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Abstract: The split window technique has been used for over thirty years to derive surface
temperatures of the Earth with image data collected from spaceborne sensors containing two thermal
channels. The latest NASA/USGS Landsat satellites contain the Thermal Infrared Sensor (TIRS)
instruments that acquire Earth data in two longwave infrared bands, as opposed to a single band
with earlier Landsats. The United States Geological Survey (USGS) will soon begin releasing a surface
temperature product for Landsats 4 through 8 based on the single spectral channel methodology.
However, progress is being made toward developing and validating a more accurate and less
computationally intensive surface temperature product based on the split window method for
Landsat 8 and 9 datasets. This work presents the progress made towards developing an operational
split window algorithm for TIRS. Specifically, details of how the generalized split window algorithm
was tailored for the TIRS sensors are presented, along with geometric considerations that should be
addressed to avoid spatial artifacts in the final surface temperature product. Validation studies
indicate that the proposed algorithm is accurate to within 2 K when compared to land-based
measurements and to within 1 K when compared to water-based measurements, highlighting the
improved accuracy that may be achieved over the current single-channel methodology being used
to derive surface temperature in the Landsat Collection 2 surface temperature product. Surface
temperature products using the split window methodologies described here can be made available
upon request for testing purposes.

Keywords: Landsat; land surface temperature; split window algorithm; TIRS; thermal

1. Introduction

The United States Geological Survey’s (USGS) Earth Resources Observation and Science (EROS)
Center will begin distributing higher-level products derived from Landsat image data as part of
their Collection 2 release in early 2020. A global surface temperature (ST) product will be included
in Collection 2 and will contain over thirty-five years of data collected from the various thermal
instruments onboard Landsats 4 through 8. A single-channel algorithm that utilizes the Goddard
Earth Observing System, Version 5 (GEOS-5) reanalysis data for atmospheric characterization along
with a radiative transfer model (e.g., MODTRAN) will be applied to the existing thermal data
archive and to newly collected scenes in a near real-time fashion to produce per-pixel, 30 m surface
temperature data [1,2]. On the other hand, the recent Landsat 8 and upcoming Landsat 9 missions both
contain the dual-band Thermal Infrared Sensor (TIRS) [3] that will enable the use of the split-window
surface temperature algorithm. Recent software updates to the Landsat 8/TIRS image processing
flow have mitigated the adverse effects of the stray light issue [4] that precluded the use of the
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split-window method. Once the radiometric quality of TIRS image data had been brought back to
within requirements, work began on developing a split window algorithm tailored to TIRS image
data. Several considerations were addressed before using data from these instruments to derive Earth
surface temperature with the more accurate and computationally attractive split window algorithm.

This paper presents progress made towards developing and verifying an operational version
of the split window algorithm for the TIRS instruments. Specifically, a discussion of the radiometric
performance of the split window algorithm versus the single channel methodology implemented in
the Collection 2 release is provided with ground-based measurements used as a baseline for reference.
Surface measurements from several sites across the continental United States and near-shore and
inland buoys were used to demonstrate the improved radiometric performance that may be achieved
in future releases of ST products using dual-band Landsat thermal instruments.

An additional discussion regarding the spatial fidelity of split window-derived versus single
channel-derived surface temperature products is also provided. Due to the physical layout of the TIRS
focal plane, the two thermal channels, Band 10 and Band 11, acquire scene content at slightly different
times. As such, an inherent misregistration of image data is evident in the corresponding Level 1
radiance product. Although band-to-band registration is well-within the defined specification [5],
applying the difference terms in the split window algorithm (see Equation (1)) leads to undesired
artifacts in the resulting surface temperature product. The origin of, and strategies to mitigate, these
artifacts are presented along with future considerations necessary to achieve an operational split
window product from Landsat 8 and 9 TIRS image data for Collection 3 processing.

