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Abstract: River ice monitoring is of great significance for river management, ship navigation and
ice hazard forecasting in cold-regions. Accurate ice segmentation is one most important pieces
of technology in ice monitoring research. It can provide the prerequisite information for the
calculation of ice cover density, drift ice speed, ice cover distribution, change detection and so
on. Unmanned aerial vehicle (UAV) aerial photography has the advantages of higher spatial and
temporal resolution. As UAV technology has become more popular and cheaper, it has been widely
used in ice monitoring. So, we focused on river ice segmentation based on UAV remote sensing
images. In this study, the NWPU_YRCC dataset was built for river ice segmentation, in which
all images were captured by different UAVs in the region of the Yellow River, the most difficult
river to manage in the world. To the best of our knowledge, this is the first public UAV image
dataset for river ice segmentation. Meanwhile, a semantic segmentation deep convolution neural
network by fusing positional and channel-wise attentive features is proposed for river ice semantic
segmentation, named ICENET. Experiments demonstrated that the proposed ICENET outperforms
the state-of-the-art methods, achieving a superior result on the NWPU_YRCC dataset.

Keywords: river ice; position attention; channel-wise attention; deep convolutional neural network;
semantic segmentation

1. Introduction

Every winter and spring, river ice freeze-up and break-up are big events in cold regions.
The presence of river ice cover can drastically affect various river flow characteristics and socioeconomic
activities, such as water transportation, water supply and hydroelectric power [1]. Moreover, in the
period of river ice freeze-up and break-up, a large jumbled accumulation of drift river ice can form
an ice jam, which partially blocks a river channel, raises water levels and potentially causes flooding.
This kind of flood by large rivers in cold regions is a well-known serious hazard called an ice jam flood.
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It is potentially more destructive than open-water flooding and can produce much deeper and faster
flooding. It also damage an economy by causing river-side industrial facilities such as hydro-electric
generating stations to shut down and to interfere with ship transport [2—4].

So, river ice monitoring is often used to maintain navigation or predict ice jam related floods.
To predict ice jam, accurate and timely information on the river ice cover and on the river ice
distribution along the river channel is needed.

Imaging instruments with high spatial resolution are commonly-used for ice monitoring.
Cooley [5] proposed a method to identify the spatial and temporal breakup patterns of river ice
at large scales using MODIS satellite imagery. Chaouch [6] presented a technique to detect and monitor
river ice using observations from the MODIS instrument onboard the Terra satellite. Chu [7] integrated
use of different remote sensing data for river ice monitoring, using MOD09GQ data to characterize river
ice phenology and Radarsat-2 data to classify breakup ice types. Ansari [8] developed an automated
image processing algorithm to analyze the time series of terrestrial images, which was able to detect
and quantify important river ice cover characteristics. Alfredsen [9] mapped complex ice formations
using low cost drones and structure from motion. Kartoziia [10] assessed the icewedge polygon current
state by means of UAV imagery analysis. In general, there are three kinds of monitoring method,
including satellite-based monitoring [5-7], shore-based terrestrial monitoring [8] and UAV-based
aerial monitoring [9,10]. Satellite-based ice monitoring has a large-scale observation and can estimate
the river ice cover over large regions, but the satellite revisit period is often one or several days.
Shore-based terrestrial monitoring of river ice can capture the information of river ice at any time.
However, mounting an imaging instrument on the shore is not an easy thing, especially for a long
and wide river running in the mountains. Compared with the above two methods, UAV-based aerial
monitoring is an effective and complementary method to quickly detect or update the ice flood risk.
It has the advantages of high spatial and temporal resolutions. So we focused on river ice monitoring
based on UAV aerial image in this paper.

To the best of the authors” knowledge, there is no public UAV image dataset for river ice
segmentation. To study an accurate semantic segmentation model for river ice monitoring, a UAV
visible image dataset was built for river ice segmentation. The visible images in this dataset were
captured by different UAVs at the Ningxia-Inner Mongolia reach of the Yellow River. The Yellow River,
known as the most difficult river to manage in the world, spans 23 longitudes from east to west and
10 latitudes from north to south. There is a great disparity in topography and landform, and the flow
amplitude varies greatly. The main stream and tributaries of the Yellow River have different degrees of
ice in spring and winter. The ice on the Yellow River is very typical and diverse due to the influence of
temperature, flow rate, geographical location and river morphology [11,12]. Therefore, the Yellow
River was selected to study the river ice segmentation models.

In this paper, we focus on building a UAV image dataset for river ice segmentation and
designing a novel network architecture which effectively exploits multilevel features for generating
high-resolution predictions. The main contributions of this paper are summarized as follows:

e A UAV visible image dataset named NWPU_YRCC was built for river ice semantic segmentation.
It contains 814 accurately annotated images, which cover typical images of river ice in different
periods, with diverse appearance and captured from different flight height and views.

e We propose a novel network architecture with two branches for river ice segmentation,
named ICENET. One branch adopts a shallower convolution architecture, to extract low-level
position-attentive features. The other branch was designed to extract multiscale high-level
channel-wise attentive features. The aggregation of low-level finer features and high-level
semantic features can generate high-resolution predictions for river ice.

e  The proposed network achieves the state-of-the-art performance on the NWPU_YRCC dataset:
88% mean intersection-over-union (IoU), compared with DeepLabV3, DenseASPP, PSPNet,
RefineNet and BiseNet.



Remote Sens. 2020, 12, 221 30f 22

2. Related Work

2.1. Ice Segmentation

Efforts have been devoted to study ice segmentation based on remote sensing images.
Most existing methods adopt satellite remote sensing images captured by different sensors, such as
moderate-resolution imaging spectroradiometry (MODIS), advanced very high resolution radiometry
(AVHRR), synthetic aperture radar (SAR) and so on. These methods fall into three groups: traditional
threshold methods, methods based on machine learning and methods based on neural networks.

Traditional threshold methods. Selkowitz and Forster (2016) [13] classified pixels as ice or snow
by calculating the normalized difference snow index (NDSI) using Landsat TM and ETM+ images to
map persistent ice and snow cover (PISC) across the western U.S. automatically. Liu et al. (2016) [14]
employed a straightforward threshold method on the visible and infrared satellite images to identify
sea and freshwater ice and estimate ice concentration. Su et al. (2013) [15] proposed an effective
approach of gray level co-occurrence matrix (GLCM) texture analysis based on the ratio-threshold
segmentation for Bohai Sea ice extraction using MODIS 250 m imagery. Experiments showed that
this method is more reliable for sea ice segmentation compared with the conventional threshold
method. In addition, Engram et al. (2018) [16] adopted a threshold method on log-transformed data
to discriminate bedfast ice and floating ice with the SAR imagery across Arctic Alaska. Along with
the above methods, Beaton et al. (2019) [17] presented a calibrated thresholds approach to classifying
pixels as snow/ice, mixed ice/water or open water using MODIS satellite imagery.

