important feature. The least important feature was band
21, centered at 750.16 nm, in the 2019 dataset, and the most important was band 10, centered at 628.73
nm, in the 2017 dataset. Additionally, in general, the most important features in the 2017 dataset were
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from the VIS part to the beginning of the red-edge part of the electromagnetic spectrum. In the 2018
dataset, an exception in feature importance may be observed at bands 15, 19, and 23, centered at 690.28
nm, 729.57 nm, and 780.49 nm. These bands were more important than most of the NIR bands in the
2018 dataset. In the 2019 dataset, bands 3, 6, and 12, centered at 535.09 nm, 580.16 nm, and 659.72 nm,
respectively, were highlighted because of the peak in the feature importance value when compared
with the other bands from 2019. These bands are in the VIS part of the electromagnetic spectrum; this
is related to the leaves’ pigment, e.g., chlorophyll and carotenoids, content.
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4. Discussion

Our study area is located in the highly diverse Brazilian Atlantic forest and comprises a great
number of tree species at varying successional stages, which makes tree species identification in the
field challenging. Most of the study area is in the initial stage of regeneration [39], which indicates that
the tree heights have a low degree of variation, as verified in Figure 5. The southernmost part of the
study area is more preserved and exhibits a medium degree of regeneration [39], as supported by the
existence of taller trees in Figure 5. Monitoring this type of vegetation is a feasible way to increase the
knowledge of forest composition and development, especially when the structural data do not have
enough variation among classes to identify the tree species. The importance of regenerating forest
paths is directly related to the maintenance of biodiversity.

The use of joint spectral normalized features (i.e., Dall_MeanNorm) increased the AUCROC
values of three tree species (EP, HC, and SR). In general, when using the mean spectral features together
(i.e., Dall_Mean), variations in the AUCROC values were more apparent compared with the use of
spectral information from each dataset separately. The exception in the Dall_Mean results is to AL,
whose AUCROC value increased with the use of temporal spectral information without normalization.
Moreover, it was observed that weather conditions directly affected most of the trees’ phenology and,
consequently, their spectral response, thus affecting RF performance on each dataset.

All the AUCROC values for SR were higher than 0.90, leading to the conclusion that the
identification of this tree species did not depend on multitemporal information or the use of normalized
spectra. A similar analysis can be applied to HC, which had similar AUCROC values in all tests,
without counting the normalized spectra. CL had similar AUCROC values in Dall_Mean and
Dall_MeanNorm and was better identified in D17_MeanNorm. Therefore, the weather pattern in 2017
was related to the identification accuracy of CL. There was a higher volume of rain before the 2017
flight campaign (Figure 2). Similarly, the weather influenced the detection of other tree species when
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using a single spectral dataset. The dry weather before the 2018 and 2019 flight campaigns hindered
the ability to identify the AL tree species when using the spectral data of these years.

These tree species have different structures, such as the leaf format, and they have different
blossom and fruit sets [41,42]. SR is a palm tree with leaves that are 2–3 m in length and spadices that
are 80–120 cm in length [41]. HC has pinnate leaves and requires sunlight to grow and emerge from
the canopy; blooming occurs in the dry season, and fruit appears after 3–4 months [42]. AL blooms
without leaves, usually in September, and its flowers are white [42]. Thus, the use of multitemporal
data influenced the detection of tree species. Of the previous works in the literature, the research of
Ferreira et al. [28] is highlighted. They acquired WorldView images during the wet and dry seasons
of a well-developed Brazilian semideciduous forest to classify tree species; no improvement in the
classification results was observed when using the combined data. On the other hand, Somers and
Asner [24], Deventer et al. [25], and Hill et al. [26] found that tree species classification improved when
using multitemporal data because of the different spectral changes in the data.

As supported by previous research, VIS bands were among the most important features in tree
species classification at the crown scale [10,13,63,64]. Vegetation spectra are characterized by the
peak and absorption in the green and red parts of the electromagnetic spectrum, which is helpful
for differentiating tree species. Similarly, the use of CHM has been shown to improve classification
accuracies [13,14,65]. CHM data were not applied in our study since the focus was on the usefulness of
temporal spectral information. The use of CHM data, combined with the use of tree crown segments,
is highly recommended for future studies on the classification of tree species in the area.

This study was the first to investigate tree species classification using multitemporal hyperspectral
UAV data acquired over the Atlantic forest. The previous studies that used multitemporal data
acquired datasets from different seasons, and they did not use UAVs or consider a semideciduous
forest with different development stages. Deventer et al. [25] simulated WorldView and RapidEye
data from the leaf spectra of a subtropical forest in South Africa. Hill et al. [26] used the Daedalus
1268 AirborneThematic Mapper (ATM) sensor to acquire data over a deciduous forest in England.
Using WorldView images, Li et al. [7] studied the multitemporal information of tree species in urban
environments. When using UAVs, image acquisition depends on several factors (such as wind
conditions since a UAV is a lightweight platform), and there are safety requirements to fulfill. During
the spring and summer, when some trees may be blooming, the rainfall is higher; for example, summer
rains may occur every day. Although images were acquired in the same season in this study, annual
differences in tree phenology provided additional information and enhanced the classification accuracy.