2. Methodologies

Leveraging over twenty years of knowledge and refinements, the split window algorithm used in
this work was initially proposed by Becker and Li, (1990) for the AVHRR instrument [6]. Wan and
Dozier, (1996) generalized the algorithm to enable its utility for other dual-band instruments with
a final adjustment made by Wan, (2014) to improve its performance over bare soils for the MODIS
instruments [7,8]. The final form of the split window algorithm used here is

ST = b0 +

(
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1 − ε

ε
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ε2

) Ti + Tj

2
+

(
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2
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where

• ST is the desired surface temperature [K];
• bk (for k = 0, 1, ..., 7) are sensor-dependent (and potentially water-vapor-dependent) coefficients

that are derived through a training process;
• i and j correspond to the two thermal bands (Bands 10 and 11 for TIRS);
• ∆ε = εi − εj or the difference in band-effective emissivities;

• ε = (εi + εj)/2 or the average of the band-effective emissivities;

• Ti, Tj are the apparent temperatures in the two thermal bands.

Once the b-coefficients are derived for a sensor of interest, the ST can be estimated from dual-band
thermal image data using Equation (1) if the effective emissivity in each band is known (or can be
estimated). This section provides the details of a prototype split window implementation developed
for the Landsat 8/TIRS and Landsat 9/TIRS-2 sensors and a corresponding validation effort conducted
thus far for Landsat 8/TIRS.

2.1. Derivation of the b-Coefficients

The flowchart in Figure 1 illustrates the training process that was performed to derive the
b-coefficients shown in Equation (1). The radiative transfer model, MODTRAN [9], was used to
simulate a representative range of environmental acquisition parameters. Atmospheric profiles from
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the Thermodynamic Initial Guess Retrieval (TIGR) database [10] were used to characterize atmospheric
effects; seven surface temperatures bracketing the temperature of the lowest layer of each atmospheric
profile were used as input [6,7]; and spectral emissivities of natural materials were obtained from the
MODIS UCSB emissivity library [11].

Figure 1. Process flow to derive split window coefficients by propagating modeled surface
temperatures, emissivities, and atmospheric conditions to the top of atmosphere and regressing
the band-effective apparent temperatures against the known input surface temperatures.

The TIGR database is a climatological library of 2311 unique atmospheric profiles that were
categorized from 80,000 radiosondes. The profiles are classified into air masses (i.e., Tropical, Mid-lat1,
Mid-lat2, Polar1, Polar2) that are consistent with MODTRAN’s default atmospheres but provide
a richer and more densified representation of potential atmospheric effects that may be observed
from a spaceborne platform. Temperature, water vapor, and ozone data are delivered at 43 predefined
pressure levels ranging from 1013 mb (millibars) to 0.0026 mb [10]. Figure 2 shows plots of the
2311 atmospheric profiles provided in the TIGR database categorized by airmass. For comparison,
Figure 2 (bottom right) shows the default MODTRAN profiles.

To be consistent with previous efforts and to satisfy the assumption that split window is most
appropriate to be used for surface temperature retrieval when the ground temperature is close to the
air temperature [6,7], seven surface temperatures bracketing the temperature of the lowest layer of
each atmospheric profile were used as input to the forward model. Surface temperatures between
−10 ◦C < t0 < 20 ◦C in 5 ◦C steps were used in this study, where t0 is the temperature of the lowest
atmospheric layer. While some specific applications may warrant an extension of the range used to
train the model (e.g., studies of urban heat island), the traditional range used here is appropriate for
natural materials.

The MODIS UCSB emissivity database was used to provide a representative range of natural
materials as input to the forward model [11]. With 74 unique soils and minerals, 28 unique types
of vegetation, and 11 forms of water (including snow and ice), this database provides 113 unique
spectral emissivities between 8 and 14 µm that can be used to train the model in Equation (1). Note that
man-made materials are included in the MODIS UCSB emissivity database but were excluded in this
study as the TIRS instrument has a spatial resolution of 100 m and was designed for environmental
applications.

Referring again to Figure 1, all parameters described above were provided as input to a forward
model that uses MODTRAN for the atmospheric radiative transfer process to generate at-sensor
spectral radiance. At-sensor, band-effective radiance was calculated by sampling the simulated
top-of-atmosphere spectra with the TIRS spectral response functions, and apparent temperatures (Ti, Tj)
were determined by developing and utilizing a predefined look-up table that relates band-effective
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radiance to blackbody temperature for Bands 10 and 11 of TIRS. Finally, band-effective emissivities
were calculated by sampling the 113 spectral emissivities with the TIRS spectral response functions.

