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Abstract: Wheat is one of the main crops in China, and crop yield prediction is important for regional
trade and national food security. There are increasing concerns with respect to how to integrate
multi-source data and employ machine learning techniques to establish a simple, timely, and accurate
crop yield prediction model at an administrative unit. Many previous studies were mainly focused
on the whole crop growth period through expensive manual surveys, remote sensing, or climate data.
However, the effect of selecting different time window on yield prediction was still unknown. Thus,
we separated the whole growth period into four time windows and assessed their corresponding
predictive ability by taking the major winter wheat production regions of China as an example in
the study. Firstly we developed a modeling framework to integrate climate data, remote sensing
data and soil data to predict winter wheat yield based on the Google Earth Engine (GEE) platform.
The results show that the models can accurately predict yield 1~2 months before the harvesting
dates at the county level in China with an R2 > 0.75 and yield error less than 10%. Support vector
machine (SVM), Gaussian process regression (GPR), and random forest (RF) represent the top three
best methods for predicting yields among the eight typical machine learning models tested in this
study. In addition, we also found that different agricultural zones and temporal training settings
affect prediction accuracy. The three models perform better as more winter wheat growing season
information becomes available. Our findings highlight a potentially powerful tool to predict yield
using multiple-source data and machine learning in other regions and for crops.

Keywords: wheat yield prediction; multi-source data; machine learning; Google Earth Engine (GEE);
Triticum aestivum L.

1. Introduction

Wheat (Triticum aestivum L.), as one of the three top grains (wheat, rice, and corn) and one of
the most productive cereals in the 21st century [1], provides the most calories and protein for the
global food supply [2]. The accurate prediction of crop yields in advance plays an important role in
the grain circulation market, famine prevention, and food security [3]. Crop yield forecasting is also
valuable for managing field activities, such as fertilization [4]. China is the world’s top wheat producer,
accounting for 11.26% of the world’s total wheat acreage and 17.98% of the world’s total production [5].
Especially for winter wheat, China’s production assumes an absolutely dominant role, with nearly
85% of total summer grain production [6]. Therefore, accurately and timely estimating winter wheat
yield in China is highly required, considering its significant influence on agricultural development and
national food security, or even global scale.
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In recent decades, many researchers have been increasingly focused on improving crop yield
prediction by different methods, including empirical statistical models and process-oriented crop
growth models [7,8]. Conventional statistical models predict yields by developing regression equations
between weather variables (temperature, precipitation, solar radiation, etc.) and measured yields at
different temporal and spatial scales [2,9–13]. Such regression results did show distinctly how climatic
factors affected yields, however their relative lower explanation ability was commonly debated, and the
dominant factors controlling yields often varied by geographical location, crop variety, and growing
season [14]. Thus, the spatial generalization ability of these models is very low, that is to say they were
difficult to apply to larger areas.

On the other hand, as an alternative statistical model, process-based crop models are simultaneously
applied to simulate and predict yields throughout the world, e.g. decision support system for
agrotechnology transfer (DSSAT) [15], agricultural production systems sIMulator (APSIM) [16], model
to capture the crop–weather relationship over a large area (MCWLA) [8,17], and world food studies
(WOFOST) [18]. Although these models can simulate crop yields with higher accuracy, lots of inputs
(e.g., climatic variables, fertilizers, irrigations, soil, and hydrological features) are required to run a
model, which are time-consuming, cost-intensive, and difficult to popularize into a larger region or a
developing country [14,19,20]. Climate variables are the primary inputs for the above two approaches.
Using more vegetation growth status variables, such as normalized difference vegetation index (NDVI)
and enhanced vegetation index (EVI), would obtain better results for yield predictions [2,21–23].
The rapid development of remote sensing technology makes these indexes available both on longer
temporal and wider spatial resolutions [24].

Machine learning has demonstrated its powerful performance in data mining [25] and agricultural
analyses, including crop type classification and yield prediction [2,26]. Crop yield is a function of
the interaction between spatial and temporal changes of variables. Considering the strong ability in
treating multi-dimensional datasets [14,25]. Accordingly, machine learning techniques could provide
powerful supports for improving yield prediction models. Several publications conducted recently in
the world [2,27] have substantiated this viewpoint.

However, the variables selected in many studies were based on the entire growing season,
which means the final yield wouldn’t be estimated until harvesting date [2,28,29]. To our knowledge,
few studies have focused on determining the optimal temporal training settings for China’s winter
wheat yield prediction. Intuitively, determining the best time window, which can capture well the
evolution of winter wheat, would improve greatly crop yield prediction models [30]. Hence, we
identify the optimal time window for the training settings, and such potential findings will benefit
forecast crop yield in advance. Finding the best time to capture the growth characteristics of crops can
improve the performance of the yield prediction model. Most studies have used empirical models or
crop growth models to predict yield of winter wheat in local areas of China, mainly in the Huang Huai
Hai Plain [31–33]. There are few studies on the yield prediction of Chinese winter wheat on a large
scale using data mining technology. It is quite important for macro-control economic policy to develop
a large-scale yield prediction model or a prediction framework. Furthermore, the current research
tends to study the impact of climate change on yield [34–36], and the research on the difference of yield
prediction accuracy in different regions is insufficient.