Methods based on traditional machine learning. Using the development of machine learning,
Deng and Clausi (2005) [18] focused on a novel Markov random field (MRF) to segment SAR sea ice
imagery, which used a function-based parameter to weigh the two components in a Markov random
field (MRF). This achieved unsupervised segmentation of sea ice imagery. Dabboor and Geldsetzer
(2013) [19] applied a supervised maximum likelihood (ML) classification approach to classify the river
covers as first-year ice (FYI), multiyear ice (MYI) and open water (OW) using SAR imagery in the
Canadian Arctic. Chu and Lindenschmidt (2016) [7] adopted the fuzzy k-means clustering method to
classify the river covers as open water, intact sheet ice, smooth rubble ice and rough rubble ice with
integration of MODIS and RADARSAT-2. Romanov (2017) [20] proposed a decision-tree approach to
detect ice with AVHRR data.

Methods based on neural networks. In traditional machine learning techniques, most of the applied
features need to be identified by a domain expert, in order to reduce the complexity of the data and
make patterns more visible to learning algorithms. On the other hand a neural network, especially a deep
neural network, has strong mapping and generalization abilities, which can self-organize, self-study
and fit an arbitrary, nonlinear relationship between a dependent variable and independent variables
without an accurate mathematical model. If sufficient and high-quality labeled data is available, a deep
neural network can extract features more efficiently from data in an incremental manner. Karvonen
(2004) [21] presented an approach based on pulse-coupled neural networks (PCNNs) for segmentation
and classification of Baltic Sea ice SAR images. With the wide application of CNN, Wang et al.
(2016) [22] used a basic, deep convolutional neural network (CNN) to estimate ice concentration
using dual-pol SAR scenes collected during melting. Remarkably, Singh et al. (2019) [23] used some
semantic segmentation models (e.g., UNet [24], SegNet [25], DeepLab [26] and DenseNet [27]) based
on CNNs to categorize segment river ice images into water and two distinct types of ice (frazil ice and
anchor ice). It provided fairly good results and increased in accuracy compared to previous methods
using support vector machines (SVMs). This indicates a promising for future exploration of deep
convolutional neural networks applied in ice detection and segmentation to some extent.

2.2. Semantic Segmentation Based on a Deep Convolutional Neural Network

Semantic segmentation is a fundamental task and has shown great potential in a number
of applications, such as scene understanding, autonomous driving, video surveillance and so on.
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Moreover, due to the demands of some practical tasks (e.g., land classification, change detection and
so on), semantic segmentation is required in remote sensing technology. A fully convolutional network
(FCN) [28] was the pioneering work to replace the full connection layer at the end of a classification
model with a convolution layer. This brought in a new way of thinking and a solution for semantic
segmentation. Recently, semantic segmentation models based on FCN have been constantly emerging.
They are generally divided into four categories: encoder-decoder structure, dilated convolutions,
spatial pyramid pooling and recurrent neural networks.

Encoder-decoder architectures. Encoder-decoder structure based on FCN was proposed to
recover high resolution representations from low resolution or mid resolution representations.
SegNet (2017) [25] adopted maximum indices in the pooling layer instead of the features directly,
introducing more encoding information and improving the segmentation resolution. Similar to SegNet,
U-net (2015) [24] had a more structured network structure, and a better result has been obtained
by splicing the results of each layer of the encoder into the decoder. RefineNet (2017) [29] made
a well-designed RefineNet module that integrates the high resolution features with the low resolution
features in a stage-wise refinement manner by using three individual components: residual conv unit
(RCU), multiresolution fusion and chained residual pooling. GCN (2017) [30] used a large convolution
kernel and decomposed the convolution kernel of a large kxk into two, 1xk and kx1, to balance the
accuracy contradiction between location and classification. Gao et al. (2019) [31] proposed a method to
extract roads from optical satellite images using encoder-decoder architectures and a deep residual
convolutional neural network. Fuentes-Pacheco et al. (2019) [32] presented a convolutional neural
network with an encoder-decoder architecture to address the problem of fig plant segmentation.
El Adoui et al. (2019) [33] proposed a different encoder and decoder CNN architectures to automate
the breast tumor segmentation in dynamic-contrast-enhanced magnetic resonance imaging based on
SegNet [25] and U-Net [24].

Dilated convolution. Unlike encoder-decoder, dilated convolution (2015) [34] introduced a new
parameter into the convolution kernel, which defined the spacing between values of kernel. It was
designed to increase the receptive field without reducing the spatial resolution. That work removed
the last two pooling layers from the pretrained classification VGG (2014) [35] network and replaced
the subsequent convolution layers with dilated convolution. DRN (2017) [36] studied gridding
artifacts introduced by dilation and developed an approach to remove these artifacts. DeepLabV1
(2014) [37] used dilated convolution and a fully-connected conditional random field (CRF) based on
VGG (2014) [35]. In the same way, dilated convolution was applied with the ResNet (2016) [38] in
DeepLabV2 (2017) [26] and DeepLabV3 (2017) [39]. Fu et al. (2017) [40] improved the density of output
class maps by introducing atrous convolution. DDCMN (2019) [41] is a network for semantic mapping,
called the dense dilated convolutions merging network, used to recognize multiscale and complex
shaped objects with similar colors and textures.