Figure 2. TIGR atmospheric profiles for various atmospheric types compared to MODTRAN’s default
atmospheres. The black data curves are air temperatures as a function of altitude, while the red data
curves are the associated dew point temperatures.

Note from Figure 1 that modeled data were filtered to only include scenarios where the relative
humidity is less than 90%. This was performed to remain consistent with previous studies [12]
and to eliminate saturated atmospheric conditions, which represents a challenging scenario for ST
retrieval. Future work will explore and include higher humidity cases as needed. Nevertheless, with
all the components of Equation (1) determined, ST was regressed against the independent variables to
determine the b-coefficients that best fit the model in a least-squares sense. Table 1 shows a comparison
of the b-coefficients derived in this study versus the b-coefficients derived in Du et al. (2015) [12],
along with the residual retrieval error when these coefficients are applied to the simulated data.
Note that although the same split window algorithm was used, the derived b-coefficients could be
significantly different due to the desired application. For example, Du et al. incorporated man-made
materials into their training process to enable the utility of split window applications over urban areas.
The impact of this training methodology on environmental applications is discussed in Sections 3 and 4.

Table 1. Split window algorithm b-coefficients derived in this study compared the coefficients derived
by Du et al. and the associated root mean square error of the model fits.

b0 b1 b2 b3 b4 b5 b6 b7 RMSE [K]

Du et al. (2015) −0.4117 0.0052 0.1454 −0.2730 4.0666 −6.9251 −18.2746 0.2447 0.87

Proposed Prototype 2.2925 0.9929 0.1545 −0.3122 3.7186 0.3502 −3.5889 0.1825 0.73

2.2. Emissivity Estimation

Once the b-coefficients are derived, estimation of emissivity remains the one unknown in
Equation (1). To be consistent with the single channel methodology used to derive Landsat surface
temperature products in the Collection 2 release, the algorithm used to estimate broadband emissivity
in the existing single channel workflow was mirrored in this study but extended for the TIRS dual-band
instrument. To summarize the existing workflow, ASTER emissivity products that spatially cover the
Landsat scene of interest are ingested and a spectral adjustment is made to estimate the equivalent
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TIRS emissivities. The spectrally-adjusted emissivities are then modified based on observed in-scene
conditions (e.g., emissivities may be modified if snow or vegetation is present in a scene).

The ASTER global emissivity dataset (ASTER-GED) v3 contains worldwide emissivity maps at
100 m spatial resolution. The dataset was compiled using clear-sky scenes acquired between 2000 and
2008. Emissivities were calculated with the temperature emissivity separation algorithm (TES) and the
water vapor scaling (WVS) atmospheric correction algorithm, and are available for all five ASTER TIR
bands centered at 8.3, 8.6, 9.1, 10.6, and 11.3 µm. The ASTER-GED has been validated to an absolute
band error of 1% [13].

To enable an adjustment of the ASTER emissivities to the spectral response of the TIRS bands,
a linear relationship that relates ASTER-observed (Bands 13 and 14) to TIRS-estimated (Bands 10 and 11)
emissivities was developed. Note that ASTER Bands 13 and 14 were used here as they have the most
overlap (spectrally) with the TIRS bands. To develop this relationship, the 113 spectral emissivities from
the MODIS UCSB emissivity database described in Section 2.1 were used. Band-effective emissivities
for Bands 10 and 11 of TIRS were regressed against the corresponding band-effective emissivities for
Bands 13 and 14 of ASTER to derive the coefficients shown in Equations (2) and (3).

ε10 = c0 + c1ε13 + c2ε14 (2)

ε11 = c0 + c1ε13 + c2ε14 (3)

where,

(c0, c1, c2) = (0.6820, 0.2578, 0.0584) for TIRS Band 10,

(c0, c1, c2) = (−0.5415, 1.4305, 0.1092) for TIRS Band 11.

Note that an estimation of the residual errors associated with these relationships can be
made by applying Equations (2) and (3) to the band-effective ASTER data for the 113 emissivities.
The residual errors between the estimated band-effective emissivities can then be compared to
the actual band-effective emissivities (as modeled here). The standard deviations of the residual
emissivities in this simulated context are 0.001 (0.1%) and 0.005 (0.5%) for Bands 10 and 11, respectively.

