
remote sensing  

Article

SAR Interferometric Baseline Refinement Based on
Flat-Earth Phase without a Ground Control Point

Bing Xu , Zhiwei Li * , Yan Zhu, Jiancun Shi and Guangcai Feng

School of Geoscience and Info-Physics, Central South University, Changsha 410083, China;
xubing@csu.edu.cn (B.X.); yanzhu@csu.edu.cn (Y.Z.); jiancun.shi@csu.edu.cn (J.S.); fredgps@csu.edu.cn (G.F.)
* Correspondence: zwli@csu.edu.cn

Received: 29 November 2019; Accepted: 8 January 2020; Published: 9 January 2020
����������
�������

Abstract: Interferometric baseline estimation is a key procedure of interferometric synthetic aperture
radar (SAR) data processing. The error of the interferometric baseline affects not only the removal of the
flat-earth phase, but also the transformation coefficient between the topographic phase and elevation,
which will affect the topographic phase removal for differential interferometric SAR (D-InSAR) and
the accuracy of the final generated digital elevation model (DEM) product for interferometric synthetic
aperture (InSAR). To obtain a highly accurate interferometric baseline, this paper firstly investigates
the geometry of InSAR imaging and establishes a rigorous relationship between the interferometric
baseline and the flat-earth phase. Then, a baseline refinement method without a ground control
point (GCP) is proposed, where a relevant theoretical model and resolving method are developed.
Synthetic and real SAR datasets are used in the experiments, and a comparison with the conventional
least-square (LS) baseline refinement method is made. The results demonstrate that the proposed
method exhibits an obvious improvement over the conventional LS method, with percentages of up
to 51.5% in the cross-track direction. Therefore, the proposed method is effective and advantageous.

Keywords: synthetic aperture radar interferometry; InSAR baseline estimation; flat-earth phase;
baseline refinement

1. Introduction

During the past two decades, the interferometric synthetic aperture radar (InSAR) has been
gradually matured in terms of theory and widely used in topographic mapping [1] and surface
deformation monitoring [2]. For example, the shuttle radar topography mission (SRTM) data forms a
popular digital elevation model (DEM, a surface model representing ground elevation as an ordered set
of numerical arrays), which is acquired by airborne SAR [3]. Recently, the application fields of InSAR
have been expanded from earthquakes, volcanic eruptions, ground subsidence, and other large-scale
macroscopic monitoring to infrastructure monitoring, such as bridges, dams, and buildings, as well as
high-accuracy 3-D urban reconstruction [4–6], the prospect of which is very broad.

However, the accuracy of InSAR is affected by a variety of errors, such as atmospheric delay error,
DEM error, random phase error, and baseline estimation error. Among such errors, interferometric
baseline estimation error systematically and seriously affects the accuracy of InSAR measurement [7].
The error of the interferometric baseline affects not only the removal of the flat-earth phase, but also
the transformation coefficient between the topographic phase and elevation, which will affect the
topographic phase removal for D-InSAR and the accuracy of the finally generated DEM product for
InSAR. The present methods of initial baseline estimation make it difficult to obtain high-accuracy
baseline estimations due to factors such as the precision of the satellite orbit state vector.

The baseline estimation method based on the satellite orbit state vector utilizes the difference in
instantaneous satellite coordinates to obtain the interferometric baseline estimation, while it is directly
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affected by the precision of the satellite orbit state vector. According to the law of error propagation [8],
the accuracy of the results is lower than that of the satellite orbit state vector. Several SAR satellites
are equipped with global navigation satellite system (GNSS) positioning devices, such as TerraSAR
and COSMO-SkyMed, the precise orbit state vector accuracy of which is about 5 cm and the fast
track accuracy of which is only 10 cm [9]. The orbit state vector accuracy of ERS-1/2 and ENVISAT
(Environmental Satellite) is as low as 10~15 cm [10,11], while that of ALOS (Advanced Land Observing
Satellite)/PALSAR (Phased Array type L-band Synthetic Aperture Radar) is even worse [12].

The baseline estimation method based on image registration offset [13–15] converts the range
offset estimation into slant-range difference, using the relationship between the slant-range offsets
and distance between the master image and slave image, and calculates the interferometric baseline
estimation with SAR imaging geometry. Restricted by the accuracy of the image registration algorithm,
the accuracy of baseline estimation is relatively low, and is generally at a meter or decimeter level [15].
For example, if the accuracy of SAR image registration reaches 1/10 pixel, then that of the slant-range
difference is about 30 cm for TerraSAR with a 3 m resolution. Therefore, the accuracy of interferometric
baseline estimation is low.

The baseline estimation method based on the visible fringe rate is derived from the paper on
the beam transform published by the Italian researcher Gatelli in 1994 [16]. Gatelli et al. proved
that the interferometric baseline can be determined by the relationship between the fringe frequency
and SAR spatial geometry. Hence, once the fringe frequency can be accurately obtained, the SAR
interferometric baseline estimation can be calculated. Many researchers have carried out a lot of
research on this method, such as Wegmuller [13], Li Xinwu [17], Tang Xiaoqing [18], Fan Hongdong [19],
Xu Huaping [20], and so on. In practice, due to the lack of accurate terrain slope information, we
usually select flat terrain to estimate the fringe frequency and interferometric baseline. However, some
defects still exist in this method: on the one hand, it is difficult to search flat terrain in some cases,
and on the other hand, the calculation accuracy is affected by the window size that is adopted by fast
Fourier transform (FFT) for obtaining the fringe frequency, as well as the interferometric phase within
the window. The SAR interferometric baseline in the whole interferogram is not a fixed value, which
means that it changes over time. This means that the method has to calculate the fringe frequency
based on the interferogram within a certain window (e.g., 512 × 512 pixels) to get the average baseline
of the selected area. The larger the window one adopts, the more accurate the estimation is, while the
deviation from the local real baseline is larger, caused by more interferogram samples being contained.
Conversely, when the estimation window is small, the deviation between the baseline estimation and
local real value can be smaller, but its accuracy is affected by the interferogram.

