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Abstract: Long time-series monitoring of mangroves to marine erosion in the Bay of Bangkok,
using Landsat data from 1987 to 2017, shows responses including landward retreat and seaward
extension. Quantitative assessment of these responses with respect to spatial distribution and
vegetation growth shows differing relationships depending on mangrove growth stage. Using
transects perpendicular to the shoreline, we calculated the cross-shore mangrove extent (width) to
represent spatial distribution, and the normalized difference vegetation index (NDVI) was used to
represent vegetation growth. Correlations were then compared between mangrove seaside changes
and the two parameters—mangrove width and NDVI—at yearly and 10-year scales. Both spatial
distribution and vegetation growth display positive impacts on mangrove ecosystem stability: At
early growth stages, mangrove stability is positively related to spatial distribution, whereas at mature
growth the impact of vegetation growth is greater. Thus, we conclude that at early growth stages,
planting width and area are more critical for stability, whereas for mature mangroves, management
activities should focus on sustaining vegetation health and density. This study provides new rapid
insights into monitoring and managing mangroves, based on analyses of parameters from historical
satellite-derived information, which succinctly capture the net effect of complex environmental and
human disturbances.

Keywords: spatial distribution; vegetation growth; coastal mangrove erosion; correlation coefficient

1. Introduction

Mangroves, together with their associated environments, such as rivers, deltas, offshore mudflats,
and sandy habitats, provide important ecosystem services to support feeding, breeding, and nursery
areas for migratory shorebirds and fish species [1,2]. A key ecological and human service from
mangroves is shoreline protection through eliminating or minimizing the erosion impacts of wind
and wave forces [3,4]. However, with increasing pressure from climate change and the impact of
human activities, coastal mangroves are also affected by marine erosion and show different spatial
and temporal responses to it [5–10]. These responses to erosion accumulate over time to affect the
stability of mangrove ecosystems, as represented by its spatial coverage [11–14]. Therefore, it is
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particularly important to study the relationship between marine erosion of mangroves and parameters
that characterize their ability to resist marine erosion.

The phenomenon of mangrove retreat, which is well known to occur in Bangkok Bay, narrows its
living space, and can lead to its disappearance [14,15]. Remote sensing datasets provide continuous
temporal and spatial information on mangrove distribution, vegetation growth status, and other
parameters [16], thereby providing opportunities to investigate such dynamical changes in mangrove
distributions from local to global scales [9,17–22].

Mangrove erosion is generally attributed to the loss of mangrove sediment, the loss of soil
microorganisms, and the lack of sediment supply. For example, previous research shows that the loss
of sediment caused by sea level rise leads to the erosion and retreat of mangroves [15,23,24]. However,
the health and resilience of mangrove ecosystems facing erosion is a neglected research topic. Thus,
we focused on analyzing the resilience of a mangrove ecosystem using the commonly-used ecosystem
evaluation parameters—spatial distribution and vegetation growth. Our study also addresses the
lack of studies on the impacts changing over time, by comparing the relationship between spatial
distribution and vegetation growth on mangrove retreating distance over different growth stages.

Our field survey focused on the Bay of Bangkok, where human impacts on mangroves have led to
the current distribution along a narrow strip at the outermost edge of the land. To characterize this strip
distribution, we assumed that the spatial distribution is represented by the cross-shore mangrove extent
(width), and vegetation growth is represented by the commonly-used index normalized difference
vegetation index (NDVI). Previous studies on evaluating the spatial distribution and vegetation
growth of forests have mainly focused on describing temporal changes, and assessing ecosystem
stability [25–29]. However, there are few studies on the impacts of spatial distribution and vegetation
growth on marine erosion [30–32]; and especially, the relative importance of the parameters under
different growth-stage maturity [31,32].