Although previous studies have greatly improved yield prediction accuracy from spatial and
temporal domains, they only focused on partial regions due to the complicated data process [20,37].
Crop yield prediction at a larger-area scale generally requires a large amount of data and complex
data processing, suggesting high costs for acquiring and processing large data sets. Fortunately,
GEE is provided freely as a cloud-based computing platform to store and process huge data sets
(at petabyte-scale) for geospatial analysis and visualization of geospatial datasets [38–40].

In view of the shortcomings of current research, referring to previous studies, we integrated
21 indicators derived from remote sensing data, climate data, and soil properties data based on GEE
platform, to build machine learning models for predicting winter wheat yield in China. We adopted
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eight machine learning algorithms for predicting winter wheat yield at the county scale, including
K-nearest neighbor (KNN), neural network (NN), decision tree (DT), support vector machine (SVM),
Gaussian process regression (GPR), random forest (RF), boost trees (BST) and bagging trees (BGT).
Our main objectivities are: (1) to construct a winter wheat yield prediction framework; (2) to select the
better machine learning algorithms for yield prediction; (3) to identify the best time window for the
training settings of winter wheat; (4) to explore the regional differences of yield prediction and the
relative importance of variables.

2. Materials and Methods

2.1. Study Area

The studied area extends from 100.20 ◦E to 121.89 ◦E and from 23.13 ◦N to 118.2 ◦N, consisting of
629 counties. Due to differences in climate and planting pattern, agricultural division of China are
divided into nine typical types, six of which are planted by winter wheat (Figure 1). The eastern part
(Zone III), as the main planting areas for winter wheat, is located in the North China Plain, with an
average annual temperature of 16 ◦C and an annual rainfall of 800 mm. The growing season of winter
wheat is nearly eight months, from the end of September to early or mid-June of the following year [29].

Figure 1. Study area and China’s agricultural divisions (Zone I: Northern arid and Semiarid Region;
Zone II: Loess Plateau; Zone III: Huang-Huai-Hai Plain; Zone IV: Sichuan Basin and Surrounding
Regions; Zone V: Middle-lower Yangtze Plain; Zone VI: Yunnan-Guizhou Plateau and Southern China).

2.2. Data Sources

The data (2001–2014) obtained in the study include remote sensing data, climate data, soil data,
yield data and crop map. An overview of the data is presented in Table A1. First, all data were
resampled to a common 1× 1 km spatial resolution and 1-month temporal resolution. Then all variables
were further masked based on the winter wheat planting areas. Finally, we calculated the averages in
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each county. Data processing was mainly carried out on GEE platform and ArcGIS. The distribution of
the variables used is shown in Figure 2.

Figure 2. The distribution of NDVI (a), EVI (b), TMAX (c), TMIN (d), DI (e), PRE (f), SM (g) and the
physical and chemical properties of the soil (h) for available data (2001–2014) for the monthly period.
The distribution of soil properties for available data for 629 counties in China. 1: January; 2: February; 3:
March; 4: April; 5: May; 10: October; 11: November; 12: December. NDVI: normalized vegetation index;
EVI: enhanced vegetation index; TMAX: monthly maximum temperature; TMIN: monthly minimum
temperature; DI: palmer drought severity index; PRE: monthly precipitation accumulation; SM: soil
moisture; SILT: silt content; GRAVEL: volume percentage of crushed stone; OC: organic carbon content;
REF_BULK: soil bulk density; PH_H2O: hydrogen ion concentration; SAND: sand content; CLAY: clay
content; T and S represent the topsoil layer (0–30 cm) and the subsoil layer (30–100 cm), respectively.

2.2.1. Remote Sensing Data

We collected two types of vegetation index data (VI), the normalized difference vegetation index
(NDVI) and the enhanced vegetation index (EVI). A vegetation index can monitor the dynamic change
of vegetation. Currently, many studies have shown that NDVI and EVI have a good correlation with
crop yield [41,42]. NDVI is calculated from the red and near-infrared spectral bands, and EVI is
obtained from a combination of the red band, near-infrared band, and blue band. Compared with
NDVI, EVI does not saturate at high canopy density, it can reduce the canopy background signal and
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atmospheric influence and enhance the effects of monitoring vegetation dynamics in high biomass
areas. The combination of NDVI and EVI can provide more crop information, which will contribute to
crop yield prediction [41]. The two VIs during 2001-2014 in China were derived from the MOD13Q1,
which has a spatial resolution of 250× 250 m (https://ladsweb.modaps.eosdis.nasa.gov/). The recurrence
period of this dataset is 16 days. The sequential NDVI and EVI were resampled to monthly scale by
the MVC (maximum synthesis method).