According to an analysis of the existing methods for SAR interferometric baseline estimation, we
can see that all of these methods have inherent defects, meaning that they cannot obtain highly accurate
baseline estimations. To remove the phase error caused by inaccurate baseline estimation, there are two
methods available, namely, interferometric phase error correction [21] (e.g., planar polynomial fitting)
and precise baseline estimation [22]. It has been proven that planar polynomial fitting can just subtract
the trend of the baseline error from the interferogram, while the topographic phase residuals caused
by phase error still remain [23]. This part of the error is associated with the elevation and can easily
be considered as the atmospheric error related to elevation. Therefore, an interferometric baseline
refinement procedure is necessary for real InSAR data processing. Small et al. [22], Joughin et al. [24],
and Kimura et al. [25] have successively proposed a baseline refinement method based on the ground
control point (GCP). The method establishes the observation equation on the basis of the known
unwrapped phase and GCP elevations and computes the baseline parameters using the least-squares
algorithm, so the method is called the baseline refinement with least-squares (LS) (hereinafter referred
to as the LS method). However, in many cases, we cannot obtain the ground control points of the
interest area. By taking advantage of the geometric relationship as the slant-range ellipsoid, Doppler
cone, and earth ellipsoid intersect at the GCP, Liu et al. [26] calculated the elevation of GCP with
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iterations and then computed the baseline estimation based on LS. However, the accuracy of the
iterative calculation of GCP is limited.

In recent years, some researchers have combined SAR interferometric baseline refinement with
multi-temporal InSAR and proposed corresponding methods [27,28]. However, when calculating radar
vectors in line of sight (LOS), the baseline refinement models they have used are highly dependent on
the precision of ground elevation information, which affects the accuracy of the baseline refinement
results to some extent.

In order to obtain an interferometric baseline with a high accuracy and avoid the dependence
of the refinement model on ground elevation, this paper firstly investigates the geometry of InSAR
imaging and analyzes the rigorous geometric relationship between the interferometric baseline and
flat-earth phase in detail. Then, a baseline refinement method without GCPs is proposed and the
geometry is converted from precise baseline estimation to an InSAR flat-earth phase. We develop the
theoretical model and resolving method. Synthetic and real SAR datasets are used in the experiments.
Compared with the conventional LS method, the proposed method is more effective and advantageous.

2. SAR Interferometric Baseline Model

Since the orbits of an SAR satellite do not coincide with each other at the time of imaging, we refer
to the spatial vector consisting of the satellite platform orbital positions as the SAR interferometric
baseline, i.e.,

→

B(tM)XYZ =
→

O(tS) −
→

O(tM)

= [X(tS) −X(tM), Y(tS) −Y(tM), Z(tS) −Z(tM)]T

=
[
Bx(tM), By(tM), Bz(tM)

]T
, (1)

where O(·) = [X(·), Y(·), Z(·)] is the 3-D spatial coordinate vector of the SAR sensor platform at ground
point P; tM and tS are the acquisition times of point P in the master and slave image, respectively;
and Bx, By, and Bz are the baseline components in X, Y, and Z directions, respectively.

As shown in Figure 1, the baseline can be represented as the parallel component along the LOS of
the radar and the perpendicular component perpendicular to the LOS, i.e.,

B// ≈

∣∣∣∣∣→B ∣∣∣∣∣· sin(θ− β) (2)

B⊥ ≈
∣∣∣∣∣→B ∣∣∣∣∣· cos(θ− β). (3)

It should be noted that the precise look angle θ is required for this baseline decomposition,
while its calculation depends on the ground elevation. Here, we introduce an alternative baseline
representation independent of ground elevation for subsequent theoretical derivation.

We adopt an SAR platform-fixed coordinate system, TCN (see bibliography [22,26] for details, T,
Along-Track, the flight direction of satellite; C, Cross-Track, perpendicular to the plane consisting of T
and N to meet the left-handed coordinate system; N, Normal-Direction, the direction from the center
of the earth towards the satellite). Then, the transformation matrix from the earth-fixed coordinate to
the TCN coordinate is formed by

T =
[
→

t ,
→
c ,
→
n
]T

, (4)

where
→

t ,
→
c , and

→
n , represent the unit vectors of the T axis, C axis, and N axis in the earth-fixed

coordinate, respectively [26]. The baseline can be converted to the TCN coordinate by

→

B(t)TCN = T·
→

B(t)XYZ = [Bt(t), Bc(t), Bn(t)]
T. (5)
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As we can see from Formula (5), the decomposition of the baseline in the TCN coordinate does
not depend on the ground elevation, which will be adopted for the subsequent theoretical derivation.
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Figure 1. Sketch map of interferometric synthetic aperture radar (InSAR) imaging geometry. In the

figure,
→

O(tM) and
→

O(tS) are the coordinates of the master and slave satellites in the geocentric coordinate
system, respectively; tM and tS are the respective imaging time of the master and slave images; r1 and r2

denote the respective slant ranges of target P in the master and slave image; and are the nominal slant
ranges with respect to the ellipsoid reference surface in the master and slave acquisitions, respectively;
is the tilt angle of the baseline; θ and θ0 are the look angle and nominal look angle, respectively;B⊥ and
B‖ are the perpendicular and parallel baseline, respectively.