Spatial pyramid pooling. Spatial pyramid pooling was adopted to aggregate multiscale
context information for better segmentation. PSPNet (2017) [42] is a pyramid pooling module
used to ensemble multiscale information in different sub-regions. DeepLabV2 (2017) [26] and
DeepLabV3 (2017) [39] use dilated spatial pyramid pooling (ASPP) to realize multiscale information
for semantic context. And that specific method was to use parallel dilated convolution with different
dilated rates, obtaining better segmentation results. However, another work deemed that the ASPP
module in the scale-axis was not dense enough and the receptive field was not large enough.
Therefore, Dense ASPP (2018) [43] was proposed to connect a group of dilated convolutional layers in
a dense way, obtaining a larger scale range. Chen et al. (2018) [44] combined a spatial pyramid pooling
module and encode-decoder structure to encode multiscale contextual information and capture sharper
object boundaries by recovering the spatial information gradually. He et al. (2019) [45] improved the
performance of the road extraction network by integrating atrous spatial pyramid pooling (ASPP) with
an encoder-decoder network.
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Recurrent neural networks. Recurrent neural networks have been successfully applied for
modeling long-temporal sequences. RNNs are able to exploit long-range dependencies and improve
semantic segmentation accuracy successfully. Byeon (2015) [46] used two-dimensional long short
term memory recurrent neural networks (2D LSTM networks) to address the problem of pixel-level
segmentation. Inspired by the same recurrent neural network (ReNet) (2015) [47] architecture,
Li (2016) [48] proposed a novel long short-term memorized context fusion (LSTM-CF) model for
scene labeling. The DAG-RNNSs (2016) [49] model was proposed to process DAG-structured data
and effectively encode long-range contextual information. Shuai (2017) [50] built a recurrent neural
network with a directed acyclic graph to model global contexts and improve semantic segmentation by
linking pixel-level and local information together. These methods with recurrent neural networks can
capture the global relationship implicitly. However, their effectiveness relies heavily on the learning
outcome of the long-term memorization.

3. NWPU_YRCC River Ice Dataset

3.1. Motivation

Most studies on river ice segmentation are based on satellite remote sensing images. The related
studies have been described in Section 2.1. Satellite imaging can map large scale scenes, but still faces
the problems of a long transit period and low spatial resolution, and may suffer from cloud cover [51,52].
The UAV remote sensing platform has a high flexibility of use and can capture high spatial resolution
images at low cost, because UAVs can fly at low altitudes above ground level [53]. With the wide
application of UAVs, UAV aerial photography can be a complementary feasible approach for river ice
regime observation, providing data with high temporal and spatial resolutions [54]. Deep learning
techniques have been applied to a variety of practical applications over the past few years. To the
best of our knowledge, there is no public UAV image dataset for river ice monitoring. To promote
the study of river ice monitoring based on deep learning, a UAV visible image dataset was built
for river ice segmentation. As mentioned in the first section, the ice on the Yellow River, especially
in the Ningxia-Inner Mongolia reach, is very typical and diverse. Therefore, the Yellow River was
selected to study the river ice segmentation. To build this dataset, four institutions devoted their efforts,
including Northwestern Polytechnical University, the Yellow River Institute of Hydraulic Research,
the Hydrology Bureau of the Yellow River Conservancy Commission and the Ningxia—Inner Mongolia
Hydrology Bureau. The latter three are the subordinates of the Yellow River Conservancy Commission.
Thus, it was named the NWPU_YRCC river ice dataset, short for the Northwestern Polytechnical
University/ Yellow River Conservancy Commission dataset.

The appearance of river ice varies a lot at different times; in order to cover different periods of
river ice, we took a lot of aerial videos during November—March over four years. A total of 814 typical
frames were carefully selected from these video sequences to form the dataset. All frames in this
dataset were accurately annotated pixel by pixel by three classification labels, ice, water and shore.
The details of this dataset are in the following two subsections.

Based on the NWPU_YRCC dataset, the problem of river ice extraction can be explored.
Moreover, further analysis and studies based on ice extraction become feasible, such as ice cover
density, ice cover distribution and change detection. All of them are very important for river
ice monitoring.

3.2. Dataset Construction

Collection. The aerial images were captured at the Ningxia—Inner Mongolia reach of the Yellow
River during November-March of each year from 2015 to 2019. In order to obtain an intuitive view
and understanding of environments around image acquisition areas, we exhibit a map in Figure 1,
in which the red ellipse reveals our study and imaging area. During the data collection, we used two
different UAVs, a fixed wing UAV ASN216 with a Canon 5DS visible light camera and a DJI Inspire 1.
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Some details about the UAVs and cameras are in Tables 1 and 2 respectively. The flight height of UAVs
ranged from 30 to 500 m. There are 200 videos in total, ranging in length from 10 min to 50 min. Some
scenes of experimental data collection are shown in Figure 2. The three pictures in the first row show
the data collection procedure using a fixed wing UAV ASN216, including preparing the UAV, flying the
UAYV and the UAV’s ground control station. The second row depicts some pictures of data collection
utilizing DJI Inspire 1.

o Beijing

® Tianjin

o Shijiazhuang

eHandan plnoc=c

® Zhengzhou
di

Shangha i

[=—— n—_— —

Wuhan ¢
0 100 200 300 400 km o Chengdu

Figure 1. Study areas.

Table 1. Details of UAVs used for data collection.

Parameters ASN216 D]JI Inspire 1
Max Take-off Weight 30 kg 3.4kg

Endurance >4 h <18 min

Max Speed 120 km/h 22m/s

Table 2. Details of cameras used for data collection.

Parameters Canon 5DS Camera on DJI Inspire 1
Sensor type CMOS Exmor R CMOS
Max Image resolution 8688*5792 4000*3000
Max Video resolution 1920*1080 40962160

Effective pixels 50.6 million pixels 12.4 million pixels
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Figure 2. Experimental data collection.

Manual annotation. There are several annotation tools for semantic segmentation, such as
Labelme, Image Labeler and so on. However, due to the irregularity of river ice, it is hard to
mark a clear boundary between water and ice on the NWPU_YRCC dataset with these tools.
Eventually, Photoshop software was adopted to label each pixel in the image as one of three categories,
including ice, water and shore. However, there continued to be some problems. Other than three
demanding kinds of pixel values, there were still other values in the annotation map. So the unexpected
values were classified into three expected kinds using the least Euclidean distance metric. Some very
small misclassified regions with only several pixels still existed. To ensure the integrity, an open
morphology operation was carried out to correct them. This annotation job is very time-consuming.
Finally, 814 typical images were carefully selected to be accurately annotated, and make up the
NWPU_YRCC dataset. Note that the resolution of all annotated images is 1600 x 640. However,
the resolutions of the collected images are diverse. As shown in Table 2, the maximum image resolution
and video resolution of Canon 5DS on ASN216 are, respectively, 8688 x 5792 and 1920 x 1080, while
the max image resolution and video resolution of camera on DJI Inspire 1 are 4000 x 3000 and
4096 x 2160. To ensure that the resolution of the input images in the deep convolution neural network
was consistent, we finally cropped and resized the images to 1600 x 640. Furthermore, to depict the
characteristics of the dataset, the ratio of ice pixels for each labeled image was statistically calculated
and displayed in Table 3. Here, the ratio of ice pixels means the number of ice pixels to the number
of river channel pixels (ice and water). It can depict ice density. From the Table 3, the dataset covers
almost situations of differing ice density.

Table 3. The ratios of ice pixels in the labeled images.