2.2.2. Climate Data

Climate variables (e.g., temperature, precipitation) are important drivers for crop
production [43–45]. Extreme temperatures and droughts show adverse impacts on crops in the
context of global climate change [35,46,47]. We selected monthly maximum temperature (TMAX),
monthly minimum temperature (TMIN), monthly drought index (DI) and precipitation (PRE) for
predicting winter wheat yield. We used Terra Climate, a dataset of high spatial resolution (1/24◦)
monthly climate and climatic water balance for global terrestrial surfaces from 2001–2014 [48]
(http://doi.org/10.7923/G43J3B0R). The GEE platform was used to process Terra Climate datasets and
calculate the climate variables for each county from 2001 to 2014.

2.2.3. Soil Data

Soil is a crucial factor affecting crop yield, including soil water and the physical and chemical
properties of soil [49]. For example, soil moisture can increase winter wheat yield in dryland [50,51].
We selected 14 variables (Appendix A Table A1) that describe the physical and chemical properties
of the soil. For example organic carbon content, PH for the topsoil layer (0–30 cm) and the subsoil
layer (30–100 cm) as the soil variables in this study. Soil moisture (SM) data were obtained from
Terra Climate and soil physicochemical properties data from the Harmonized World Soil Database
(HSWD) [52]. More details in Appendix A Table A1.

2.2.4. Wheat Yield Data and Planting Area

The winter wheat yield (kg/ha) data were collected from 2001 to 2014 in 629 counties in China,
provided by the Agricultural Statistical Yearbook and some unpublished county-level statistics [53].
We calculated the average and standard deviation (SD) of the yield time series in each county, and then
defined the observed values as outliers and removed them if they were not within the range of the
biophysical attainable yields or ± 3SD [54]. The planting areas were extracted from our previous study
on the phenology information of three main crops [55]. Based on the extracted wheat phenology, we
defined the pixels including three key phenology stages (green-up, anthesis, and mature stages) for
more than 7 years as the winter wheat planting areas. Overall, we selected 629 counties across the
whole main wheat planting areas in China.

2.3. Identify the Better Time Window for the Training Settings of Wheat

Different crop growing stages contain different information, and it is essential to determine a
suitable time window to retrieve wheat features for yield prediction [56]. Various environmental
factors associated with crop yields may vary by the width of time-window during wheat growing
season, so we conducted a controlled trial to examine the seasonal sensitivities of winter wheat yields.
In China, winter wheat is generally sowed at the end of September and harvested in early or mid-June
the next year [29]. To determine the ideal interval for training, we developed machine learning models
during different month windows during 2001~2013 and tested them in 2014.

The starting point is triggered by the initial growing period (October and November), and the
ending point is determined just before the harvest period (April and May). Accordingly, four time
windows are set by combing two different starts and ends as follows: October~May, October~April,
November~May, and November~April, respectively.

https://ladsweb.modaps.eosdis.nasa.gov/
http://doi.org/10.7923/G43J3B0R
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2.4. Machine-Learning Methods for Estimating Crop Yield

Eight advanced machine learning algorithms were applied here. All variables in the first 13 years
(2001–2013) were defined as training samples and those of the last year (2014) as test samples.
We standardized all the variables in the datasets by the z-score method before developing each model.
All algorithms were implemented in Weka3.8 and matlab2019a.

2.4.1. K-Nearest Neighbor Regression

The K-nearest neighbor (KNN) approach is a type of instance-based learning, which is based on
the distance of the predictor variables to the nearest training group known to the model [57]. Aha et al.
firstly proposed the new framework and methodology for KNN [58]. KNN can tolerate noise and
unrelated properties and has a relatively relaxed concept bias [58].

2.4.2. Neural Network (NN)

Neural networks consist of different elements highly interconnected and have been extensively
employed in recent years. BP neural network (BPNN) is one of the most widely used artificial neural
networks [59]. BPNN typically includes one input layer, one output layer, and multiple hidden layers.
The input layer only inputs data, then the neurons in the hidden layer begin to analyze and process
the data, and the results are transmitted to the output layer through the transfer function in the end.
When dealing with the issue of nonlinear functions, BPNN would usually be well qualified to detect
the complex relationship between independent variables [60].

2.4.3. Decision Tree (DT)

The decision tree (e.g., C4.5) is an effective tool for solving classification and regression problems
and has been widely used in remote sensing application [61]. The tree consists of a root node (containing
all data), internal nodes, and several leaves. Each node makes a binary decision to separate different
categories until the leaf node is reached. The algorithm is non-parametric and can deal with large and
complex datasets effectively without complex parameter structure [62]. C4.5 decision tree is a method
of approximating discrete value function, which is robust to noisy data [63]. The confidence factor
used for pruning is 0.25 and the minimum number of instances per leaf is 2.