Since the SAR interferometric baseline in the whole interferogram is not a fixed value, we can
model the baseline components using linear formulas, i.e.,

Bc(t) = Bc,0 + αc·t (6)

Bn(t) = Bn,0 + αn·t, (7)

where Bc,0 and Bn,0 respectively represent the components in the directions C and N of the SAR
interferometric baseline model at the reference time, namely the baseline constants. We usually set
the image centers as the time reference points (then Bc,0 and Bn,0 are the components of the image
center baseline in the directions C and N, respectively). αc and αn are the baseline change rates in the
directions C and N, respectively. t is the time at which the point was acquired relative to the reference
time. Bc,0, Bn,0, αc, and αn are unknown model parameters. Here, taking the image co-registration
into account, the baseline component in T has been eliminated, which means Bt = 0 and is no longer
within consideration.

3. Improvement of the Goldstein Filter By the Coefficient of Variation

3.1. Coefficient of Variation

According to SAR imaging geometry (see Figure 1), the unwrapped flat-earth phase can be
expressed by

φ f lat,unw =
4π
λ

(∣∣∣∣∣→r 0
1

∣∣∣∣∣− ∣∣∣∣∣→r 0
2

∣∣∣∣∣)−φ0, (8)

where λ is the radar wavelength,
→
r = [rt, rc, rn]

T is the decomposition of the slant range in TCN
coordinates, and φ0 is the unwrapped flat-earth phase of the reference point. Based on Cosine law, we
can get ∣∣∣∣∣→r 0

2

∣∣∣∣∣ =
√∣∣∣∣∣→r 0

1

∣∣∣∣∣2 + ∣∣∣∣∣→B ∣∣∣∣∣2 − 2
→
r

0
1·
→

B (9)
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and
→

B = [0, Bc, Bn]
T = 0·

→

t + Bc·
→
c + Bn·

→
n . (10)

Given N observations, let the observation vector L = φ f lat,unw with the size of N × 1. X =

[Bc,0, Bn,0,αc,αn,φ0] is the parameter vector to be resolved. Additionally, f (X) = 4π·
(∣∣∣∣→r 1

0
∣∣∣∣− ∣∣∣∣→r 2

0
∣∣∣∣)/λ−

φ0 is the non-linear equation of parameter vector X. Then, Equation (8) is rewritten into the observation
equation as

L = f (X) + ∆, (11)

where ∆ is the error vector of observation L. Equation (11) is a non-linear equation, and in this
paper, it will be transformed into a linear one. By expanding Equation (11) into Taylor Series at

X0 =
[
B0

c,0, B0
n,0,α0

c ,α0
n, 0

]T
, retaining zero- and first-order items, and writing it as an error equation, we

can get

V =
∂ f (X)

∂X

∣∣∣∣∣∣
X=X0

·x− l, (12)

where x = X −X0 and l = L− f
(
X0

)
.

Let

A =
∂ f (X)
∂X

∣∣∣∣
X=X0

=



∂ f1(X)
∂Bc,0

∣∣∣∣
X=X0

∂ f1(X)
∂Bn,0

∣∣∣∣
X=X0

∂ f1(X)
∂αc

∣∣∣∣
X=X0

∂ f1(X)
∂αn

∣∣∣∣
X=X0

∂ f1(X)
∂φ0

∣∣∣∣
X=X0

∂ f2(X)
∂Bc,0

∣∣∣∣
X=X0

∂ f2(X)
∂Bn,0

∣∣∣∣
X=X0

∂ f2(X)
∂αc

∣∣∣∣
X=X0

∂ f2(X)
∂αn

∣∣∣∣
X=X0

∂ f2(X)
∂φ0

∣∣∣∣
X=X0

...
...

...
...

...
∂ fN(X)
∂Bc,0

∣∣∣∣
X=X0

∂ fN(X)
∂Bn,0

∣∣∣∣
X=X0

∂ fN(X)
∂αc

∣∣∣∣
X=X0

∂ fN(X)
∂αn

∣∣∣∣
X=X0

∂ fN(X)
∂φ0

∣∣∣∣
X=X0



= − 4π
λ ·



Bc,1−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
1
· sinθ0,1∣∣∣∣∣→r 0

2

∣∣∣∣∣
1

Bn,1−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
1
· cosθ0,1∣∣∣∣∣→r 0

2

∣∣∣∣∣
1

(
Bc,1−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
1
· sinθ0,1

)
·t1∣∣∣∣∣→r 0

2

∣∣∣∣∣
1

(
Bn,1−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
1
· cosθ0,1

)
·t1∣∣∣∣∣→r 0

2

∣∣∣∣∣
1

λ
4π

Bc,2−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
2
· sinθ0,2∣∣∣∣∣→r 0

2

∣∣∣∣∣
2

Bn,2−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
2
· cosθ0,2∣∣∣∣∣→r 0

2

∣∣∣∣∣
2

(
Bc,2−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
2
· sinθ0,2

)
·t2∣∣∣∣∣→r 0

2

∣∣∣∣∣
2

(
Bn,2−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
2
· cosθ0,2

)
·t2∣∣∣∣∣→r 0

2

∣∣∣∣∣
2

λ
4π

...
...