The Percentage of Ice Pixels ~ The Number of Images

0-10% 14
10-20% 50
20-30% 75
30-40% 100
40-50% 119
50-60% 108
60-70% 115
70-80% 116
80-90% 83

90-100% 34
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Figure 3 illustrates some typical images and their corresponding annotation maps. The first two
rows present the images with ice of different size and color, and their annotation maps. The last
two rows shows some sample images captured by different flight heights and view points and their
annotation maps.

M ice M yater M others

Figure 3. Some examples of image annotation.

3.3. Analysis

In summary, the NWPU_YRCC dataset has the following four characteristics.

Different periods. The captured images and videos can be divided into two periods: freeze-up
and break-up according to different states of river ice. The appearance of river ice in these two periods
varies greatly, including scale, color, texture and so on, as shown in the Figure 4. The first line shows
some typical images of river ice in the freeze-up period. When the temperature drops to zero, small ice
flowers are formed on the river. During the accumulation of small river ice, ice blocks of different sizes
are formed on the river and along the shore. From the three images, we can see the shore ice and drift
ice of different sizes. The second line shows some typical river ice images captured in the break-up
period. As the temperature rises above zero (Condition 1) or crashes by the drift ice from upstream
(Condition 2), the huge ice sheet starts to melt or breaks up into crushed ice of varying size. The left
image shows the cracked ice caused by Condition 1. The other two images show the typical crushed
ice scenes caused by both conditions. River ice jam occurs at the end of the accumulated ice in the
middle image.

Diverse appearance. Compared with other rivers, the Yellow River has a more complex natural
environment. Therefore, the river channel morphology and shore background are quite different.
The river ice age can last from November in winter to march in the spring. And the color of river water
and ice is often heavily influenced by different sediment content. Therefore, affected by temperature,
channel conditions, flow power and sand-wind, the appearance of yellow river ice varies dramatically
in scale, color, texture and shape. To make that more intuitive, some exemplary images are shown in
Figure 5. The first line shows some images with clear water and drift ice blocks which are white or
nearly white and of different sizes. The second line shows some images with big drift ice blocks which
are in green or blue. The third line shows some images with ice and water seriously contaminated
by sediment.
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Figure 5. Example images of river ice with diverse appearance.

Different flight heights and view points. The flight height of the UAV and the view point of
camera were different during the images/videos capture. The range of flight height was 30-600 m.
Figure 6 presents some sample images captured from different fields of view and different angles in
the dataset.
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Figure 6. Example images captured from different flight heights and different view points.

As can be seen from the above characteristics of the NWPU_YRCC dataset, difficulties of
segmentation on the dataset are two-fold: (1) The appearance of river ice in color, shape and texture
varies a lot in different periods and different regions, so how to efficiently learn and integrate different
level features to achieve accurate segmentation is the first challenge; (2) compared with the common
objects in general scenarios—people, cars, etc.—on the PASCAL VOC or MS COCO dataset, the scale
of river ice varies dramatically, so how to effectively segment ice at different scales, especially very
little ice, is the second challenge.

4. Method

In this section, an overview of the proposed ICENET network is given first, which aggregates
both the positional and channel-wise attentive features. Then, the four main parts of the proposed
network: the multiscale feature aggregation, position attention, channel-wise attention and fusion
module are presented in Sections 4.2—4.5 respectively.

4.1. Overview

To address the above two challenges of river ice segmentation, we designed a novel network
of two branches shown in Figure 7. One branch adopts a deeper convolution architecture which
fuses three channel-wise attention modules, aiming to extract multiscale features with high level
semantic information.
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ICENET Architecture
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Figure 7. The ICENET architecture.

The other branch is designed as a much shallower convolution block which includes only two
successive convolution layers (without a pooling layer) followed by a position attention module.
As a result, the shallower branch can preserve high-resolution feature maps to capture small-scale
targets. Then, the outputs of the two branches are combined to fuse both the positional and
channel-wise attentive features to predict the final segmentation result.

4.2. Multiscale Feature Aggregation

Multiscale feature integration is an effective way to increase the segmentation accuracy of
multiscale targets. Features of different levels have different representation capabilities. Low-level
features can preserve high-resolution information and encode finer spatial information (e.g., edge,
shape, and texture). While high-level features have strong semantic context owing to the larger
receptive field, they tend to lose finer features due to the down-sampling operation. The key is to
combine low-level and high-level features in a mutually beneficial way.

In the proposed model, the input image is fed into the ResNet-101 first, and the features are
gained by a convolution layer with kernel size of seven and a stride of two. Then, the features are fed
into two branches to obtain the detailed information and the semantic information, respectively.

The deep branch, e.g., the top one depicted in Figure 7, uses ResNet as the backbone. It contains
four residual blocks, notated as Resl, Res2, Res3 and Res4. Only Resl is an original residual block
in ResNet. Convolutional strides of other three residual blocks (Res2, Res3 and Res4) are set to one.
And a batch-normalization layer is added on top of Relu operation in Res4. Then, each of these three
blocks are followed by a channel attention module. Furthermore, to get the global context information,
the last channel attention module is weighted by a global contextual vector, which is generated by
a global average pooling on the output feature maps of Res4. The outputs of the first two channel
attention modules and the last weighted attention module are then concatenated and up-sampled
twice to get multiscale semantic information.

The shallow branch, e.g., the bottom one shown in Figure 7, indicates that the feature map goes
through two successive convolution layers with a kernel size of three and a stride of two. That makes
the size of the output feature map 1/8 of the input image, aiming to gain high-resolution spatial
information. Further, the feature maps are fed into a position attention module. Position attention can
improve intraclass compact and semantic consistency. The output features from the shallow branch
can preserve high-resolution finer information and better discriminability of small targets.

Finally, the feature maps from the two branches are aggregated to predict by a fusion module
depicted by Figure 8.



Remote Sens. 2020, 12, 221 12 of 22

Global | Conv Conv | - .
pooling| 1x1 RelU 1x1 Sigmoid

Conv | . »
p| Concat > 1x1 BN| ReLU »| Mul Sum

Figure 8. The fusion module.
4.3. Channel Attention

Channel attention can encode the relationship among feature channels by an attention vector,
which is calculated among different channels of feature maps. It has been proven that channel
attention can capture the contextual information and effectively improve network performance.
Therefore, we designed a channel attention module for our model. The feature maps of Res2,
Res3 and Res4 are all weighted by channel attention vectors to achieve high-level context information.