2.4.4. Support Vector Machine (SVM)

SVM is a supervised non-parametric algorithm, which is characterized by using the kernels and
acting on the margins [64]. During SVM regression, the input is mapped to a high-dimensional feature
space using a kernel function, and then a linear regression model is constructed in the new feature
space to balance between minimizing errors and overfitting [2,65]. Kernel functions (linear, polynomial,
Gaussian, etc.) are one of the important hyper-parameters that need tuning. By comparing different
kernel functions, the Gaussian kernel function performed the best in this study.

2.4.5. Gaussian Process Regression (GPR)

GPR is a generalized Gaussian probability distribution for nonlinear regressions [66] and a
nonparametric method for a variety of situations, especially for high dimensional space problems.
The Gaussian process is a collection of random variables whose properties are any finite number of
subsets with a joint Gaussian distribution [67]. However, matrix inversion is a necessary challenge
to handle, which increases the computational complexity and causes a very slow run of the model.
The GPR used in this paper is based on the kernel function of exponential [67], and the parameters
were optimized using Bayesian.
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2.4.6. Random Forest (RF)

Random forests are a combination of tree predictors and are more robust with respect to noise [68].
Each tree is built by selecting random variable sets and dataset samples, and all the trees in the forest
have the same distribution characteristic. After generating a large number of individual trees, they
will vote for the most popular classes. Therefore, RF shows the efficiency to handle high-dimensional
datasets and avoids overfitting during the past decade [69,70]. Additionally, RF can quantify the
relative importance of measured variables and is a reasonable method for variable selection [68,71].

2.4.7. Ensembles of Learning Machines

Ensemble methods first construct a set of classifiers and then classify new data points by voting
on their predictions [72]. This approach can often perform better than any single classifier because it
generates classifiers with high precision by combining diverse classifiers with lower precision, which is
widely applied to solve practical problems [73]. However, it usually takes more computing time
to evaluate the prediction accuracy of an ensemble model. We used two typical ensemble learning
algorithms: boost trees (BST) and bagging trees (BGT) [74].

2.5. Model Evaluation

In order to evaluate the eight ML techniques, cross-validation (CV) is a widely used strategy
for algorithm selection because of its simplicity, universality, and efficiency in avoiding over-fitting
issue [75,76]. It is generally accepted that a model with the smallest estimation error is the best model.
We used 5-fold cross-validation to select the model in this study. We adopted the root-mean-square
error (RMSE), the coefficient of determination(R2), and the mean absolute error (MAE) to evaluate the
performance of the machine learning model, which can be calculated as follows:

R2 =

(∑n
i=1

(
yi − yi

)(
fi − f i

))2

∑n
i=1

(
yi − yi

)2 ∑n
i=1

(
fi − f i

)2 (1)

RMSE =

√√
1
n

n∑
i=1

(yi − fi)
2 (2)

MAE =
1
n

n∑
i=1

∣∣∣yi − fi
∣∣∣ (3)

where n (i = 1, 2, . . . , n) is the number of samples used for machine learning model, yi is the observed
winter wheat yield, yi is the corresponding mean value, fi is the predict winter wheat yield, f i is the
corresponding mean value. The closer R2 is to 1, the higher the prediction performance of the model is.
Small RMSE and MAE values indicate less discrepancy within the observed yield and predicted yield.

3. Results

3.1. Comparison of Training Accuracy of Winter Wheat Yield Prediction Models in Different Time Windows

In this study, eight machine learning models were trained with the observed yields and 21 variables
of winter wheat from 2001 to 2013 at county level. The evaluated results, based on the five-fold
cross-validation, were summarized according to different models and time windows (Figure 3).
Comprehensively considering three evaluation indicators (R2, RMSE and MAE), RF, GPR and SVM
models showed the higher accuracy, with higher R2 (0.79 ~ 0.81) and lower RMSE (<750 kg/ha) and
MAE (<531 kg/ha). Although, R2 of other models are above 0.6, all their RMSEs were >780 kg/ha,
even over 1000 kg/ha (KNN), indicating an insignificant relationship between the predicted and the
observed yields, and larger errors. Thus, RF, GPR, and SVM are more suitable for winter wheat yield
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prediction than other algorithms in China. Moreover, we found that the training accuracy varied by
time windows even with the same machine learning algorithm, especially for the RMSE and MAE.
However, the time windows showed less impact on R2 values of RF, GPR and SVM. Finally, three
algorithms (SVM, GPR, and RF) were selected to establish prediction models for winter wheat yield at
the county level, and all analyses later will only be based on these three models.
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Figure 3. R2 (a), RMSE (b) and MAE (c) skill scores of eight models for winter wheat in different
growth periods at the county scale based on five-fold cross-validation results in different time windows.
(The unit of RMSE and MAE is kg/ha; 10-4: from October to April; 10-5: from October to May; 11-4:
from November to April; 11-5: from November to May.). The error bar represents percentage error,
instead of standard error. The top of the line stands for the value plus 15%, and the bottom of the line
stands for the value minus 15%.