...
...

...

Bc,N−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
N
· sinθ0,N∣∣∣∣∣→r 0

2

∣∣∣∣∣
N

Bn,N−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
N
· cosθ0,N∣∣∣∣∣→r 0

2

∣∣∣∣∣
N

(
Bc,N−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
N
· sinθ0,N

)
·tN∣∣∣∣∣→r 0

2

∣∣∣∣∣
N

(
Bn,N−

∣∣∣∣∣→r 0
1

∣∣∣∣∣
N
· cosθ0,N

)
·tN∣∣∣∣∣→r 0

2

∣∣∣∣∣
N

λ
4π



,

of which
Bc,i = Bc,0 + αc·ti Bn,i = Bn,0 + αn·ti i = 1, 2, · · · , N,

where
∣∣∣∣∣→r 0

1

∣∣∣∣∣
i

(or
→
r

0
1,i) and

∣∣∣∣∣→r 0
2

∣∣∣∣∣
i

(or
→
r

0
2,i) are the nominal slant ranges of master and slave acquisition,

respectively (i.e., with respect to the ellipsoid reference surface, see Figure 1).
Then, Equation (12) can be rewritten as a matrix form:

V = Ax− l. (13)

The corresponding normal equation is

ATPAx = ATPl, (14)

where P = σ2
0D−1 is the weighted matrix of the observation vector L.
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Assuming that the observation values are mutually independent, let the prior variance matrix be

D =


σ2

L1

σ2
L2

. . .
σ2

LN

, (15)

where σ2
Lk

represents the variance of observation value LN. Then, we can utilize the residual unwrapped

differential interferometric phase φres,unw without system signals to estimate σ2
Lk

.
From Equation (14), we can see that five or more observations, i.e., N ≥ 5, are needed to estimate

the five unknowns. The best linear unbiased estimation of x is

x̂ =
(
ATPA

)−1
ATPl, (16)

where P is the weighted matrix. Therefore, the best linear unbiased estimation of X is

X̂ = X0 + x̂. (17)

By analyzing design matrix A, if the initial parameter vector X0 is close to the true vector X,
the numerator of each element in the first four columns of A will become very small. After being

divided by
∣∣∣∣∣→r 0

2

∣∣∣∣∣
i
, the first four columns will become highly linearly dependent on each other, i.e.,

the design matrix A will tend to be multicollinear. Therefore, the normal equation, Equation (14), will
become an ill-condition. The least-square estimates obtained with Equation (16) are not reliable in this
situation. Therefore, we can introduce ridge estimation [29] to solve this problem and Equation (14)
can be rewritten as (

ATPA + kI
)
x = ATPl, (18)

where k is a positive constant value named the ridge parameter and I is the identity matrix. It should
be noted that ridge estimation is used to improve the ill pose condition of Equation (14), but the small
value k still leaves ATPA + kI singular. In this context, truncated singular value decomposition [30]
(TSVD) is used to compute the pseudo-inverse of ATPA + kI. Let SVD of ATPA + kI be

ATPA + kI = USVT, (19)

where U and V are 5 × 5 unitary matrixes, and the diagonal matrix S = Diag(s1, s2, s3, s4, s5) contains
non-negative singular values s1 ≥ s2 ≥ s3 ≥ s4 ≥ s5 ≥ 0. The threshold of TSVD is defined with

thres = 10−6
·max{si} i = 1, 2, 3, 4, 5, (20)

where max{si} is used for calculating the largest singular value. The pseudo-inverse of S with the
condition of Sr > thres is

S† = Diag(s−1
1 , s−1

2 , · · · , s−1
r , 0, · · · , 0). (21)

Then, the pseudo-inverse of ATPA + kI is(
ATPA + kI

)†
= VS†UT. (22)

Therefore, the ultimate estimation of X is

x̂ =
(
ATPA + kI

)†
ATPl

= VS†UTATPl
(23)
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By substituting Equation (23) into Equation (17), the estimation of X can be resolved.

3.2. Model Resolving

According to the previous analysis, we can easily solve the model problem above and get the
estimation X with the determination of the weight matrix P and ridge parameter k, which are not given
precisely at first. Simultaneously, some other problems still exist in Equation (11). Therefore, iterative
parameter estimation is adopted to solve these problems. The detailed steps are as follows:

Step 1: Model initialization. Let the initial weighted matrix P = I be an identity matrix, ridge
parameter k = 10−3, which will not cause large deviations, and X0 = [B0

c,0, B0
n,0,α0

c ,α0
n, 0]T, where the

first four values are initial baseline parameters calculated from the orbital state vector. Furthermore,
let the initial reference point phase be φ0 = 0;

Step 2: Expand Equation (11) into Taylor Series at X0 to compute the design matrix A and vector l
to establish the normal equation Equation (14). To evaluate the quality of the model, obtain the sum of
weighted squared residuals (SWST) by

SWST1 =
N∑

i=1

(
∆Li·

Pii
Psum

)2
, (24)

where ∆Li = Li − fi
(
X0

)
and Psum =

∑N
i=1 Pii. Let SWSTold = SWST1;

Step 3: Add k to the diagonal of coefficient matrix in normal equation Equation (14), establish the

ridge normal equation Equation (18), and calculate the corresponding pseudo-inverse
(
ATPA + kI

)†
;