With this background, the study objectives were: (i) To analyze the spatial and temporal changes
in mangroves distribution on the seaside in response to marine erosion, including retreating and
development; (ii) to calculate and compare the relationship between mangrove width (perpendicular
to the shoreline) and NDVI in cross-shore mangrove changes. This required resolving two major
difficulties: Firstly, how to compute the indices quantifying mangrove width and NDVI from time-series
data, whilst excluding tidal influences [19,33]; and secondly, how to quantify the relationship between
the two parameters and mangrove erosion.

To study the dynamics of mangroves we used Landsat remote sensing images to quantify the
spatial distribution, vegetation growth, and mangrove changes over a 30-year period. Our focus was
primarily on the mangrove responses to marine erosion and whether the responses are related to
spatial distribution and vegetation growth, and at what growth stage of the mangrove the relationships
applied. Mangroves in Bangkok Bay have been artificially destroyed and restricted from the land
side to a narrow survival strip, which in turn is subjected to erosion forces from the marine side.
The remaining mangrove ecosystem there was considered endangered and fragile, requiring urgent
conservation and recovery. The characteristics of the Bay of Bangkok; therefore, provide a challenging
and important study area in which to examine the relationship between the stability parameters and the
responses of the mangrove ecosystem to marine erosion. A further aim of the study was to contribute
sound objective options for management and conservation activities for mangrove restoration and
development, especially for fragile mangrove ecosystems similar to those in the Bay of Bangkok. Such
studies are clearly needed to provide guidance and recommendations for the restoration of fragile
mangrove ecosystems.

2. Study Area

The Bay of Bangkok (study area shown in Figure 1) is part of the Gulf of Thailand and its coastline
comprises intertidal mudflats intersected by deltas and estuaries associated with the Chao Phraya River,
the Tachin River, the Meckl River, and the Mamba River. Over time, dense coverages of mangroves
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along its coast have been destroyed by human settlements, aquaculture, and salt pans, so that the
current distribution is a narrow strip of fragile mangrove ecosystems at the outermost edge of the
land [34].
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Figure 1. The location and nine partitions of the study area in the Bay of Bangkok located in the
northern region of the Gulf of Thailand.

Through two interviews with the fish pond owner of what was once an original mangrove growing
area, we were able to determine the following history of mangrove distributions and changes. With the
population increasing, from 1961 the local government allowed private occupation and development
of mangroves. Since the 1960s, mangroves in the Bay of Bangkok have experienced private and
governmental deforestation and occupation [35], including aquaculture, shrimp farming, salt pans,
and expansion of urban areas. The destruction was particularly serious on the coast from Samut
Sakhon province to Chachoengsao province, where mangrove coverage was reduced to a minimum,
with information showing that there was only 1,047,390 rai (A rai is a unit of area equal to 1600 square
meters.) left in the Bay of Bangkok area around 1996. Since the 1990s, aquaculture has become less
profitable than in the past due to damage to the coastal environment. Moreover, fluctuations in the
price of aquaculture products in the market have led to the abandonment of many fish ponds. The
local government began restoring mangroves around 2000 so that mangroves began to gradually enter
the recovery phase.

3. Materials and Methods

3.1. Field Measurements and Investigations in the Study Area

Field investigations were carried out in the Bay of Bangkok during September 2018 over the
mangrove protection areas and the fish pond areas adjacent to the mangroves. Data collected included
locations of verification points, and interviews were conducted to determine the history of mangrove
coverage and changes in the area including human disturbances. In the study area, the spectral
difference between water body (including pond, salt field, and sea water) and mangrove is significant,
while the spectral difference between mangrove and other vegetation is small, thus requiring field
verification of the vegetation classifications. The main aim of the field investigations was determining
the border between mangrove and other vegetation. The Global Positioning System (GPS) and Open
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Street Map (OSM) Tracker were used to record the position and land cover properties at the 38 field
verification points, as shown in Figure 1.