The utilization of multitemporal data introduces some challenges to the data processing and
classification processes. As shown in Figure 6, there are small differences in tree positions due to
tree growth and probably also due to geometric projection characteristics; thus, trees were delineated
separately in each dataset. When using structural features, the use of different polygons in the same
point cloud might affect the classifier. Furthermore, these variations are challenging when working
with very high spatial resolution imagery. Ferreira et al. [28] used resampled WorldView images
at 0.30 and 1.2 m and needed to adjust the polygons of each ITC. Special attention must be paid to
the radiometric processing of multitemporal spectral datasets. In this study, the datasets from each
year were first processed to ensure that reflectance mosaics were uniform using the radiometric block
adjustment, and further normalization of the shadows was shown to be advantageous.

Classification accuracies are always affected by the forest characteristics, the existence of several
classes, and dataset characteristics, which should be considered for a reliable comparison of studies.
Tuominen et al. [65] used multisource data to classify 26 different tree species of a Finnish forest into
species and genus. They had more than 650 samples and achieved accuracies from 59.9% (when
classifying tree species using the RF classifier and DN values of the shortwave infrared range) to 86.9%
(when using selected features and the k-NN algorithm to classify the genus). Dalponte et al. [66]
classified three types of trees in a boreal forest with more than 2300 samples and obtained an overall
accuracy of 93.5% using manually delimited ITCs. Sothe et al. [14] used hyperspectral imagery and
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structural features to classify 12 tree species of a mixed ombrophilous forest, and achieved a maximum
overall accuracy of 72.4%.

The number of samples affects the classification results and, thus, the analysis results, especially
when using an unbalanced number of samples and statistics that consider the overall accuracy rather
than the class accuracy. Therefore, the use of LOOCV followed by AUCROC analysis is extremely
important because AUCROC values are specific to each class. In this study, the number of samples
was quite low because of challenges in detecting the training data of a complex forest.

The delineation of the tree crown is equally important. When working with different successional
stages and, thus, trees of potentially similar heights, correct spatial identification and tree crown
delineation are crucial to the performance of any classifier. Since the region-based classification method
provides better classification accuracy of tree species, future studies will be performed to fulfill this
need. Approaches using ALS data have been successfully applied in boreal forests or pulpwood
forests [67]. Wagner et al. [11] segmented the semideciduous Atlantic forest in a well-developed
stage using imagery information only. Automating the delineation of the tree crown with acceptable
accuracy would enhance the production of tree species maps to supplement forest monitoring.

5. Conclusions

The objective of this investigation was to develop hyperspectral unmanned aerial vehicle (UAV)
imaging-based methods for tree species classification in an area of the Brazilian Atlantic forest that has
great species diversity and a multitude of successional stages. An objective further was to assess the
contribution of temporal spectral information to classification accuracy.

Temporal spectral information improved random forest performance for three of the eight tree
species analyzed, indicating that promising accuracy could be obtained when using temporal spectral
information. Separately analyzing single-date datasets showed that the weather patterns directly
influenced the classification performance of some of the tree species. The analysis of datasets from
several years of the same season showed that differences in weather conditions in different years
resulted in some changes in the species spectra; these changes were useful for differentiating between
tree species. The use of multitemporal spectra did not improve the identification of Inga vera, which
had the highest area under the receiver operating characteristic curve (AUCROC) value when using
only the dataset from 2018, and for Copaifera langsdorffii, which was better identified when using only
the dataset from 2017. However, it is important to note that the AUCROC value for Apuleia leiocarpa
resulting from the use of all the datasets (i.e., Dall_MeanNorm) might have been affected by the poor
identification resulting from the use of the 2018 and 2019 datasets (AUCROC values equal 0.438 and
0.313, respectively). Weather conditions were observed to directly affect the tree species bloom because
some species, such as Apuleia leiocarpa, bloom only in the dry season in trees that are completely without
leaves. The normalization of spectra was necessary.

To the authors’ knowledge, this is the first work to use hyperspectral UAV images acquired over
several years to classify the highly diverse Atlantic Forest. Improvements should be applied regarding
the number of samples per class and the automated segmentation of individual tree crowns to enhance
the applicability of the methodology, in addition to the use of tree height information. Moreover,
care should be taken when using very high spatial resolution and automatic tree crown segmentation
because of the slightly different positions of tree leaves caused by tree development.
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