The structure of the channel attention module is presented in Figure 9. The input feature maps go
through a global average pooling, and output a vector with the same size as the number of feature
map channels. Then, a1 x 1 convolution, followed by a batch normalization and a sigmoid function,
are calculated to generate the attention vector. Finally the input feature maps are weighted by the
attention vector, and element-wise added with themselves to produce the channel-wise attentive
features. Through the channel attention module, the feature maps contributing to the segmentation
task are emphasized, and the others are restrained.

Global | Conv

pooling| 1x1 BN | Sigmoid

—>

Mul Sum

Figure 9. The channel attention module.
4.4. Position Attention

The position attention module is adopted in our method proposed in the dual attention
network [55]. As shown in Figure 10, given a local feature map A € REXHXW the position attention
firstly applies three convolution layers with 1 times 1 filters on A to generate three new feature
maps B, C and D respectively, where {B,C} € R*H*W_ Then B and C are reshaped to RE*N,
where N = H x W is the number of pixels. After that, a matrix multiplication is performed between
the transpose of C and B, and a softmax layer is applied to obtain a spatial attention map S € RN*N:

Sjii = =B (1)
] Zf\il eBl C]

where s;; measures the ith position’s impact on jth position. The more similar feature representations
of the two position contributes to greater correlation between them.
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Then, D is reshaped to R®*N and multiplied by the transpose of matrix S. The multiplication
result is reshaped to R©*H*W_ Finally, an element-wise addition operation is performed between the
multiplication result and the original features A to get the final output E € RE*H*W a5 follows:

N
Ej=a- Z;(SjiDi) + A @

1=
where « is initialized as 0 and gradually learns to assign more weight. Through the above process, similar
teatures would be associated between two pixels regardless of their distance. The contextual information
is added to the local feature A to augment the pixel-wise representation. Therefore, according to
the position attention map, the feature map E has a global contextual view and aggregates contexts

selectively.
CkHW | Conv reshape & transpose
A > Ix1
B
| Conv reshape
1x1 C
(Ha#W) 3+ (HaW)
N Com reshape s |l » Sun—> g

reshape CkHaW

Figure 10. The position attention module.

4.5. Fusion Module

The features of the two branches are different in level of feature representation. Simply summing
up these features is not sensible. Therefore, we adopt the feature fusion module used in [56] in our
proposed architecture. As shown in Figure 8, the output features of the two branches are firstly
concatenated; then, a convolution (1 x 1 kernel size), batch normalization and ReLu unit are computed
to balance the scales of the features. Then, a sub-module similar to channel attention module is
calculated to generate a weight vector. This sub-model contains a global pooling, 1 x 1 convolution,
Relu operation, 1 x 1 convolution and sigmoid unit sequentially. The concatenated and processed
feature maps are weighted by the vector and summed with themselves to produce the fused features.

5. Experiments

In this section, the implementation details of the training process are presented first. Then, a series
of ablation experiments are described. They were performed on the NWPU_YRCC dataset. Eventually,
comparison results with some state-of-the-art methods are exhibited.

5.1. Implementation Details

There are 814 images that were used for annotation. The dataset was divided into 570 images
for training, 82 images for validation and 244 images for testing. Note that the test set includes the
validation set. We divided the dataset according to two typical periods: freeze-up and break-up.
The numbers of images for two typical periods in different sets are shown in Table 4. We implemented
our network based on the open source platform Tensorflow. The model was trained with RMSprop
optimizer. The base learning rate was set to 0.0001 and the weight decay coefficient was 0.995.
Batchsize was set to 1 and the training time was set to 200 epochs. In order to have a better visualization,
the segmentation results were colorized. To be specific, the regions of ice, water and other are colored
in purple, green and black respectively.
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Table 4. The number of images for each period in the different sets.

Set Freeze-Up Break-Up
training set 295 275
validation set 50 32
testing set 146 98

5.2. Evaluation

Many evaluation criteria have been proposed, and some of them are frequently used to measure
the accuracy of the system of semantic segmentation, such as pixel accuracy and IoU. In order to
evaluate the performance of our model and other semantic segmentation algorithms objectively and
scientifically, we need to use quantitative methods to calculate the performance indicators of segmented
results. Therefore, we evaluated the performances of different models by measuring pixel accuracy
(PA), mean intersection over union (MIoU) and F1-score, as shown in Equations (3)—(5) respectively.
Additionally, ice was the key target in our study. To illustrate the performance improvement of the key
target (ice), the respective IoUs of ice, water and other were also calculated in our experimental results.

We evaluated the performance on the assumption that there were a total of n + 1 categories (from
0 to n). These categories contained a void class or background (class 0) in the training and test dataset.
In the evaluation metrics, p;; means the number of pixels that belong to class i but were predicted to be
class j. In other words, p;; denotes the amount of pixels of class i inferred to belong to class i; namely;,
true positives. While when class i is regarded as positive and i is not equal to j, p;; and p;; represent the
numbers of false positives and false negatives respectively.

Pixel accuracy (PA). Pixel accuracy, which is the simplest measure metric, refers to the ratio
of the amount of properly classified pixels to the total number of pixels which are used to test the
performance of algorithms. It is often denoted as follows:

Z?:o bii

PA = ——"—F"—.
Yito Xi=o Pij

®)

Mean intersection over the union (MIoU). The intersection-over-union (IoU), also known as the
Jaccard Index, is one of the most commonly used metrics in semantic segmentation. The IoU is a very
straightforward metric that is extremely effective. Simply put, the IoU is the area of overlap between
the predicted segmentation and the ground truth divided by the area of union between the predicted
segmentation and the ground truth. MIoU refers to the mean IoU of the image calculated by taking the
IoU of each class and averaging them. Specific formula description are as follows:

I v Pii
n+1 Z:Eo Yo Pij + Yo pji — Pii

Note that in our experimental results there is a light difference between the value of mloU and the
average of IoUs of ice, water and other. The reason is that some images in our test set only contained
two classes of the three classes, ice, water and other.

Fl-score. Fl-score, taking the precision and recall rate of the classification result into account,
refers to the weighted harmonic mean of precision and recall. It is usually devoted as follows:

F1

1 i 2 - precision ; - recall ;

:n+1 ®)

= precision ; + recall ; ’
where precision; and recall; refer to the precision and recall of class i, as shown in Equations (6) and (7)
respectively. precision; is the ratio of the number of true positive pixels to the number of pixels which
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are classified to class i. recall; refers to the ratio of the number of true positive pixels to the number of
pixels which are class i in the dataset.