3.2. Satellite Data Processing and Mangrove Mapping

For time-series analysis of the dynamic changes in mangroves, we used Landsat due to the
availability of a long-term sequence of continuous data [36]. We used the 30-year Landsat collection [37]
including sensors of TM\ETM+\OLI. The U.S. Geological Survey provided a Landsat archive,
reorganized as a tiered collection structure, to ensure that the Landsat Level-1 products provide
a consistently accessible stack of known data quality suitable for time-series analyses and data stacking.
Data from 1987 to 2017 (except for 2012 due to the lack of data) of Landsat yearly data were processed
via Google Earth Engine (GEE) [38].

Taking 2017 as an example, we generated 394 sample points in the study area, including 38 field
collection points (as shown in Figure 1). Because of extensive changes in the mangroves over the 30
years, we used the sample points of 2017 as a standard, and changed the sample points according to
the image year-by-year, before finally generating the 1987–2017 sample points. The sample points were
divided into four classes (mangroves, water, bare land, and other vegetation), and the classification
and counts in each class are shown in Table 1 below. We randomly selected 75% of these points in
the sample point dataset as training points and 25% as verification points. In addition to the spectral
bands of Landsat data (blue to Swir2), to distinguish between mangrove and other vegetation, three
types of vegetation indexes were used: NDVI, enhanced vegetation index (EVI), and soil-adjusted
vegetation index (SAVI). For differentiating between mangroves and water bodies, the normalized
difference water index (NDWI) was used in the classification. Finally, considering that mangroves grow
in low-lying areas near the sea, elevation collected from SRTM Digital Elevation Data [39] was used.

Table 1. Counts of the sample points of the Landsat image of 2017 used for four-class classification.

Class Mangrove Water Bare Land Other Vegetation

Counts of Sample points 108 77 67 42

Counts for training 81 58 50 31

Counts for verification 27 19 17 11

We mentioned in the introduction that effective mangrove change detection over long time-series
requires removal of the tide influence, or by aggregating over periods much longer than the tidal
period. To resolve the problem, we extracted the mangrove information from 1987 to 2017 using GEE
according to the following process:

(i) Generate yearly fusion images, which were used to classify mangroves of each year, by taking
the median value of the annual Landsat images with less than 30% cloud in the GEE dataset;

(ii) Use random forest to classify the four classes using the following bands: Blue, Green, Red, Nir,
Swir1, Swir2, NDVI, EVI, SAVI, NDWI, together with Elevation;

(iii) Verify the mangrove classification results with the field observations at the sample points.
Furthermore, the proportion of common area of mangrove classification results of two published land
cover or mangrove distribution datasets was calculated to verify the reliability (as shown in Table 2).

Table 2. The accuracy assessment.

Data Set for Verification Mangrove Classification Result Accuracy

Verification points (25% of total sample points) Results from 1987–2017 90.91%–96.24%

Data Set for Verification Mangrove Classification Result Proportion of Common Area

Mekong region Land cover 2000–2017 [40] Results from 2000–2017 80.36%–88.21%
Global mangrove forests 2000 [41] Result of 2000 87.39%
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3.3. Relationship Resolution

The relationship between mangrove stability and response to marine erosion is confounded by a
number of factors, such as the direction of the coast relative to wave direction, coastline geomorphology,
and sediment substrate [42]. At a smaller scale of mangrove patches, there are also spatial differences
in marine erosion. Thus, it is difficult to establish and deterministically model the relationship between
variables governing responses to marine erosion. For this study, we chose to investigate statistical
correlations between parameters and yearly erosion distance, in order to provide a rapid and objective
method from which we can derive abstract quantitative methods and clear association rules [43].

The flow chart, shown in Figure 2, graphically summarizes our method to quantify the relationship
between mangrove responses to marine erosion, spatial distribution, and vegetation growth.
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3.3.1. Sampling Rule and Indices Extraction

In order to account for changes in the intensity of marine erosion as a function of the bay’s
direction, the study shoreline was selectively divided into nine partitions based on shoreline direction
and shape, the natural division caused by estuaries, and the observed mangrove distribution. These
divisions of the study area are shown in Figure 1.