Since the ASTER emissivity database represents averages over a nine-year period, modifications
were made to the spectrally adjusted emissivities based on observations made by the Operational
Land Imager (OLI), the TIRS reflective band counterpart onboard Landsat 8. Specifically, per-pixel
normalized difference vegetation indices (NDVI) and normalized difference snow indices (NDSI) were
calculated with the OLI. NDSI was computed by dividing the difference in reflectance observed in the
Landsat 8 green band (0.53–0.59 µm) and the shortwave infrared band (1.57–1.65 µm) by the sum of
the two bands [14]. To make the NDVI adjustment, bare soil locations were estimated when the ASTER
NDVI data were less than 0.1, and the Landsat vegetation emissivities adjusted accordingly based on
the Landsat calculated NDVI. Snow locations for NDSI were set to 0.9876 and 0.9724 respectively for
Band 10 and Band 11, where the calculated NDSI was larger than 0.4. A comprehensive description of
the adjustments can be found in Malakar et al. (2018) [1].

2.3. Surface Reference Data Sources

Several sources of surface measurements were used as reference to validate the efficacy of
the split window algorithm as trained here for Landsat’s TIRS instruments. Several land-based
instrumented sites, including three sites from the SURFRAD [15] network and one site from the
Ameriflux [16] network, were used in the assessment. Additionally, the National Oceanic and
Atmospheric Administration (NOAA) buoy network [17] and the NASA Jet Propulsion Laboratory
(JPL) instrumented buoys [18,19] were used to provide reference data over water.

NOAA established the surface radiation budget observing network (SURFRAD) to provide
accurate, high-quality broadband solar and thermal upwelled and downwelled irradiance to support
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climate research, satellite retrieval validation and modeling, and weather forecasting research [15].
The current SURFRAD network consists of seven locations selected to represent diverse climates in
the United States [15]. Note that three sites were chosen for this initial analysis due to their high
spatial uniformity across an extended region. The three sites consist of agricultural land (Goodwin,
Mississippi, US), bare soil (Desert Rock, Nevada, US), and grassland with a high inter-annual variation
of snow cover (Fort Peck, Montana, US).

Each SURFRAD site is equipped with two Eppley Precision Infrared Pyrgeometers (model PIR)
to collect measurements of broadband (4–50 µm) thermal infrared irradiance. The PIR pyrgeometers
have a field-of-view (FOV) of 180 degrees and measure longwave irradiance with an uncertainty
of ∼1.5% [20], which leads to a reported uncertainty of less than 1 K in the retrieved LST [21].
One pyrgeometer is upward facing and the other is downward facing to measure downwelled
atmospheric irradiance and upwelled surface-leaving irradiance, respectively. Data from 1998 to
2009 were collected every three minutes, and every minute thereafter. The data has a quality flag to
indicate failed internal quality checks. A detailed description of the SURFRAD instrumentation at
each site can be found at: https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html.

FLUXNET is a vast global network of more than 800 sites for in-situ flux measurement. Regional
networks contribute to the FLUXNET data, one of which is a group of sites across the Americas called
AmeriFlux. There are hundreds of AmeriFlux sites, with 44 flagged as “core” sites. These core sights
deliver timely data, receiving support from the AmeriFlux Management Project (AMP) to ensure high
quality data collection at 30 min intervals. Since not all sites measure upwelled and downwelled
thermal radiation, the core sights were filtered for spatial uniformity, activity between 2013 to 2018,
and having a sufficient number of upwelled and downwelled infrared observations. Only one site
passed these criteria; namely, the University of Michigan Biological Station (UMBS) [22]. This site is
located within a protected forest of mid-aged northern hardwoods, conifer understory, aspen and old
growth hemlock. The UMBS AmeriFlux site is equipped with a CG4 pyrgeometer from Kipp and
Zonen to measure broadband (4.5 to 42 µm) thermal irradiance. The CG4 pyrgeometer, similar to the
SURFRAD instrumentation, has an FOV of 180 degrees with an instrument uncertainty of less than
3% [20], and temperature uncertainty of ±0.02 K [23].