. . Pii
recision ; = ——— 6
P Yopitpii ©)
Pii
recall; = ———. 7
" opi i @)

5.3. Ablation Study

Baseline. The model shown in Figure 11 was used as the baseline. In the deep branch, the feature
maps of Res4 are weighted by a contextual vector produced by a global average pooling, and then
up-sampled twice as the output. We notate the combination of the block Res4, the global pooling layer
and the multiplication operation as Res4*. The shallow branch only consists of two convolution layers.
Then the features of the two branches need to be further aggregated and fused to generate the final
prediction map.

Mul

Pooh’ngH Resl H Res2 H Res3 M Res4 ’—P{D%I(ﬁbian%

Res4* :

\ 4

Conv
<7

—% Predict H

8Upsampl e

‘ Fusion

3 A

Conv
3x3

Conv
BN ‘ ReLu }——b{ 3x3

BN ‘ ReLu }7

Figure 11. The base model.

Ablation for fusion. To evaluate the performance of different fusion strategies, based on the
base model, we conducted experiments with different feature integration methods, and we present
the results in Table 5. The setting fusion (Res3 + Res4*) means concatenating and up-sampling the
feature maps of Res3 and Res4* as the output of the deep branch. Other settings have similar meanings.
The experimental results demonstrate that fusing three blocks (Res2, Res3 and Res4*) is the most
effective way. We name this model fusion3. The results of these methods are visualized in Figure 12.

Table 5. The performances of different feature integration methods.

IoU (%)
Method MIloU (%) PA (%) F1-Score(%)
Ice Water Others
baseline 87.006 81.042 83.894 83.419 92.913 92.245
fusion(Res3 + Res4*) 88.481 81.040 86.460 84.915 94.365 93.988
fusion(Res2 + Res4*) 88.902 82474 85.670 85.158 94.539 94.210

fusion3(Res2 + Res3 + Res4*) 91.136 83.909  88.296 87.535 95.813 95.709
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(d)fusion (e)fusion 3
(Res3+Res4*) (Res2+Res4*) (f) fusion3

(a)lmage (b) Groundtruth (c) Baseline
e water B ice HEWothers
Figure 12. The results of different feature integration methods.

Ablation for channel attention and position attention. To verify the effectiveness of the channel
attention module and the position attention module, experiments adding the channel attention and
the position attention were performed based on the fusion3 model. It can be seen from Table 5 that
each residual block of the fusion3 model has a certain contribution. Considering that channel attention
can capture richer context information and is helpful for classification, we added channel attention
on the tops of block Res2, Res3 and Res4, respectively. The experimental results are presented in
Table 6. The notation CAZ2 is used to represent adding the channel attention on the top of the block
Res2. And CA3 and CA4 have the similar meaning. It was observed that, compared with the fusion3
model, the effect become worse after adding the channel attention.

Table 6. The performances of channel attention and position attention.

o,
Method loU (%) Mean IoU (%) Pixel Accuracy (%) F1-Score(%)
Ice Water Others
fusion3 91.136 83.909 88.296 87.535 95.813 95.709
fusion3 + (CA2 + CA3 + CA4)  90.287 83.356 87.077 86.693 95.096 94.744
fusion3 + (CA2 + CA3 + CA4) + CA 88.968 79.852 85.168 84.237 93.498 92.719
fusion3 + (CA2 + CA3 + CA4) + PA 91.583 84.891 88.253 88.112 95.932 95.814

Through analysis, we found that when features are multiplied by a residual channel attention,
the features will be amplified. Relatively, the low-level features of the shallow branch may be restrained,
only if adding the channel attention on the top of block Res2, Res3 and Res4. Then, we added channel
attention to the shallow branch, but the performance dropped. Through further analysis, we found
the channel attention emphasizes the relationship between different channels and is not suitable for
low-level features. Position attention can improve intraclass compact and help to capture and position
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small targets. Therefore, we use positional attention to replace the channel attention in the shallow
branch, and achieved a great improvement.

In addition, the effects of the channel attention and the position attention are visualized in
Figure 13. Some details and object boundaries are clearer with the attention module, such as the small
ice blocks and the boundary between ice and water.

% )

(d) fusion3+

(a)image (b) Groundtruth (c) fusion3 (CA2 + CA3+CAA)+PA

B ice s water Eothers

Figure 13. Visualization results of channel attention module and position attention module.
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5.4. Comparison with the State-of-the-Art

We further make comparisons between the proposed method and the existing state-of-the-art
methods. The code of the state-of-the-art models used in the paper was implemented in the
Semantic-Segmentation-Suite project ( https://github.com/GeorgeSeif /Semantic-Segmentation-Suite)
on the NWPU_YRCC dataset. Results are presented in Table 7. They indicate that the proposed
method achieves significant improvements over other methods in terms of mean IoU. Figure 14
gives some visual comparison results of both the proposed method and other methods. They reveal
that the proposed method acquires a satisfactory balance between detailed information and
contextual information.

(a)Image (b) Groundtruth (c) DeepLabV3 (d) RefineNet (e) BiSeNet  (f) ICENet(ours)
M ice B water Hl others

Figure 14. Visual comparison on NWPU_YRCC data.
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Table 7. Comparison of the proposed method against other methods.

o,
Method loU (%) Mean IoU (%) Pixel Accuracy (%) F1-Score(%)
Ice Water  Others

DeepLabV3[39] 84.537 76941 79.028 80.024 92.108 91.911
DenseASPP [43] 87.716 80.064  83.798 83.630 93.934 93.938
PSPNet [42] 88.196 81.483 83.774 84.374 93.966 93.707
RefineNet [29]  88.483 82.970 84.733 85.371 94.312 94.289
BiseNet [56] 89.301 83.464 87.814 86.497 95.058 94.820
GCN [30] 89.785 84.048 87.433 86.901 95.233 95.120
fusion3(ours) 91.136  83.909  88.296 87.535 95.913 95.732
ICENET(ours) 91.583 84.891 88.253 88.112 95.932 95.814

6. Conclusions

In this paper, we built a UAV visible image dataset named NWPU_YRCC for river ice semantic
segmentation, aiming to apply deep neural network to assist river ice monitoring. Meanwhile, we
proposed a novel network ICENET with two branches for river ice segmentation. One branch was
designed as a deeper convolution architecture, to extract multiscale channel-wise attentive features
with high level semantic information. The other branch adopts a much shallower convolution block,
only two convolution layers followed by a position attention module, to preserve higher resolution
feature maps. The outputs of the two branches are fused to predict the final segmentation result.
The experiments showed that the model-based deep learning achieved good performance and the
proposed method outperformed the state-of-the-art methods, achieving significant improvements on
the NWPU_YRCC dataset. In addition, due to the high cost of labeling, the dataset is still not large
enough to cover all realistic scenes. Therefore, we plan to use an active learning algorithm to enlarge
our dataset in our future work.