The methodology we employed was based on the following ideas:
(i) Simplify the quantification method: To account for the directionality of mangrove erosion

relative to the coast, we used equally spaced lines perpendicular to the shoreline to provide transect
statistics for the sampled mangrove [44]. To ensure transects sampled mangrove for 30 years, the
baseline was established offshore at an average distance of 1.27 km. Based on the same baseline,
transects with a length of 5 km were established with samples at 30 m intervals along the transect. The
schematic diagram in Figure 3 shows how the transects were established.

(ii) Control the variables spatially: Regional variations in the propensity of marine erosion were
controlled by dividing the study area into nine units/sub-regions (Zone 1 to Zone 9, shown in Figure 1)
in order to control marine erosion factors such as current, sea breeze, soil quality, and sea level rise in
each unit. We used these units as the spatial basis to explore the different sub-regional responses of
mangroves, and performed a 30-year time-series analysis of the average width, NDVI, and seaside
values from the nine partitions.

Special considerations were required to define the following key parameters of this study:
The mangrove response to mangrove erosion; the spatial distribution of mangrove ecosystem; and
vegetation growth. First of all, the change of mangrove on the seaside, including retreat and growth
(positive values represent growth seaward, and negative values represent retreat landward), were
measured to represent the response to marine erosion. Considering the narrow strip distribution
of mangroves in the study area, cross-shore mangrove extent was used to define mangrove spatial
distribution characteristics, and NDVI was used for mangrove growth characteristics. Thus, the values
sampled by the sampling lines included: The long-term sequence of mangrove change on the seaside;
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cross-shore mangrove extent; mean NDVI of each line, which represent mangrove response to marine
erosion; the spatial distribution; and vegetation growth, respectively. The detailed descriptions of each
index are provided in Table 3.
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Figure 3. Schematic showing the mangrove transect sampling line established from an offshore baseline
(see text for definition) and extending roughly perpendicular to the coast for a length of 5 km, with
samples of mangrove width and normalized difference vegetation index (NDVI) taken at 30 m intervals
along the transect.

Table 3. Description and formulas for the parameters and indices used in the calculations in the paper.

Parameter Indices Calculation Formula Description

Spatial distribution Cross-shore mangrove extent Wk
The length of the mangrove width along

the sample line.

Vegetation growth NDVI 1
nk

nk∑
i

NDVIi
The mean NDVI of the mangrove pixels

(nk pixels) along the sample line.

Response to marine erosion
(RME) Change on the seaside −

(
Ly2 − Ly1

) The difference between the length of
mangrove in the first year (Ly1 ) and the

length at the end of the relevant year (Ly2 );

where i = cell number, k = transect number, and y = year; y2 > y1.

3.3.2. Long Time-Series-Based Relational Analysis Method

1. Time-series regression of yearly width and NDVI changes from 1987 to 2017: Time-series
based on Landsat images provide an opportunity to observe and characterize relative trends in
disturbance and resilience at a regional scale, by disturbance type and ecozone, and at a spatial
level that is relevant to both forest management and science [45]. The interpretation of geographical
phenomena at different time scales can represent procedural and phased characteristics [46]. In order
to reveal the trend of mangrove width, NDVI, and changes on the seaside over 30 years, a yearly-based
Loess regression analysis was used to examine temporal variations from 1987–2017 of mangrove
width, NDVI, and responses to marine erosion in the nine mangrove ecosystems. Loess regression is a
nonparametric technique that uses local weighted regression to fit a smooth curve, which can reveal
trends and cycles in data [47].

2. Kendall correlation analysis at yearly and 10-year scale: The relationship of mangrove
Width-Change and NDVI-Change was computed using the Kendall rank correlation coefficient (often
called Kendall’s τ or tau)—a non-parametric test which measures the strength of the relationship
between two variables [48]. In calculating the correlations, we used rank correlations based on Kendall’s
tau, which is often said to be robust in the sense of capturing patterns and being resistant to outlying
observations [49]. The tau correlation coefficient (tau-CC) of Width-Change and NDVI-Change were
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calculated at yearly and 10-year scales in order to compare the relationship between parameters and
marine erosion responses in different regions and growth stages.