To estimate the in-situ ST using SURFRAD and AmeriFlux networks, the Stefan–Boltzmann law
is manipulated to derive the following relationship [15]:

STground =

[
1

εσ
(Eupwelled − (1 − ε)Edownwelled)

] 1
4
[K] (4)

where ε represents the broadband emissivity, σ = 5.67 · 10−8
[

W
m2K4

]
is the Stefan–Boltzmann constant,

and E is the measured irradiance
[

W
m2

]
. Broadband emissivity can be retrieved from narrowband

satellite emissivities via empirical relationships (Wang et al., 2005) [24]. However, this approach uses
a combination of broadband emissivity from 8 to 12 µm and 14 to 25 µm. The latter range is from
an emissivity library containing only measurements of minerals and does not include data beyond
25 µm because of the strong atmospheric absorption and weak thermal signals. For these reasons,
the average emissivity of TIRS Bands 10 and 11 that is estimated from image data (as described in
Section 2.2) was used in Equation (4) for this analysis.

When used in conjunction with land-based measurements, water represents a desirable target
for surface temperature validation, as its emissivity is spectrally stable and well-defined [25].
NOAA operates a suite of worldwide instrumented buoys that collect, among other variables,
water temperature. The data are freely available and delivered through their National Data Buoy Center
website [17]. Measurements from thirty-six buoys in the near-shore of the United States coastline were
used as reference in this work, with a bulk to surface adjustment, since measurements are obtained at
depth [26]. Note that Zeng et al. (1999) estimate the uncertainty in skin temperature estimation to be
approximately 0.35 K, which includes measurement uncertainty.

https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html
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In addition to the NOAA sensor suite, NASA’s Jet Propulsion Laboratory’s (JPL) instrumented
buoys located in Lake Tahoe, California and Salton Sea, California are attractive sources of reference
data. Lake Tahoe is approximately 1900 m above sea level, and with average lake temperatures ranging
from 5 to 25 ◦C throughout the year [18], it is an attractive cold water target for surface temperature
validation. Alternatively, Salton Sea is located in Southern California and is approximately 70 m below
sea level. With lake temperatures exceeding 35 ◦C, it is an attractive warm water target [19]. The JPL
data used for the validation efforts presented here are made freely available by JPL [18,19].

Referring to Table 2, over 1500 Landsat Level-1 Terrain-Corrected (L1T) TIRS scenes acquired
between 2013 and 2018 were processed with the split window algorithm and the derived surface
temperatures compared to reference measurements acquired from the various sites during the
Landsat 8 overpass. For comparison, and to gauge the fidelity of the presented split window
implementation, the same L1T scenes were processed to surface temperature using split window
with the b-coefficients suggested by Du et al. (2015) [12] and using the single channel methodology [1]
that will be delivered to users in Collection 2.

Table 2. A list of the reference data sources along with the number of measurements utilized for
this work.

Site Name Number of Sites Number of Measurements

SurfRad 3 land sites 727
AmeriFlux 1 land site 186

NOAA Buoys 36 bouys 308
Lake Tahoe (JPL) 4 buoys 234
Salton Sea (JPL) 1 buoy 63

Total 1518

2.4. Geometric Considerations

An initial application of Equation (1) to the TIRS (L1T) image data resulted in undesirable artifacts
in the final surface temperature product; see an example of Lake Ontario, NY in Figure 3. The ST
product derived from the single channel method is shown on the left for visual reference, while the
split window-derived surface temperature image is shown on the right. Clearly, ringing artifacts can
be observed at sharp transitions (edges) in the data; e.g., along the Lake Ontario shoreline as shown
in the zoom windows of Figure 3. Note that the derived surface temperatures in the single channel
method are roughly two degrees warmer than the temperature derived from the split window method.
This discrepancy will be discussed further in Section 3.