3.2. Winter Wheat Yield Predictions

Based on the trained models of RF, GPR and SVM in Section 3.1, winter wheat yields of
629 counties in 2014 were predicted. The residuals of the prediction results of these models all passed
Kolmogorov-Smirnov test and obey normal distribution, which showed that these regression models
were acceptable (Appendix B Figure A1). The scatter diagrams of the predicted and observed yields
of the models in different growing periods are shown in Figure 4. We found that the predicted and
observed yields showed a good linear fit with R2 of about 0.80. Such results indicated that the three
machine learning models can predict the yield of winter wheat at the county level with higher accuracy,
in the order is RF > GPR > SVM. Although all predicted yields were much closer to the 1:1 line, however
consistent underestimations were found for all models and all time windows. Moreover, the prediction
areas were overestimated for low yields observed with smaller deviations, while underestimated
for high observed yields with relatively greater deviations. Nevertheless, all errors of the predicted
yields are within 10%, suggesting that RF, GPR, and SVM models perform well for crop prediction at
larger scales.
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Figure 4. Scatter plots of observed yield and predicted yield of GPR, SVM and RF models for different
growth periods of winter wheat at the county scale. One point represents a county (the alphabets
(a), (b) and (c) represent GPR, SVM and RF; numbers 1~4 represent October~April, October~May,
November~April, and November~May, respectively).

3.3. Impacts of Selecting Time Windows on Prediction Accuracy

We plotted the RMSEs and MAEs of three models by the four growing periods to investigate the
impacts of the selected time window on the prediction accuracy (Figure 5). RMSEs (Figure 5a) and
MAEs (Figure 5b) were shown in the order of November~April > October~April > Novemeber~May >

October~May, regardless of the algorithms or evaluation indicators. The highest accuracy was indicated
by the time window of October~May, with the smallest errors (RMSE and MAE). Thus, the closer to
the sowing date (the end of September) for time window opening, and the same ending to harvesting
date (June), the higher the prediction accuracy will be, which was more strongly substantiated by
SVM models. The finding suggests that the prediction accuracy will be significantly improved as
more observations during growing seasons are provided by such within-seasons predictor variables.
Johnson [77] further pointed out that more dates included will accumulate the entire season information
and the developed model would perform better than those from only some dates. Moreover, many
studies have also found good relationships between wheat yield and late-season NDVI at the regional
scale [78,79], suggesting NDVI prior to harvest can provide good estimates of regional yield. Beyond
the above, other attributes such as climate and soil conditions during early sowing have important
implications for later crop growth [80,81]. Hence, more information available during crop growing
season could improve the accuracy of winter wheat yield prediction.

Moreover, we found that the sensitivities of RMSE and MAE to time window varied by algorithms,
with the most significant difference for SVM, followed by GPR and RF (Figure 5). The fewer changes in
RF suggest that RF has higher generalization ability than other models [68], with relatively smaller
RMSE and MAE values (6.89 and 0.19 kg/ha). It is noted that RF predicted accurately wheat yield
1~2 months in advance before harvest dates (R2 > 0.8).
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Figure 5. RMSE (a) and MAE (b) skill scores of the best performing prediction models for winter wheat
in different growth periods at the county scale. (SVM: Support vector machine; GPR: Gaussian process
regression; RF: Random forest, and 10-4: from October to April; 10-5: from October to May; 11-4: from
November to April; 11-5: from November to May). Error bar represent standard error.

3.4. Spatial Patterns of Winter Wheat Yield Predicted

The spatial pattern of the predicted yields by three machine learning models is almost the same
as that of the observed yields despite a slight difference (Figure 6). Moreover, the higher yields are
located mainly in the eastern areas, while lower yields in the western areas (Figure 6a). However,
the areas with higher yields predicted in the east are less than those of observations, especially for
SVM (Figure 6b) and GPR (Figure 6c). The eastern areas in the study are the so-called Huang-Huai-Hai
plain, the main producing area of winter wheat in China, with flat terrain, fertile soil, suitable climate,
and good irrigation conditions. The southwest areas are mainly dominated by rice cultivation, with
steep terrain, where winter wheat yields are generally lower and planting areas are fewer. We also
found that some extremely high yields (>6500 kg/ha) are difficult to predict, indicating the limitations
of the machine learning technique.