Step 4: Calculate x̂ based on Equation (23). Expand Equation (11) into Taylor Series at X0 + x̂,
calculate the new design matrix A′ and vector l′, and establish the new SWSTnew by Equation (24);

Step 5: Compare SWSTnew with SWSTold, determine whether to accept the parameter vector x̂,
and output the sum of weighted squared residuals x2

new = min{SWSTold, SWSTnew}.
If SWSTnew < SWSTold, then calculate X̂ with Equation (17), and update X0 + x̂, as well as the

design matrix A = A′ and vector l = l′, reducing ridge parameter k = 0.1·k. Update the weighted
matrix Pii with Pii = Pii/

(
∆L2

i + z
)
, where z is a positive number, such as 10−3, preventing the new

weights from being too large, and then let SWSTold = SWSTnew. Conversely, keep X̂, X0, A, l, and P
unchanged, and update k = 0.1·k. Actually, the SWST changes slowly with the magnitude of k.
Therefore, scaling the magnitude of k up or down at the ratio of ten will accelerate convergence [31–33];

Step 6: Determine the terminative condition of the iteration: if it has just iterated once and
x2

old = x2
new, jump straight to Step 3 to for a second iteration; if it has iterated more than once, then the

terminative condition is ∣∣∣χ2
old − χ

2
new

∣∣∣
χ2

new
< 10−3 and χ2

new < χ
2
old, (25)

which meets twice or the maximum iteration number is greater than 20. If the condition has been met,
then output the result parameter vector X̂. Alternatively, return to Step 3 and go on with the iterations.
As the number of iterations increases, the ridge parameter k gradually becomes unbiased.

3.3. Algorithm Flowchart of Baseline Refinement

As we can see from Section 3.1, SAR interferometric baseline refinement can be strictly performed
as long as the flat-earth phase φ f lat,unw is accurately obtained. There are two steps for obtaining an
accurate flat-earth phase. First, calculate the initial baseline using the orbital state vector, as well as
the corresponding flat-earth phase φ f lat,init. Due to the inaccurate baseline, φ f lat,init is not equal to
φ f lat,unw. Furthermore, process differential interferometry using the initial baseline combined with
external DEM and unwrap the interferogram. Then, calculate the flat-earth phase residue with planar
polynomial fitting, which will be verified in the experiment part. Add φ f lat,res and φ f lat,init to make
φ f lat,unw. Therefore, a detailed flow of the proposed algorithm for baseline refinement is as follows:
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1. Register master and slave images, and estimate the initial baseline using the orbital state vector to
get B0

c,0, B0
n,0, α0

c , and α0
n;

2. Process differential interferometry of SAR data using initial baseline results, and calculate flat-earth
phase φ f lat,res from the unwrapped interferogram using planar polynomial fitting;

3. Calculate flat-earth phase φ f lat,init using initial baseline estimation and add φ f lat,res and φ f lat,init
obtained from step 2 to make a “true” unwrapped flat-earth phase φ f lat,unw;

4. Refine the interferometric baseline strictly and obtain an accurate estimation of the SAR
interferometric baseline. Firstly, establish adjustment models of baseline parameters, including a
functional model withφ f lat,unw obtained from step 3 based on the method introduced in Section 3.1
and the random model. Then, calculate the model parameters according to the algorithm in
Section 3.2. By expanding Equation (11) into Taylor Series to build the normal equation,
simultaneously calculate the sum of weighted squared residual SWST. The iteration mainly
exists in ridge estimation and truncated singular value decomposition (TSVD). The magnitude
relationship between x2

old and x2
new resulting from the iteration above is regarded as the terminative

condition of iteration. If the condition is met, end the iteration and output the accurate SAR
interferometric baseline estimation.

The specific flowchart is shown in Figure 2.
Remote Sens. 2020, 12, 233 9 of 18 

 

 
Figure 2. Flow chart of baseline refinement. 

4. Experiment and Results 

4.1. Synthetic Dataset Experiment 

4.1.1. Polynomial Fitting of Interferometric Baseline Error 

According to InSAR imaging geometry and the corresponding theoretical formulas, the error of 
the interferometric baseline affects not only the removal of the flat-earth phase, but also the 
transformation coefficient between the topographic phase and elevation, which will affect the 
topographic phase removal for D-InSAR and the accuracy of the finally generated DEM product for 
InSAR. In order to quantitatively analyze the effect of baseline error, especially the impact on the 
removal of the flat-earth phase, an experiment is carried out by a random synthetic dataset. At first, 
synthesize 50 sets of baselines with different lengths in the range of 50–2500 m, and then simulate the 
DEM is. Calculate the “true” flat-earth phase and topographic phase combined with the parameters 
of the ALOS PALSAR imaging system. Following this, add 100 groups of random errors with 0 means 
to each set of baseline parameters (the standard deviations of the added baseline errors are 

,0
1.3

cB
mσ = , 

,0
0.9

nB
mσ = , 13

c
mm sασ −= ⋅ , and 12

n
mm sασ −= ⋅ , respectively, and eliminate the 

baseline error more than two times the standard deviation), and use the baseline with errors to 
simulate the flat-earth phase and topographic phase. Next, calculate the difference value between the 
flat-earth phase simulated with baseline error and that without baseline error, and conduct the same 
operation for the topographic phase. Then, we get the residuals of the flat-earth phase ,flat resφ  and 

residuals of the topographic phase ,top resφ  caused by the baseline error. Since we only add the 

baseline error into the simulation experiment, the resulting residuals of the flat-earth phase and 
topographic phase will only be related to the baseline estimation, independent of other errors (e.g., 
DEM errors), so the sum of residuals is also called the baseline error phase. Next, we can analyze the 
baseline error by polynomial fitting, for which we can use the quadratic polynomial model, that is,  

2 2
0 1 2 3 4 5fit a a x a y a xy a x a yφ = + + + + +

, (26) 

Figure 2. Flow chart of baseline refinement.