To understand the source of these artifacts, a brief background of the TIRS focal plane is required.
Referring to Figure 4, the TIRS focal plane array (FPA) consists of three staggered detector arrays
to cover the 185 km cross-track FOV of the instrument at a ground sampling distance (GSD) of
approximately 100 m. Spectral filters are placed on the FPA detectors to produce detector rows with
the desired spectral band shapes (Band 10 centered at 10.9 µm and Band 11 centered at 12.0 µm).
When imaging in the nominal pushbroom mode, image data are recorded from one row of detectors
in each filtered region and an image interval of the Earth is assembled as the instrument travels
in orbit. Although band-to-band registration is well-within the defined specification for TIRS [5],
the physical layout of the detector arrays along with the read-out sample timing in the along-track
direction leads to an inherent misregistration between the Band 10 and Band 11 images. This amounts
to an along-track offset of the instantaneous fields-of-view (IFOV) of the detectors in the two bands
(note that the magnitude of the offset is much less than the size of the pixel). The TIRS 100-m image data
is upsampled to 30 m data in the final step of the Landsat product generation process in order to match
the spatial resolution of the OLI sensor. The process of upsampling exacerbates the misregistration
offsets due to the fact that the along-track band offset is now a significant fraction of the 30 m pixel.
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When the differences between the band images are calculated as part of the split window algorithm,
the along-track offsets become magnified in the product.

Figure 3. Comparison of the surface temperature product derived from the single channel method
(left) against the split window method (right) for an area around Lake Ontario, NY (Landsat scene
ID: LC08_L1TP_016030_20190413_20190422_01_T1). Note the spatial artifacts along edges in the split
window product. Zoom windows are shown in the upper right of each image. The image area is
roughly 8 by 8 km, and north is up.

Figure 4. The Thermal Infrared Sensor (TIRS) focal plane array consists of three detector arrays (labeled
A, B, and C) arranged to span the cross-track 185 km swath. Spectral filters over the arrays produce the
two thermal bands (Bands 10 and 11).

From a technical perspective, applying and delivering a split window-derived ST product at
the nominal TIRS resolution (100 m) represents an ideal scenario to avoid artifacts introduced by the
algorithm and the upsampling. However, achieving this solution would require a significant deviation
from the existing EROS processing pipeline and would result in a product that differs in resolution
from the other products (e.g., surface reflectance) being released in Collection 2. Alternative solutions
that mitigate the spatial artifacts, yet preserve radiometric fidelity and the 30-meter resolution of the
ST product, have been investigated.

To motivate a potentially desirable solution, Figure 5 shows the contributions of each term in
Equation (1) to the final surface temperature product for the scene in Figure 3. Columns 3 and 4 of
this table were populated by calculating the scene-wide mean and standard deviation, respectively,
of each term in Equation (1). Accordingly, column 3 represents the average magnitude of each term’s
contribution to the final ST product, while column 4 represents the spatial variability introduced by
each term to the final ST product. Note from the values in columns 3 and 4 that the additive terms
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in Equation (1) (highlighted in blue) contribute most of the overall magnitude and variability to the
final ST product for the scene in Figure 3. Conversely, note from the values in columns 3 and 4 that
the difference terms from Equation (1) (highlighted in gray) contribute significantly less information
to the final product. Since the difference terms introduce the artifacts shown in Figure 3, and their
radiometric contribution to the final product is relatively small, a proposed solution to mitigate these
artifacts is to apply a 5 × 5 smoothing filter to the Band 10 and 11 apparent temperature images
for terms b4 through b7 in Equation (1). Recall that the TIRS nominal ground sampling distance is
approximately 100 m, but the calculated full width at half maximum (FWHM) of its point-spread
function is approximately 200 m (see Wenny et al., 2015) [27]. Therefore, averaging the upsampled
30 m data to 150 m will not significantly alter the image data collected by TIRS. Comparing the nominal
standard deviations for the b4 through b7 terms (column 4: gray terms) to the 5 × 5 smoothed standard
deviations, as suggested here (zoomed: gray terms), smoothing has a negligible impact (less than 0.1 K)
on the scene-wide variability observed in the final proposed ST product for the scene in Figure 3.