Figure 6. Spatial distribution of observed and predicted yields of winter wheat in 2014. (a) yields
observed at county scale; yields predicted by SVM (b), GPR (c), and RF (d) at grid-scale. The wheat
growth period selected by prediction is from October to next May.
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3.5. Comparison of Forecast Errors in Different Areas

Crop yield is driven by the interaction of management, soil, and weather conditions. The yield
would vary not only from season to season but also from location to location [14]. To investigate the
prediction errors comprehensively, we summarized them according to the areas and the machine
learning types (Figure 7). The results showed that the errors of machine learning algorithms do vary
by the agricultural zones. With exception of zone III and zone V, the errors of other agricultural
zones are all <10%. Moreover, the positive errors suggest overestimations in zone IV and zone VI,
and underestimation for the other four areas. Overestimated yields are generally located in the humid
and semi-humid areas.
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Figure 7. Percentage errors of winter wheat in different agricultural zones. The wheat growth period
selected by prediction is from October to next May. Percentage error = (predicted yield - observed
yield)/observed yield * 100. Error bar represents one standard error.

We further found that the prediction accuracy of machine learning algorithms does vary by
agricultural zones. For example, RF shows the highest accuracy in the zone VI with 2.40% error; SVM
and GPR perform the best in zone I (−4.78%, −4.39%). The accuracy which is depended on areas
suggests potential other variables should be involved to develop a model. That is to say, a good model
developed in one area could reduce its performance in other areas because other key variables exist
controlling crop yields, such as crop variety, field managements (e.g., fertilizer application). The crop
yield model is very sensitive to the studied area where we are focusing on based on some machine
learning algorithms. Therefore, it is essential for us to know the source area as closely resembling the
target one as possible when building a crop yield prediction model [14]. In the meantime, optimal
spatial area coverage of machine learning methods should be taken into account.

3.6. Prediction Variables and the Order of Relative Importance

To investigate the importance of different variables for the winter wheat yield prediction in China,
we calculated the decreased accuracy (mean square error) after removing one variable from the RF
model. The mean decrease in accuracy indicates the amount by which the random forest model’s
prediction accuracy would decrease if one variable is excluded. The larger the decreased accuracy for a
prediction variable, the more important the variable is (Figure 8). Mean square error represents the
relative importance of the variables. Soil physicochemical properties are generally kept constant during
a short period, so we haven’t selected soil physicochemical variables. Importance of prediction variables
is ordered as: EVI > TMIN > PRE > NDVI > SM > TMAX > DI. EVI is more important for winter
wheat yield prediction than NDVI, which is consistent with the study by Bolton et al. [82]. They stated
that MODIS-EVI provided relatively better results for predicting crop yields than MODIS-NDVI [82].
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As two variables related to temperature, TMIN contributed more significantly than TMAX to the
accurate prediction of wheat yield, implying a greater impact of TMIN on wheat yield than TMAX [35].
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Figure 8. Predictor variable importance based on the RF model, from October to May next year.

4. Discussion

4.1. Model Performance for Estimating Yields in Different Time Windows

We proposed the framework for yield prediction through developing a comprehensive yield
prediction model driven by weather, satellite remote sensing, and soil datasets for food security
decision-making. The differences in various machine learning algorithms have been discussed above.
Among the three best machine learning algorithms (GPR, SVM, and RF), the average computing time
of GPR is six times that of RF, but its overall prediction accuracy is slightly lower than that of RF,
and the prediction ability of RF is consistently better in different time windows. These results indicate
that RF is a promising method for yield prediction [22,83].

Furthermore, we found that various environmental factors related to winter wheat yield showed
disparate sensitivities to the growing season [84,85], which is in accord with previous studies
demonstrating that the longer time series would better reflect the diversity of growth conditions
for estimating yields [84,86]. The time period selected in our study could apply to other wheat
planting areas in China, and the combination of months with the optimal time window might vary
by the crop phenology in different regions. Generally, the heading period of winter wheat in the
study is around in April and the grain filling period in May. Remote sensing vegetation indices (e.g.,
NDVI and EVI) can reflect the physiological characteristics of crops in different growth stages [87,88].
The close correlations between vegetation indexes and crop yields, especially during the flowering
and grain filling stages [78,89,90], have strengthened the important role of later time window for yield
prediction. Higher values of vegetation indexes are generally associated with faster growth rates and
higher biomass accumulation in the vegetative period, which can prolong the grain filling period by
delaying leaf senescence at the maturity stage to increase yield [88,91], and vice versa. Thus, more
details of vegetation growing conditions with longer time window will really seize the impacts from
environments on the final yields [92].

Moreover, the maximum and minimum temperatures can also characterize the impacts of
temperature during the growing season in some degree. For example, Slafer et al. [93] have pointed
out that during the grain filling stage, the crop is highly sensitive to temperature, and the increase
in temperature causes a contraction of grain filling time [94,95]. However, the dry grain weight
(quantified as the product of time and grain filling rate) increases linearly with the extension of the
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filling time under a suitable temperature condition [96]. Hence heat stress during the grain filling stage
will negatively affect crop yield [97–99] through preventing the transfer of photosynthetic products to
the grains [100], or damaging photosynthesis in winter wheat leaves and causing faster senescence and
shorter maturity [101,102]. In contrast, the low temperature in winter (frost damage) is a crucial stress
affecting the growth of winter wheat, which usually causes damage to, or even the death of wheat
seedlings, reducing the number of spikelets or seeds, consequently leading to a decreased yield [93].
Similarly, other climatic variables (e.g., rainfall, soil moisture, and drought index) during the whole
growing season of wheat also contribute significantly yield prediction [103].