4. Experiment and Results

4.1. Synthetic Dataset Experiment

4.1.1. Polynomial Fitting of Interferometric Baseline Error

According to InSAR imaging geometry and the corresponding theoretical formulas, the error of the
interferometric baseline affects not only the removal of the flat-earth phase, but also the transformation
coefficient between the topographic phase and elevation, which will affect the topographic phase
removal for D-InSAR and the accuracy of the finally generated DEM product for InSAR. In order to
quantitatively analyze the effect of baseline error, especially the impact on the removal of the flat-earth
phase, an experiment is carried out by a random synthetic dataset. At first, synthesize 50 sets of
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baselines with different lengths in the range of 50–2500 m, and then simulate the DEM is. Calculate the
“true” flat-earth phase and topographic phase combined with the parameters of the ALOS PALSAR
imaging system. Following this, add 100 groups of random errors with 0 means to each set of baseline
parameters (the standard deviations of the added baseline errors are σBc,0 = 1.3 m, σBn,0 = 0.9 m,
σαc = 3 mm·s−1, and σαn = 2 mm·s−1, respectively, and eliminate the baseline error more than two
times the standard deviation), and use the baseline with errors to simulate the flat-earth phase and
topographic phase. Next, calculate the difference value between the flat-earth phase simulated with
baseline error and that without baseline error, and conduct the same operation for the topographic
phase. Then, we get the residuals of the flat-earth phase φ f lat,res and residuals of the topographic
phase φtop,res caused by the baseline error. Since we only add the baseline error into the simulation
experiment, the resulting residuals of the flat-earth phase and topographic phase will only be related
to the baseline estimation, independent of other errors (e.g., DEM errors), so the sum of residuals is
also called the baseline error phase. Next, we can analyze the baseline error by polynomial fitting,
for which we can use the quadratic polynomial model, that is,

φ f it = a0 + a1x + a2y + a3xy + a4x2 + a5y2, (26)

whereφ f it is the baseline error phase obtained by fitting; x and y are normalized coordinates in the range
and azimuth, respectively; and αi(i = 0, 1, · · · , 5) is the unknown model parameters; (see bibliography
of [22] for more details). Then, we differ φ f lat,res and φ f it as φ f it, and calculate the corresponding
root-mean-square errors (RMSEs). In this way, we can obtain the result of quadratic polynomial fitting
in 5000 groups of experiments, and the RMSEs are shown as Figure 3.
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4.1.2. Baseline Refinement of Simulation Data

On the basis of the experiments in Section 4.1.1, we first added the random errors with the range
of [0,16] meters to the “true” DEM. Then, we simulated the DEM and the topographic phase by
5000 groups of the above-mentioned baselines with and without errors, to obtain the interferogram
with baseline errors and DEM errors, as well as the “true” interferogram without any errors. Next, we
differed the “true” interferogram and the one with errors to get the initial differential interferograms.
To make the experimental results more reliable, we added the decorrelation error, atmospheric delay
error, and random phase noise to the initial interferogram [34], so as to generate 5000 scenes of
differential interferograms.

In the experiment, we refined the baselines of 5000 scenes of interferograms using the LS method.
In order to reduce the effect of random phase noise, we filtered the differential interferograms by the
Goldstein filter (filtering window is 32 × 32 pixels, filtering factor α = 0.5, and the size of overlap is
14 pixels) [35], and then unwrapped the filtered interferograms by minimum cost flow (MCF) [13]
to obtain the differential interferograms. In the experiment, we estimated the baselines accurately
with 50 × 50 points selected uniformly in each interferogram. For baseline refinement based on the
flat-earth phase, in this study, we firstly retrieved the flat-earth phase φ f lat,res by quadratic polynomials
from the unwrapped differential interferogram and calculated φ f lat,init with initial baselines, the sum of
which is the “true” unwrapped flat-earth phase φ f lat,unw. Then, we refined the baselines based on the
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theories presented in Sections 3.1 and 3.2. Similarly, the accurate baseline estimation by the LS method
is also based on the above-mentioned 50 × 50 GCPs of which the elevations are without DEM errors.

4.2. Real Dataset Experiment

On August 7, 2010, a sudden rainstorm occurred in the northeast mountains in Zhouqu County
in Gansu Province, causing extraordinarily serious mountain torrents and geological disasters.
The resulting debris flow was about 5 km long and 300 m wide, the flow region of which was wiped
out. Two scenes of PALSAR data covering the interest area were used to verify the interferometric
baseline refinement method mentioned above, and the details are provided in Table 1. Given the lack
of GCPs in such an area, the conventional LS method cannot be applied here. Therefore, the new
method proposed in this paper, refining the baselines without GCP, is a better choice.

Table 1. Parameters of the PALSAR data used in the Zhouqu region.

Parameter Master_Image Slave_Image

Data 2010-06-23 2010-08-08
Track 23,508 24,179
Frame 660 660

Imaging Model FBD FBD
Perpendicular Baseline B⊥ 440 m

Note: B⊥.: the perpendicular baseline; FBD: Fine-Beam Double polarization.