Figure 5. Table illustrating the contribution of each term from Equation (1) to the final surface
temperature product shown in Figure 3. Columns 3 and 4 of this table were populated by calculating
the scene-wide mean and standard deviation, respectively, of each term in Equation (1). Note that
the additive terms (highlighted in blue) contribute most of the overall magnitude (column 3) and
variability (column 4) to the final ST product. When compared to the difference terms in column 4
(highlighted in gray), the zoom window suggests that smoothing the difference terms has little impact
on scene-wide variability.

While smoothing the difference terms in Equation (1) appears to have negligible impact on
radiometric fidelity, its effect on mitigating the geometric artifacts in Figure 3 is dramatic. Figure 6
shows the single channel ST product (left), the nominal split window ST product (middle), and the
proposed split window ST product (right). Note that the single channel product is presented here for
reference, as it should not exhibit the artifacts described in this section. By visually inspecting the
zoom windows in Figure 6, the artifacts present in the nominal split window product (middle) are
essentially removed with the proposed methodology (right).
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Figure 6. Comparison of surface temperature products: single channel product (left), the nominal
split window product (middle), and the proposed split window product (right) (Landsat scene ID:
LC08_L1TP_016030_20190413_20190422_01_T1). The scene is roughly 8 by 8 km, and north is up.

3. Results and Validation

The 1518 Landsat 8 scenes corresponding to the ground reference sites listed in Table 2 were
processed to surface temperature using the proposed split window method and the coefficients
described here (see Table 1). The difference between the derived ST and the measured (reference) ST
is shown in Figure 7 for all reference sites. Note that the difference data is displayed as a function
of “distance to the nearest cloud (km)” from the pixel where the comparison is made to a reference
measurement. As seen in the figure, the temperature error is greatest when the target pixel is in close
proximity to a cloud, which adds significant uncertainty to the ST retrieval process. The mean error for
the data in Figure 7 is 0.2 K with a standard deviation of 2.73 K. However, ignoring data points within
4 km of a cloud, the mean error becomes 0.02 K with a standard deviation of 1.39 K.

Figure 7. The difference between the reference temperature measurements and the Landsat-derived
surface temperatures for the proposed split window methodology as a function of distance to
nearest cloud.

Surface temperature products using the single channel methodology and the split window
algorithm with the coefficients reported in Du et al. (2015) were also calculated to serve as a comparison
to the proposed method. The results from the three methods can be summarized in Figure 8,
which shows the average differences between the reference temperature measurements and the
Landsat-derived surface temperatures (left), and the corresponding standard deviations of the residuals
(right) as functions of distance to cloud.
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Figure 8. All sites validation: the average differences between the reference temperature measurements
and the Landsat-derived surface temperatures for the three retrieval methodologies (left) and the
corresponding standard deviations of the residuals (right).

In general, for the full set of data compiled in this study, the proposed split window
implementation (blue bars) has better accuracy and precision than the other two algorithms,
as compared to reference data. Figure 8 (left) shows that its retrieved temperatures are, on average,
closer to reference measurements with a slight positive bias that diminishes as distance to the nearest
cloud increases. Notice that the single channel methodology has a significant bias (compared to
reference measurements), which is consistent with the temperature products shown in Figures 3 and 6.
Figure 8 (right) indicates that the residuals about the mean are smaller for the proposed split window
implementation regardless of cloud proximity for the implementation proposed here.

Two interesting observations can be made when categorizing the data in Figure 8 into “land
sites” and “water sites”. Figure 9 (left) shows the mean difference between derived and measured
surface temperatures for the “land sites” while Figure 9 (right) shows the corresponding standard
deviations of the residuals about the mean. The first noteworthy observation from Figure 9 (right)
is that for relatively clear scenes (i.e., clouds are over five kilometers from the ground reference
measurement), all three methodologies show a standard deviation of approximately 2 K, compared to
surface measurements. These values are consistent with those observed in studies using SURFRAD as
a reference for validation of other spaceborne thermal instruments [28–30]. Given that this 2 K residual
error is consistently observed from several spaceborne platforms and that the pyrgeometers used at
the land-based reference sites are sensitive from 4 to 50 µm, this residual error indicates that reflected
solar radiation may be contributing to the signal recorded by the pyrgeometers and that broadband
emissivity uncertainty is potentially a limiting factor in leveraging these sites to be used as reference
sources for applications requiring high accuracy.