The weaker associations between EVI/NDVI and yields during the early growth stages, climatic
factors could provide more spatial and temporal information for more accurate yield prediction.
Combing the appendix role of climatic factors with significant contributions from EVI/NDVI during
later growth stages, the yield models have performed robustly for predicting winter wheat yields. Thus,
integrating the advantages of remote sensing vegetation indexes and climatic variables, the climate
variables in the early time and the late time of the growing period may contribute more to yield
forecast. We found the predictors with a longer time windows would better predict the yield because
of their better characterization of the diversity of growth conditions. The result is consistent with the
previous statement that the effects of different variables on wheat growth and yield are complex and
diverse [104,105]. Since machine learning itself is a kind of black box, the conclusions drawn from our
analysis are limited in terms of plant physiology. The application of crop process models in the future
may help to elaborate the mechanism between variables and yield in more detail.

4.2. Model Performance for Regional Differences

We also found that the accuracy of yield prediction varied by the time window and across
different regions. The regional disparate is mainly caused by the regional differences in environmental
characters, which have been supported by the previous studies [35,85,86,106]. Ji et al. pointed out that
the yield prediction accuracy of the regression models increased with the shrinking of the geographical
area [86]. Larger spatial scales include more areas and greater variability in planting conditions.
In our study, the variation of winter wheat yield in the Huang-Huai-Hai Plain is mainly affected by
irrigation applications and shows a lower sensitivity to rainfall, while a higher sensitivity to rainfall
is indicated in other rainfall-fed areas. Moreover, the sample size in diverse regions also will affect
yield prediction errors [35]. We established a larger-area-scale winter wheat yield prediction model
applicable to average climatic conditions in China and achieved good prediction results. However,
the framework of crop yield prediction proposed by us will provide a scientific paradigm for all regions.
Attention should be paid to the discrepancy in predictive variables (e.g., winter wheat cultivars) as the
spatial region varies.

4.3. Feature Importance in Yield Estimations

The relative impact of a single variable cannot be quantified independently of other variables,
and the RF method provides a measure for assessing the relative importance of variables to the
prediction results [22]. The results show that vegetation and climate data are crucial for yield
prediction. Previous studies have also emphasized the importance of vegetation index, precipitation and
temperature in predicting wheat yield [22,23,107,108]. EVI can reflect the phenological characteristics,
which is a significant growing state described in many crop growth models (e.g., WOFOST) [109,110].
Due to the phenological changes of plant growth under different climatic conditions, the correlation
between crop biomass and remote sensing vegetation index in different phenological periods is
different [111–113]. In our study, EVI plays more important role for estimating yield than NDVI.
We might attribute the different order to the following: (1) the final crop yield is significantly related to
the duration of green biomass [91], especially for the maximum biomass during heading stage [114];
(2) the saturation problem of NDVI under high biomass condition may cause inaccurate yield estimation
at the heading stage (April) [88,115]; (3) EVI overcomes the problems of NDVI saturation and soil noise
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by decoupling of the canopy background signal and reducing the atmosphere influence, and hence EVI
will improve the sensitivity to high biomass condition and canopy structure [88,90,116]. Therefore, EVI
is an effective indicator to track crop phenological events and to evaluate and monitor seasonal changes
of crops and evergreen vegetation [82,90,117]. Furthermore, in many other crop (corn and rice) yield
prediction studies, EVI has proven consistently to be more effective than NDVI [82,88]. The important
role of EVI will benefit scientists to estimate winter wheat yield more timely and accurately at a larger
spatial scale to ensure regional food security.

Climate data affect crop growth rates, which directly determine the final crop yield because of
its strong correlation with spike number, spike length and wheat grouting time [35]. The impact of
climate on winter wheat is mainly reflected by the annual variabilities in yields. Additionally, we
found that the relative importance of TMIN is higher than that of TMAX (Figure 8), in accord with
the previous studies [35]. Tao et al. found that crop yields will increase with the increase of TMIN,
which is mainly due to the decrease in frost damage [35]. We also found that the importance of the DI
is relatively low, and the potential reasons might be the relatively small difference of DI during the
whole growing season (Figure 2e).