4. Results

4.1. Dynamics of Coastal Mangrove Change Across 30 Years

We began the analysis by comparing the overall changes of mangroves between 1987 and 2017
across the nine sub-regions. Our field observations revealed that the distribution of mangrove patches
were small and strip-type. This led us to use spatial and temporal aggregation approaches in order to
study local and regional changes. Local changes were estimated by the width and NDVI parameters
along transects (Figure 4), and regional changes were examined from the trends of mangrove change
from 1987 to 2017 for each partition (Figure 5). These analyses provided both regional and fine-scale
understanding of the mangrove changes across the bay and across time.Remote Sens. 2020, 12, 220 8 of 17 
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Figure 5. Distribution along the coast of mangrove in each of the study regions from 1987 to 2017.

Figures 4 and 5 allows us to compare mangrove width and NDVI status in 2017 and the changes
over 30 years. Mangroves of the west coast of the Bay of Bangkok were relatively wide and had high
NDVI, with width varying between 400–800 and 800–1600 m and NDVI above 0.3; these values indicate
mangroves in a growth situation. Newly-grown mangroves were most widely distributed along the
east coast, and mangroves here were wide but with a low NDVI. Mangroves growing in the north
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bank of the Bay of Bangkok, close to the human settlement environment, were narrow and of low
NDVI, except for mangroves distributed around the estuary. The width values in this area were mostly
distributed within 0–200 m, with NDVI of 0.1–0.3.

The change to the seaside in the aggregate of coastal mangroves between 1987 to 2017 in each of
the regions (as defined in Table 3) is summarized in Table 4, which shows that the order of change is
Zone 3 > Zone 1 > Zone 2 > Zone 8 > Zone 9, with the largest value in Zone 3 which grows 317.1 m
seaward. The order of retreating was Zone 7 > Zone 5 > Zone 4 > Zone 6, with the largest retreating
value in Zone 7, which retreats 142.8 m landward.

Table 4. Mangrove change on the seaside from 1987 to 2017 of coastal mangroves in the nine zones.

Region Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9

Change (m) 166.2 115.5 317.1 −36.0 −140.1 −31.1 −142.8 108.0 62.7

The maps of coastal mangrove distribution in Figure 5 display an obvious spatial differentiation
of mangrove response to marine erosion in the nine partitions: Mangroves retreated in three zones
in the northern coast of the Bay of Bangkok (Zone 4, Zone 5, and Zone 7), while growth occurred in
three zones of the west coast (Zone 1, Zone 2, Zone 3) and in two zones of the east coast (Zone 8 and
Zone 9). Mangrove retreats were, in general, landward, apart from mangroves near the estuaries,
which retreated to a lesser extent. Distribution and trends of NDVI show five zones where growth
occurred (Zone 1–3 and Zone 8–9), and NDVI growth was relatively stable internally. Zones where
retreat occurred were low in NDVI status, regardless of whether it was 1987 or 2017.

Comparative analysis of trends within and between the regions were analyzed from annual
changes across 1987 to 2017 of three Loess-regression trends: (1) Change of mangrove boundary at the
seaside; (2) width; and (3) NDVI. The trends of the width and NDVI are displayed in Figure 6, and the
trend of coastal mangrove change on the seaside are shown in Figure 7. Regressions were computed
across the 30 years between the annual change of mangroves on the seaside (in meters), the annual
mangrove width (in meters), and the annual mangrove NDVI.
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Figure 7. Annual change of coastal mangrove on the seaside from 1987 to 2017. Positive numbers (in
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The 30-year time-series of width and NDVI exhibited the following general phenomena: (1) The
width of the nine regions increased from 1987 to 2017, rates of which slow down after 2003, and the
largest width increase was in Zone 8; (2) the width of three regions retreated (Zones 4, 5, and 7) and
they were all of low widths as well (note that the mangroves of the three retreated regions retreated in
the direction from sea to land); (3) the trend of the NDVI curve of mangroves in all the study regions
displayed an upward trend, and changes between regions were broadly consistent in time, except after
2015; (4) NDVI displayed consistent growth periods within 1993–2005 and 2012–2015, and two distinct
troughs in 1990 and 2007. The three retreating regions experienced NDVI increases but poor growth.