A second observation can be made by referring to Figure 10. Figure 10 (left) shows the
mean difference between derived and measured surface temperatures for the “water sites”, while
Figure 10 (right) shows the corresponding standard deviation of the residuals about the mean. The blue
bars indicate that the split window algorithm (as presented here) estimates surface temperature more
accurately and with less residual error than the single channel method (red bars) and the split window
algorithm using the coefficients presented in Du et al. (2015) (gray bars). The under-performance of the
Du et al. coefficients for retrieving water temperature is likely due to the inclusion of man-made
materials into their training process; i.e., the algorithm coefficients are over-fit to land-based
targets. This outcome highlights the potential necessity to develop material-based b-coefficients
for an operational split window implementation.



Remote Sens. 2020, 12, 224 12 of 15

Figure 9. Results over land sites: the average differences between the reference temperature
measurements and the Landsat-derived surface temperatures for the three retrieval
methodologies (left), and the corresponding standard deviations of the residuals (right).

Figure 10. Results over water sites: the average differences between the reference
temperature measurements and the Landsat-derived surface temperatures for the three retrieval
methodologies (left), and the corresponding standard deviations of the residuals (right). Note that
there is no reference data for clouds within 0–1 km of a water buoy.

4. Conclusions

The TIRS instruments onboard Landsats 8 and 9 contain two thermal channels, enabling the
use of the split window methodology to derive Earth surface temperature. This work focused on
tailoring the generalized split window algorithm to the specific Landsat bands by deriving appropriate
algorithm coefficients and by addressing the inherent aliasing artifacts in the split window temperature
product. For the scenes tested here, validation efforts illustrate that the split window ST product is
more accurate than the single channel ST product (available in the Landsat Collection 2 release).

The studies presented here demonstrate that smoothing the difference terms in Equation (1) has
a dramatic effect on mitigating aliasing artifacts introduced by band-to-band misregistration and
upsampling of the nominal TIRS image data. Several comparisons (analogous to Figure 5 in Section 2.4)
of the unsmoothed to the smoothed 30 m temperature product indicate that smoothing has little
impact on in-scene variability. Considering the fact that the TIRS nominal ground sampling distance
is approximately 100 m and the calculated FWHM of its point-spread function is approximately
200 m [27], the solution presented here is believed to be appropriate, although quantifying the impact
of smoothing remains an area of ongoing research.
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From a radiometric viewpoint, Figure 10 highlights the potential value of deriving per-material
split window coefficients for an operational implementation. Considering Du et al. tuned their
split window coefficients to support urban heat island applications, the under-performance of their
implementation for the water scenes tested here precludes their coefficients from being used for
environmental applications requiring less than one Kelvin precision. That being said, the simulated
effort conducted by Du et al. highlights potential improvements that can be made to surface
temperature retrieval if atmospheric water vapor can be characterized from image data and accounted
for in the split window implementation; i.e., the b-coefficients in Equation (1) are categorized as
a function of column water vapor. An investigation into the potential improvement of surface
temperature estimation using coefficients categorized by material and column water vapor will
be conducted.

Other considerations to achieve an operational implementation and validation of a split window
algorithm for TIRS in Collection 3 are the development of a quality assurance map and appropriate
validation of the product. The single channel algorithm being implemented in Collection 2 to derive
surface temperature for the Landsat thermal archive contains a quality assurance (QA) band that
was developed based on cloud proximity and atmospheric transmission [2]. While this QA band
will provide information regarding the product’s accuracy, it is highly dependent on Landsat’s cloud
mask and was trained using water observations. The investigation and development of an analogous
but appropriately-trained quality assurance band to accompany a split window-derived surface
temperature product represents an area of ongoing research.

While the efforts reported here represent significant progress toward the development and
validation of an operational split window-derived surface temperature product, the considerations
described above should be addressed before the final form of the algorithm is achieved. Future
validation efforts will include reprocessing of the scenes presented here but with Collection 2
L1T TIRS data, incorporation of additional reference measurements as they become available, and
a categorization of the residual errors with a more appropriate metric; i.e., residual errors between
retrieved and reference measurements will be categorized as a function of atmospheric column water
vapor instead of distance to cloud.
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