4.4. Uncertainties in the Study

There are still some uncertainties, mainly from data sources. For example, the most limitations
come from uncertainties in data quality such as the low resolution of the remote sensing, meteorological
and soil datasets, which lower the predictive ability of machine learning and make the predicted yields
potentially uncertain [118]. The launch of higher-resolution remote sensing satellites, such as sentinel-2
(with the maximum resolution of 10 × 10 m) [119,120], offers new opportunities to provide more
accurate yield prediction. In addition, management measures of human activities such as irrigation,
fertilization, and wheat varieties are very important for crop growth, which have been extensively
studied in many studies [121]. For example, Ji et al. [86] believe that soil fertility is the key input
variable of the artificial neural network model. Because of the limitation of data availability, these
variables are only supplied in very limited places, and availability for crop yield prediction at a larger
scale remains a challenge. Currently, many studies [122,123] are trying to use more new variables for
yield prediction, such as solar-induced chlorophyll fluorescence (SIF) and radar. SIF can reflect crop
photosynthesis and microwave remote sensing (either passive or active) can provide canopy biomass
and water content. Such additional information will potentially improve yield prediction and should
be considered in the future.

In contrast, we should note that no any mechanism processes of crop growth have been included
by machine learning models due to their internal black box. Although machine learning is able to mine
data efficiently, such unknown processes included will inevitably increase the uncertainty of model
performance [85]. Alternatively, crop growth models are developed and validated by many experts
during decades of researches. Crop models have characterized the internal growth and development
mechanism of crops in some degree and have been widely applied with higher accuracy in many
regions. Thus, combining machine learning with the crop growth model is an idea for the future study
of yield prediction [123].

5. Conclusions

We predicted winter wheat yield at the county scale based on multi-source data and multiple
machine learning models. It was found that RF, GPR, and SVM predicted wheat yields with higher
accuracy, and RF demonstrated the best generalization ability among the three methods. RF model
can estimate wheat yields accurately in advance (before the harvesting dates) in China. Moreover, we
investigated the impact of the time window selected on the prediction accuracy and found the window
has a high prediction accuracy throughout the growing period. We also found that the prediction
accuracy varied by agricultural zones and algorithms, and the regional difference will affect the yield
prediction accuracy. In addition, EVI is the most important predictor used in our study for winter
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wheat yield. We are sure the framework to forecast winter wheat yield by multi-source data and the
GEE platform is generic and applicable to other crops in the world.
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Appendix A

Table A1. Data sources used in this study.

Data Type Variable Data Description Period Resolution Reference

Yield - Yield monitor
data(kg/ha) Year Regional [53]

Cultivated land pixel - Winter wheat maps Year 1 km * 1 km [55]

Remote sensing data NDVI MOD13Q1 16-day 250 m * 250 m NASA LP
DAACEVI MOD13Q1 16-day 250 m * 250 m

Meteorological data

TMAX unit: % ◦C. Monthly 1/24◦, ~4 km

[48]TMIN unit: % ◦C. Monthly 1/24◦, ~4 km
DI - Monthly 1/24◦, ~4 km

PRE unit: % mm. Monthly 1/24◦, ~4 km

Soil data

SM unit: % mm. Monthly 1/24◦, ~4 km

[52]

T_SILT unit: % wt. - 1 km
S_SILT unit: % wt. - 1 km

T_GRAVEL unit: % vol. - 1 km
S_GRAVEL unit: % vol. - 1 km

T_OC unit: % weight. - 1 km
S_OC unit: % weight. - 1 km

T_REF_BULK unit: %kg/dm3. - 1 km
S_REF_BULK unit: %kg/dm3. - 1 km
T_PH_H2O unit: %-log(H+). - 1 km
S_PH_H2O unit: %-log(H+). - 1 km

T_SAND unit: % wt. - 1 km
S_SAND unit: % wt. - 1 km
T_CLAY unit: % wt. - 1 km
S_CLAY unit: % wt. - 1 km

NDVI: normalized vegetation index; EVI: enhanced vegetation index; TMAX: monthly maximum temperature;
TMIN: monthly minimum temperature; DI: palmer drought severity index; PRE: monthly precipitation accumulation;
SM: soil moisture, derived using a one-dimensional soil water balance model; SILT: silt content; GRAVEL: volume
percentage of crushed stone; OC: organic carbon content; REF_BULK: soil bulk density; PH_H2O: hydrogen ion
concentration; SAND: sand content; CLAY: clay content; T and S represent the topsoil layer (0–30 cm) and the subsoil
layer (30–100 cm), respectively.
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Appendix B

Figure A1. Yield residual distribution predicted by the combination of different models and growth
periods. For (a), the combination is SVM 10-5, SVM 11-5 (b), SVM 10-4 (c), SVM 11-4 (d), RF 10-5 (e), RF
11-5 (f), RF 10-4 (g), RF 11-4 (h), GPR 10-5 (i), GPR 11-5 (j), GPR 10-4 (k), and GPR 11-4 (l). The residual
distribution of all models had passed Kolmogorov-Smirnov test (Sig. > 0.05), and the distribution of
residual conforms to normal distribution. (10-4: from October to April; 10-5: from October to May;
11-4: from November to April; 11-5: from November to May.).
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