GAMMA software [13] was used for data preprocessing. Firstly, we transformed the Raw data
into single look complex images (SLC) with the modular SAR processor (MSP) module. Then, we
generated an interferogram from SLCs according to differential InSAR procedures, estimated the initial
baselines based on orbit state vectors, and removed the flat-earth phase with SRTM DEM [36,37]
by using the interferometric SAR processor (ISP) module. The generated interferogram is shown as
Figure 4a.
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5. Discussion

5.1. The Discussion about the Results of Synthetic Dataset

5.1.1. The Discussion about Polynomial Fitting

As we can see from Figure 3, if the length of the baseline is less than 2500 m, the quadratic
polynomial can fit the flat-earth phase residuals well due to the baseline errors, of which the RMSEs
are as small as a 10−3 rad magnitude. With the increase of the lengths of baselines, fitting RMSEs will
gradually converge to a small range. Even the RMSEs in such cases will present an increasing trend,
the trend is still small and the maximum RMSE is less than 4.2 × 10−3 rad. Therefore, it is proved that
the quadratic polynomial can fit the flat-earth phase residual φ f lat,res well, where the fitting error is too
small to be counted. In this way, we can accurately obtain the flat-earth phase by using the quadratic
polynomial to fit its residuals with the initial baseline estimation, so that we can refine the baseline
strictly based on the theories presented in Sections 3.1 and 3.2.

5.1.2. The Discussion about Baseline Refinement

Figures 5 and 6 show the comparison results of the baseline parameters for the two baseline
refinement methods, respectively (by calculating the subtraction of the parameters mentioned above),
from which we can see the quantitative evaluation results of the two methods. Four subgraphs (a)–(d)
in the figures show the comparison results of B0

c,0, B0
n,0, αc, and αn, respectively. If the gaps between

two kinds of errors are small, the scattered points in the figure will regress to the red (diagonal) line.
By comparing the subgraphs (a) in Figures 5 and 6, we can see that the baseline parameter Bc,0 obtained
by our method regresses more than LS, which testifies that Bc,0 estimated by our method is more
accurate. By comparing subgraphs (b), the accuracy of Bn,0 obtained by our method is a little poorer
than that of LS. From the comparison between subgraphs (c) and (d) in Figures 5 and 6, we can see
that our method has great advantages in αc and αn (baseline change rate), as the estimation results
almost exclusively lie on the red (diagonal) line, while large dispersion appears for the conventional
LS method.
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From the quantitative evaluation results, we can see that parameters Bc,0 and Bn,0 are almost the
same for the two methods. For a deeper evaluation, we calculated the differences between simulated
errors and calculated errors for the two methods and statistically analyzed them in histograms
(see Figures 7 and 8). The figures show that the estimation errors of Bc,0 and Bn,0 are more concentrated
at 0, most of which are in the range of [−0.05, 0.05] m, while the errors of the LS method are more
dispersed. For parameters αc and αn, the estimations are almost all concentrated at 0 for the new
method, and those for the LS method are scattered, for which quite a number of the estimation errors
are greater than 10 mm/s and some errors are even greater than 20 mm/s. To conclude, the new baseline
estimation method is better than the conventional LS method, especially for estimation of the baseline
change rate.
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For a deeper quantitative evaluation, we calculated the RMSE of the differences between simulated
errors and calculated errors for the two methods, respectively. They are shown in Table 2. For baseline
parameter Bc,0, the accuracy of the LS method is 6.8 cm, and only 53.3% of the estimation results are
less than 5 cm in 5000 groups of experiments, while the accuracy reaches 3.3 cm of the new method,
which exhibits a 51.5% improvement in estimating over the LS method. In addition, 87.1% of the
results are less than 5 cm, and 33.8% are higher than those of the LS method. For parameter Bn,0,
it can be considered that the accuracies of the two methods are almost the same, since the differences
between RMSE and the corresponding proportion are not so large. Considering baseline parameters
Bc,0 and Bn,0 comprehensively, it can be found that the accuracy of Bn,0 is higher than that of Bc,0 for the
LS method, while the trend for the proposed method is the opposite, but the accuracy is superior to
that of the LS method. Further, the method proposed in this paper estimates baselines based on the
flat-earth phase, independent of the external elevation, so the factor affected by elevation is invalid,
leading to a higher accuracy.

Table 2. Quantitative evaluation of the baseline estimation methods.

Baseline Estimation
Methods

Bc,0 Bn,0 αc αn

RMSE
(cm)

Percentage
(<5 cm)

RMSE
(cm)

Percentage
(<5 cm)

RMSE
(mm/s)

Percentage
(<0.5 mm/s)

RMSE
(mm/s)

Percentage
(<0.5 mm/s)

LS Method 6.8 53.3% 4.7 71.2% 7.4 5.4% 5.1 8.2%
New Method 3.3 87.1% 4.8 75.0% 0.1 99.7% 0.1 100%

For baseline change rates αc and αn, the accuracies of the two methods are obviously different.
The RMSEs are 7.4 and 5.1 mm/s, respectively, for the LS method, where the proportions of the error
range less than 0.5 mm/s are only 5.4% and 8.2%. However, the RMSEs of the new method are 0.1 and
0.1 mm/s, respectively, and the proportions of the error range less than 0.5 mm/s reach 99.7% and 100%.
With respect to a standard SAR image with a moderate resolution, the interval of the acquisition is
generally around 15 s, for example, it is 14 s for PALSAR. Here, we select the acquisition time of the SAR
scene center as the reference time of the baseline model, and the maximum relative time is 7 s. For the
error of baseline change rate mentioned above, the maximum baseline error caused by the baseline
change rate is only 0.7 mm for the new method, which is almost negligible. Conversely, the baseline



Remote Sens. 2020, 12, 233 14 of 17

errors can be up to 5.2 and 3.6 cm for the LS method. Furthermore, adding errors of Bc,0 and Bn,0 to
them, we can get baseline errors of more than 0.1 m. It can be seen that the accuracy of interferometric
baseline constant estimation in the C direction for the new method is obviously improved compared to
the conventional LS method, the improvement of which is up to 51.5% (the ratio of reduced RMSE to
the RMSE of the LS method). It proves the effectiveness of the proposed baseline estimation method.