Additional observations from Figure 7 are that the trend across nine regions can be divided into
rapid growth phases in 1990–1997 and in 2004–2008, and slow growth or retreating phases in 1987–1989
and 2000–2003. While the retreating areas (Zones 4, 5, and 7) showed significant retreat in most years,
the most significant retreats occurred in 2001–2009. After 2010, the retreating reduced in Zones 4 and
5. In 2015–2017, Zone 4 extended by growing out to the sea. Since 1990, mangroves in the growing
regions (Zones 1, 2, 3, 8, and 9) began to recover and extend out to the sea. After 2004, the rates of
growth slowed in the five regions, and some retreated slightly. The largest retreat occurred in Zone 8,
which retreated 78 m in 2009.

In summary, the different mangrove responses to marine erosion and its impact on width and
NDVI across 30 years showed that:

(i) Mangroves in Zones 1, 2, 3, 8, and 9 grew at a constant stable rate out to the sea; the mangroves
in Zones 4, 5, and 7 retreated landward, with narrow width and poor growth state;

(ii) The broad trends of width and NDVI change across the nine regions showed a consistent but
fluctuating rise. For growing regions, mangroves with wider extent and higher NDVI show more
significant growth out to the sea. For retreating regions, mangroves with wider extent and higher
NDVI retreated shorter distances;

(iii) The retreat rates of regions 4 and 5 gradually stabilized after 2011, with width and NDVI
increasing, while region 4 stopped retreating in 2015–2017 and showed seaward growth.

4.2. Relationship between Width-Change and NDVI-Change

The 30-year time-series mangrove change in the Bay of Bangkok showed different responses to
marine erosion, represented by periods of growth and retreat. In this section, we analyze those changes in
relation to changes in mangrove width and NDVI by computing the Kendall-tau correlation coefficients
(tau-CCs) between the Width-Change and NDVI-Change. The characteristics of the relationship above



Remote Sens. 2020, 12, 220 11 of 16

were analyzed at short and long-time scales corresponding to yearly and 10-year scales, respectively.
The tau-CCs were computed between mangrove width at those two time scales, and similarly for NDVI.

4.2.1. Correlations at the Yearly Scale

The annual tau-CCs, displayed in the heat map in Figure 8, shows that annual retreats or growth
were small—as indicated by low values for tau-CCs.
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Figure 8. The thermogram of Kendall tau-CC (correlation coefficient, CC) results for Width-Change
(a) and NDVI-Change (b) at the yearly scale. Positive values (warm tones) represent similarity in the
profile of ranked values, while negative values (gray tones) indicate a disparity in the rank profile.
White values indicate irrelevant results for the correlations. The color depth represents the level of the
correlation coefficient.

Significant patterns from Figure 8 of the trends in yearly tau-CCs of Width-Change and NDVI-Change
in response to marine erosion are as follows:

(i) tau-CCs: Overall, the tau-CCs for width are greater than those for NDVI, implying that the
pattern of yearly changes in width are more consistent than those for NDVI; possibly also implying
that changes in NDVI are more dynamic at yearly time-scales and less consistent;

(ii) Width pattern: Zone 2 > Zone 3 > Zone 8 > Zone 9 > Zone 5 > Zone 1 > Zone 6 > Zone 4 > Zone
7, with the early stage (1988–2003) values being greater than those for the current stage (2004–2017);

(iii) NDVI pattern: Zone 1 > Zone 3 > Zone 2 > Zone 8 ≈ Zone 9 > Zone 6 > Zone 5 > Zone 4 >

Zone 7, with rapid growth stages in (1993–2004) and (2013–2017) greater than the poor growth stages
in (1989–1992) and (2005–2009).