Author Contributions: The idea of this research was conceived by X.Z., ].J. and Y.Z. Experimental data was
captured and analyzed by C.L., YYW. and M.F. The experiments were designed and carried out by X.Z.,].J. and Z.L.
The manuscript was written by X.Z.,J.]., Z.L. and M.F,, and revised by Y.Z. and X.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant 61971356,
Grant 61801395 and Grant 6157240X5 and Grant U19B2037.

Acknowledgments: This research was supported by the National Natural Science Foundation of China (grant
numbers 61971356, 61801395 and 6157240X5).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hicks, F. An overview of river ice problems: CRIPE07 guest editorial. Cold Reg. Sci. Technol. 2009, 2, 175-185.

[CrossRef]

2. Beltaos, S. River ice jams: Theory, case studies, and applications. ]. Hydraul. Eng. 1983, 109, 1338-1359.
[CrossRef]

3. Beltaos, S. Progress in the study and management of river ice jams. Cold Reg. Sci. Technol. 2008, 51, 2-19.
[CrossRef]

4. Lindenschmidt, K.E. Ice-Cover Breakup and Ice Jamming. In River Ice Processes and Ice Flood Forecasting;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 79-101.

5. Cooley, S.W.; Pavelsky, T.M. Spatial and temporal patterns in Arctic river ice breakup revealed by automated
ice detection from MODIS imagery. Remote Sens. Environ. 2016, 175, 310-322. [CrossRef]

6. Chaouch, N.; Temimi, M.; Romanov, P.; Cabrera, R.; McKillop, G.; Khanbilvardi, R. An automated algorithm
for river ice monitoring over the Susquehanna River using the MODIS data. Hydrol. Process. 2014, 28, 62-73.
[CrossRef]


http://dx.doi.org/10.1016/j.coldregions.2008.09.006
http://dx.doi.org/10.1061/(ASCE)0733-9429(1983)109:10(1338)
http://dx.doi.org/10.1016/j.coldregions.2007.09.001
http://dx.doi.org/10.1016/j.rse.2016.01.004
http://dx.doi.org/10.1002/hyp.9548

Remote Sens. 2020, 12, 221 20 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Chu, T; Lindenschmidt, K.E. Integration of space-borne and air-borne data in monitoring river ice processes
in the Slave River, Canada. Remote Sens. Environ. 2016, 181, 65-81. [CrossRef]

Ansari, S.; Rennie, C.; Seidou, O.; Malenchak, J.; Zare, S. Automated monitoring of river ice processes using
shore-based imagery. Cold Reg. Sci. Technol. 2017, 142, 1-16. [CrossRef]

Alfredsen, K.; Haas, C.; Tuhtan, J.A.; Zinke, P. Brief Communication: Mapping river ice using drones and
structure from motion. Cryosphere 2018, 12, 627-633. [CrossRef]

Kartoziia, A. Assessment of the Ice Wedge Polygon Current State by Means of UAV Imagery Analysis
(Samoylov Island, the Lena Delta). Remote Sens. 2019, 11, 1627. [CrossRef]

Dong, X.N.; Li, X.M; Lin, Y.P.; Yao, H.M. Characteristics of ice regime in the lower Yellow River. Adv. Water
Sci. 2008, 6, 882-887.

Yao, HM.; Qin, FEX,; Shen, G.C.; Dong, X.N. Ice regime characteristics in the Ningxia-Inner Mongolia reach
of Yellow River. Adv. Water Sci. 2007, 18, 893.

Selkowitz, D.J.; Forster, R.R. Automated mapping of persistent ice and snow cover across the western US
with Landsat. ISPRS |. Photogramm. Remote Sens. 2016, 117, 126-140. [CrossRef]

Liu, Y.; Key, J.; Mahoney, R. Sea and freshwater ice concentration from VIIRS on Suomi NPP and the future
JPSS satellites. Remote Sens. 2016, 8, 523. [CrossRef]

Su, H.; Wang, Y.; Xiao, J.; Li, L. Improving MODIS sea ice detectability using gray level co-occurrence matrix
texture analysis method: A case study in the Bohai Sea. ISPRS ]. Photogramm. Remote Sens. 2013, 85, 13-20.
[CrossRef]

Engram, M.; Arp, C.D.; Jones, B.M.; Ajadi, O.A.; Meyer, EJ. Analyzing floating and bedfast lake ice regimes
across Arctic Alaska using 25 years of space-borne SAR imagery. Remote Sens. Environ. 2018, 209, 660—-676.
[CrossRef]

Beaton, A.; Whaley, R.; Corston, K.; Kenny, F. Identifying historic river ice breakup timing using MODIS and
Google Earth Engine in support of operational flood monitoring in Northern Ontario. Remote Sens. Environ.
2019, 224, 352-364. [CrossRef]

Deng, H.; Clausi, D.A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel
Markov random field model. IEEE Trans. Geosci. Remote Sens. 2005, 43, 528-538. [CrossRef]

Dabboor, M.; Geldsetzer, T. Towards sea ice classification using simulated RADARSAT Constellation Mission
compact polarimetric SAR imagery. Remote Sens. Environ. 2014, 140, 189-195. [CrossRef]

Romanov, P. Global multisensor automated satellite-based snow and ice mapping system (GMASI) for
cryosphere monitoring. Remote Sens. Environ. 2017, 196, 42-55. [CrossRef]

Karvonen, J.A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural
networks. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1566—1574. [CrossRef]

Wang, L.; Scott, K.A.; Xu, L.; Clausi, D.A. Sea ice concentration estimation during melt from dual-pol SAR
scenes using deep convolutional neural networks: A case study. IEEE Trans. Geosci. Remote Sens. 2016,
54, 4524-4533. [CrossRef]

Singh, A.; Kalke, H.; Ray, N.; Loewen, M. River Ice Segmentation with Deep Learning. arXiv 2019,
arXiv:1901.04412

Ronneberger, O.; Fischer, P,; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 234-241.

Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481-2495. [CrossRef] [PubMed]
Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 40, 834-848. [CrossRef]

Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21-26 July 2017; pp. 4700-4708.

Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015;
pp. 3431-3440.


http://dx.doi.org/10.1016/j.rse.2016.03.041
http://dx.doi.org/10.1016/j.coldregions.2017.06.011
http://dx.doi.org/10.5194/tc-12-627-2018
http://dx.doi.org/10.3390/rs11131627
http://dx.doi.org/10.1016/j.isprsjprs.2016.04.001
http://dx.doi.org/10.3390/rs8060523
http://dx.doi.org/10.1016/j.isprsjprs.2013.07.010
http://dx.doi.org/10.1016/j.rse.2018.02.022
http://dx.doi.org/10.1016/j.rse.2019.02.011
http://dx.doi.org/10.1109/TGRS.2004.839589
http://dx.doi.org/10.1016/j.rse.2013.08.035
http://dx.doi.org/10.1016/j.rse.2017.04.023
http://dx.doi.org/10.1109/TGRS.2004.828179
http://dx.doi.org/10.1109/TGRS.2016.2543660
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1109/TPAMI.2017.2699184

Remote Sens. 2020, 12, 221 21 of 22

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Lin, G.; Milan, A ; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21-26 July 2017; pp. 1925-1934.

Peng, C.; Zhang, X.; Yu, G.; Luo, G; Sun, J. Large Kernel Matters-Improve Semantic Segmentation by
Global Convolutional Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 4353-4361.

Gao, L.; Song, W.; Dai, J.; Chen, Y. Road Extraction from High-Resolution Remote Sensing Imagery Using
Refined Deep Residual Convolutional Neural Network. Remote Sens. 2019, 11, 552. [CrossRef]
Fuentes-Pacheco, J.; Torres-Olivares, J.; Roman-Rangel, E.; Cervantes, S. Juarez-Lopez, P;
Hermosillo-Valadez, J.; Rendén-Mancha, ].M. Fig Plant Segmentation from Aerial Images Using a Deep
Convolutional Encoder-Decoder Network. Remote Sens. 2019, 11, 1157. [CrossRef]

El Adoui, M.; Mahmoudi, S.A.; Larhmam, M.A.; Benjelloun, M. MRI Breast Tumor Segmentation Using
Different Encoder and Decoder CNN Architectures. Computers 2019, 8, 52. [CrossRef]

Yu, F; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

Yu, F; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 472-480.

Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep
convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062

He, K.; Zhang, X; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016;
pp- 770-778.

Chen, L.C.; Papandreou, G.; Schroff, F; Adam, H. Rethinking atrous convolution for semantic image
segmentation. arXiv 2017, arXiv:1706.05587.

Fu, G,; Liu, C; Zhou, R;; Sun, T;; Zhang, Q. Classification for high resolution remote sensing imagery using
a fully convolutional network. Remote Sens. 2017, 9, 498. [CrossRef]

Liu, Q.; Kampffmeyer, M.; Jenssen, R.; Salberg, A.B. Dense Dilated Convolutions Merging Network for
Semantic Mapping of Remote Sensing Images. arXiv 2019, arXiv:1908.11799.

Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, ]. Pyramid scene parsing network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 2881-2890.
Yang, M.; Yu, K.; Zhang, C.; Li, Z,; Yang, K. Denseaspp for semantic segmentation in street scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18-23 June 2018; pp. 3684-3692.

Chen, L.C,; Zhu, Y.; Papandreou, G.; Schroff, F; Adam, H. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 801-818.

He, H,; Yang, D.; Wang, S.; Wang, S.; Li, Y. Road Extraction by Using Atrous Spatial Pyramid Pooling
Integrated Encoder-Decoder Network and Structural Similarity Loss. Remote Sens. 2019, 11, 1015. [CrossRef]
Byeon, W.; Breuel, TM.; Raue, F; Liwicki, M. Scene labeling with lstm recurrent neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7-12 June 2015; pp. 3547-3555.

Visin, F.; Kastner, K.; Cho, K.; Matteucci, M.; Bengio, Y. ReNet: A Recurrent Neural Network Based
Alternative to Convolutional Networks. Comput. Sci. 2015, 25, 2983-2996.

Li, Z,; Gan, Y,; Liang, X.; Yu, Y.; Cheng, H.; Lin, L. RGB-D scene labeling with long short-term memorized
fusion model. arXiv 2016, arXiv:1604.05000

Shuai, B.; Zuo, Z.; Wang, B.; Wang, G. Dag-recurrent neural networks for scene labeling. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016;
Pp. 3620-3629.

Shuai, B.; Zuo, Z.; Wang, B.; Wang, G. Scene segmentation with dag-recurrent neural networks. IEEE Trans.
Pattern Anal. Mach. Intel. 2017, 40, 1480-1493. [CrossRef]


http://dx.doi.org/10.3390/rs11050552
http://dx.doi.org/10.3390/rs11101157
http://dx.doi.org/10.3390/computers8030052
http://dx.doi.org/10.3390/rs9050498
http://dx.doi.org/10.3390/rs11091015
http://dx.doi.org/10.1109/TPAMI.2017.2712691

Remote Sens. 2020, 12, 221 22 of 22

51.

52.

53.

54.

55.

56.

Matese, A.; Toscano, P.; Gennaro, S.ED.; Genesio, L.; Vaccari, EP,; Primicerio, J.; Belli, C.; Zaldei, A.;
Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision
viticulture. Remote Sens. 2015, 7, 2971-2990. [CrossRef]

lizuka, K.; Itoh, M.; Shiodera, S.; Matsubara, T.; Dohar, M.; Watanabe, K. Advantages of unmanned
aerial vehicle (UAV) photogrammetry for landscape analysis compared with satellite data: A case study of
postmining sites in Indonesia. Cogent Geosci. 2018, 4, 1498180. [CrossRef]

Hunt, E.R.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of
NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010,
2,290-305. [CrossRef]

Dash, ].P; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing very high resolution UAV imagery
for monitoring forest health during a simulated disease outbreak. ISPRS . Photogramm. Remote Sens. 2017,
131, 1-14. [CrossRef]

Fu, J; Liu, J.; Tian, H.; Li, Y,; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15-21 June 2019; pp. 3146-3154.

Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time
semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, 8-14 September 2018; pp. 325-341.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/rs70302971
http://dx.doi.org/10.1080/23312041.2018.1498180
http://dx.doi.org/10.3390/rs2010290
http://dx.doi.org/10.1016/j.isprsjprs.2017.07.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Ice Segmentation
	Semantic Segmentation Based on a Deep Convolutional Neural Network

	NWPU_YRCC River Ice Dataset
	Motivation
	Dataset Construction
	Analysis

	Method
	Overview
	Multiscale Feature Aggregation
	Channel Attention
	Position Attention
	Fusion Module

	Experiments
	Implementation Details
	Evaluation 
	Ablation Study
	Comparison with the State-of-the-Art

	Conclusions
	References