In the experiment, we selected 50 sets of baselines (the length of the baseline is in the range of
50–2500 m) with 100 experiments. Therefore, the deeper evaluation of the effect of baseline estimation
due to baseline length could be analyzed from 100 repeated experiments for each set of baselines.
The mean value and the standard deviation were calculated by baseline errors resulting from the
repeated experiments and are shown in Figure 9. From Figure 9, the four parameters basically remain
constant with the growth of baselines, and the dispersions also remain constant. This indicates that the
change of baseline length does not affect the accuracy of the baseline estimations for both methods.
However, the accuracy of the new method is higher than that of the LS method in the case of the same
baseline length, especially for the estimation of the baseline change rate. In view of the above analysis,
we can see that the new method is more effective and reliable than the LS method.Remote Sens. 2020, 12, 233 15 of 18 
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5.2. Discussion about Real Dataset Experiment

Since the area of debris flow is small (see the area within the dashed ellipse in 4d), and there is
no obvious large-scale surface deformation during the interval of the two acquisitions, the fringes
with longer wavelengths are caused by not completely removing the flat-earth phase caused by
baseline errors, which is called the flat-earth phase residual. To obtain the flat-earth phase residual, we
used MCF to unwrap the differential interferogram (Figure 4a), and used the quadratic polynomial
introduced in [23] to fit the flat-earth phase residual φ f lat,res. We wrapped the flat-earth phase into the
range [−π, π] to display the data conveniently (see Figure 4b). Next, we calculated φ f lat,init with the
initial baseline and added it to φ f lat,res, to get the unwrapped flat-earth phase φ f lat,unw, and then refined
the baseline estimation based on the theories presented in Sections 3.1 and 3.2. In order to visually
show the accuracy of baseline refinement, we generated a new interferogram with refined baselines,
shown as Figure 4d. From the figure, we can see that the flat-earth phase with longer wavelengths
caused by baseline errors has been totally removed, and the main deformation area (the dashed ellipse
in the figure) is well-shown. In addition, the interferogram is very flat, except for the deformation
area, where there is almost no excessive fringe change rate. For a further illustration of the effect of
baseline errors, the difference between Figure 4a,b is given and shown as Figure 4c. Figure 4a shows
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the differential interferogram with baseline errors, which will also affect the removal of the flat-earth
phase and topographic phase. By subtracting Figure 4b from Figure 4a, Figure 4c obviously shows
the phase residuals caused by baseline errors (e.g., arrows A/B pointing areas), while there are no
such errors in the differential interferogram with refined baselines. This further demonstrates the new
method is effective for baseline refinement.

6. Conclusions

Interferometric baseline estimation is a key procedure of InSAR data processing. The error of the
interferometric baseline affects not only the removal of the flat-earth phase, but also the transformation
coefficient between the topographic phase and elevation, which will affect the topographic phase
removal for D-InSAR and the accuracy of the finally generated DEM product for InSAR. To obtain a
highly accurate interferometric baseline, this paper firstly investigated the geometry of InSAR imaging,
and established a rigorous relationship between the interferometric baseline and the flat-earth phase.
Then, a baseline refinement method without a ground control point (GCP) was proposed, where a
relevant theoretical model and resolving method were developed. Synthetic and real SAR datasets
were used in the experiments, and comparisons with the conventional least-square (LS) baseline
refinement method were made. The results demonstrate that the proposed method exhibits an obvious
improvement over the conventional LS method, with percentages of up to 51.5% in the cross-track
direction. Therefore, the proposed method is effective and advantageous.

In general, the application of the conventional LS method is limited due to the lack of available
GCPs in the study area. The baseline refinement based on the LS method processes the observation
(unwrapped interferometric phase) with equal weight by using the unwrapped interferometric phase
and the rigorous geometric relationships of baselines when calculating the equations. Due to the errors,
such as atmospheric delay error, the equal weight process will result in deviations of the results, which
is obvious in the interferogram, which displays an apparent fluctuation of atmospheric error.

The interferometric baseline refinement proposed in this paper takes advantage of the unwrapped
flat-earth phase and rigorous relationship of baselines, which is independent of GCP. During modeling,
since the observation is the flat-earth phase without atmospheric error, the effect of atmospheric error
on baseline estimation has been avoided. However, it should be noted that the flat-earth phase residual
is obtained by using global polynomial fitting for the interferogram, so that the flat-earth phase may
absorb some other signals, such as the deformation signal with longer wavelengths distributing globally.
For this insufficiency, we can parameterize the flat-earth phase residual by using time series InSAR,
where the flat-earth residual is calculated at the same time as the deformation parameters. Relevant
thoughts have been studied by researchers, and will be introduced into the baseline refinement method
proposed in this paper in the future to make it more general.
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