4.2.2. Correlations at the 10-Year Scale

Three periods were used to compute the correlations at the 10-year time scale: 1987–1997, 1997–2007,
and 2007–2017. For these periods, tau-CCs were calculated for width and NDVI. Correlations between
Width-Change and NDVI-change for the three periods are listed in Table 5.
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According to the annual mangrove changes displayed in 3.1.2 (Figure 6a), the change rates in
the nine regions showed that 1987–1997 > 2007–2017 > 1997–2007. By comparison, the tau-CCs of the
three periods (shown in Table 5) revealed the following phenomena:

(i) As per the yearly analysis, the positive impacts of width on mangrove stability were greater
than that of NDVI;

(ii) For regions with large mangrove patches, NDVI had a greater influence than for other regions.
For example, for Zone 1 with the largest mangrove patch and width value, the positive impact of width
was ranked fourth out of the nine regions, while the positive impact of NDVI was ranked first;

(iii) For the newly-grown mangrove regions, such as zones 2, 3, 8, 9, the impact of width was
much larger than the influence of NDVI;

(iv) For areas with smaller width and NDVI, such as Zone 4 and Zone 7, the tau-CCs were
extremely low;

(v) For the growing stages (1987–1997) and (2007–2017), the positive impacts of width and NDVI
were higher compared to the poor growth stage (1997–2007).

Table 5. The tau-CC results of Width-Change and NDVI-Change using a 10-year aggregation scale.
Significance levels for the correlations are shown below the Table.

Width Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9

1987–1997 0.36 *** 0.40 *** 0.59 *** 0.41 *** 0.16 ** 0.43 *** −0.02 0.29 *** 0.50 ***
1997–2007 0.12 *** 0.25 *** 0.44 *** −0.03 0.17 ** −0.04 −0.01 0.15 ** 0.25 ***
2007–2017 0.43 *** 0.27 *** 0.23 *** 0.00 0.20 *** 0.46 *** −0.03 0.27 *** 0.38 ***

NDVI Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9

1987–1997 0.38 *** 0.24 *** 0.36 *** 0.21 *** 0.07 * 0.28 *** −0.03 0.02 0.36 ***
1997–2007 0.14 *** 0.31 *** 0.12 ** −0.04 0.19 *** −0.12 ** −0.02 0.07 * 0.03
2007–2017 0.29 *** 0.21 ** 0.21 ** 0.05 0.10 * 0.38 *** 0.06 0.21 *** 0.24 ***

*** p < 0.001, ** p < 0.01, * p < 0.05, p < 1.

5. Discussion

5.1. Quantification Method for Long-Term Analyses

Our study focused on using satellite remote sensing in order to provide rapid and relevant
information on different recovery and protection measures during different future stages of mangrove
growth. Reviews of mangrove classification suggest that mangroves grow in tropical and subtropical
intertidal zones where it is difficult to avoid errors caused by cloudy images and tidal flooding [19]. In
addition, NDVI of mangrove, as a correlation factor of mangrove change calculated in our study, also
has seasonal differences. Thus, long-term mangrove classification and impact comparisons requires
removal of the uncertainty from tidal influence and NDVI seasonal changes.

In this study, the tidal influences were eliminated by aggregating and median-filtering Landsat
data to annual images. We calculated the median value of all bands for the whole year of the Landsat
collection Level-1 images by using only images with under 30% cloud cover. Mangroves were classified
using the yearly images. At the same time, the NDVI from the yearly images was used, thus avoiding
problems from seasonal changes.

5.2. The Impacts of Spatial Distribution and Vegetation Growth in the Various Growing Stages

In this study, we chose the yearly scale to display trends and relationships at short time scales and
a 10-year scale for longer-term changes. Yearly changes showed low correlations, and we used the
10-year analyses to highlight the relationships between spatial distribution and vegetation growth in
different long-term stages. Both the yearly and 10-year tau-CC results revealed that the positive effects
of width were greater than those for NDVI.
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The long-term sequence quantification showed that there were differences in growth and
relationships between the mangrove parameters. The positive impacts of mangrove spatial distribution
and vegetation growth status on stability varied in the different growing stages and zones: Zone 2 and
Zone 3 were regions where mangrove width increased the most, and Zone 8 and Zone 9 had a large
number of young mangroves with low NDVI. The relationship between width and response was more
obvious during the high-speed recovery and development phase, 1987–2000, but that relationship
declined with time. Hence, as mangrove width increased, in other words as mangroves grew in time,
the positive effect of width decreased. Zone 1 had the widest mangrove forest of the nine regions, with
the highest NDVI and second highest mangrove growth rate, but the positive effect of width was weak
at the sixth rank. These results imply that, during the early growth stage, the width of the original
mangrove ecosystem had a strong effect on stability, as opposed to NDVI.

The tau-CCs of NDVI-change (see Figure 8 and Table 5) and the 30-year NDVI trends (see Figure 6),
show that strong growth of NDVI is consistent with high initial NDVI values. This implies that
vegetation biomass in the original mangrove forest ecosystem displayed a strong positive impact on
its later development when NDVI increases. For example, in Zone 1 mangroves grew significantly
and had the highest NDVI. At the same time, the positive impact of NDVI was the highest among
the nine regions. Additionally, Zones 2, 3, 4, 5, and 6 all had high tau-CCs during years with higher
NDVI (1996–2003 and 2013–2017). In Zones 8 and 9, mangrove recovery was lagging behind Zones 2
and 3, reflected in the very low positive, and negative, impact of NDVI in the early stage of mangrove
development. As the width of mangrove in these two regions gradually increased, the positive effects
of NDVI appeared after 2010.

In summary, mangrove width rather than NDVI appeared to offer greater resistance to marine
erosion. At the early growth stage of mangroves, width impacts were particularly prominent. As
mangrove width increased, at a certain width with a high NDVI value, positive impacts of vegetation
growth status, like health and density, appeared.

Mangrove ecosystems are a complex sea–land link system, and future research effort is needed to
verify and extend the findings of this study by using multi-source data, multiple indicators, and models.
For example, the stability of the mangrove ecosystem is not only related to the spatial distribution and
vegetation growth parameters but also to its environmental factors such as climate, tidal fluctuation,
sediment, and wave energy [50].

6. Conclusions

Our investigation and analyses of mangrove dynamics in the Bay of Bangkok show that two
parameters most commonly used in forest ecosystem evaluation—spatial distribution and vegetation
growth—affect mangrove dynamics differently for different growing stages. The main conclusions of
the study are as follows:

Broadly, both spatial distribution and vegetation growth of mangroves display positive impacts
on their defensive ability to marine erosion.

Mangroves with small width and low NDVI appear to continuously retreat landward as part of
a coastal squeeze phenomenon, while mangroves of wide width and high NDVI perform stable or
seaward extensions.

The positive effect of the spatial distribution was greater than vegetation growth, especially for
mangroves at an early growth stage. However, as mangroves mature and grow, the vegetation growth
status becomes more relevant than spatial distribution.

Thus, overall, we find that the impact of spatial distribution is higher at the early growing stage,
while the impact of vegetation growth is higher at mature growing stages. The implication is that at
the initial stage of mangrove restoration or cultivation, planting should focus on width and area, while
for mature growth stages, attention should focus on increasing the vegetation health and density to
maintain ecosystem stability.
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Our research, which uses readily available remotely sensed images, provides objective guidance
on planting structure and coverage relevant to the management, restoration, and development of
mangroves, especially for fragile mangrove ecosystems that are in need of urgent restoration in the Bay
of Bangkok.

In future, we aim to extend the research to explore the relationship between environmental factors
and parameters computed from remotely sensed images. Such studies are needed in order to develop
predictive models of how mangrove extent and health will be affected by changes in environmental
factors that affect marine erosion. A further aim of future research is to use high-resolution data
to separate mangrove tree species in order to understand species-related responses to changes in
the environment.
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