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Abstract: Remote sensing image retrieval (RSIR) is the process of searching for identical areas
by investigating the similarities between a query image and the database images. RSIR is a
challenging task owing to the time difference, viewpoint, and coverage area depending on the
shooting circumstance, resulting in variations in the image contents. In this paper, we propose a
novel method based on a coarse-to-fine strategy, which makes a deep network more robust to the
variations in remote sensing images. Moreover, we propose a new triangular loss function to consider
the whole relation within the tuple. This loss function improves the retrieval performance and
demonstrates better performance in terms of learning the detailed information in complex remote
sensing images. To verify our methods, we experimented with the Google Earth South Korea dataset,
which contains 40,000 images, using the evaluation metric Recall@n. In all experiments, we obtained
better performance results than those of the existing retrieval training methods. Our source code and
Google Earth South Korea dataset are available online.

Keywords: remote sensing image retrieval (RSIR); deep metric learning; convolutional neural
networks; contents based image retrieval (CBIR); deep learning

1. Introduction

As high-resolution remote sensing (RS) images have become easily accessible owing to the
advancement of Internet technology and remote sensors, there is a growing interest in managing large
databases for using in various domains, such as military, navigation, and delivery services. Despite
the impressive performance of deep neural networks, the effective management of a large RS database
is hindered by many problems caused by time difference, viewpoint, high resolution, and various
contents. Success in retrieving large amounts of RS images is an important starting point for effectively
managing large volumes of RS data [1–3].

Remote sensing image retrieval (RSIR) refers to the search for and return of images of interest
in a large database of images [4–10]. An RSIR system consists of a feature extraction and a similarity
comparison unit, both of which are important parts to determining the success or failure of systems
closely related to each other. Feature extraction is a major step in the retrieval process of RS images, as it
summarizes images into high-dimensional features. The quality of the extracted features representing
the images determines the success or failure of the system. Afterward, the similarities between the
summarized high-dimensional features are compared to determine the similarities between images.
Generally, the similarities between the features are expressed as the Euclidean distances between
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features. The images with the smallest Euclidean distance values are determined to be the most similar
images. Figure 1 shows the general process of image retrieval.

Figure 1. Illustration of the remote sensing image retrieval process. Features are extracted from
database and query image, and the Euclidean distance between them is calculated to determine the
priority. Images are retrieved in order based on the minimum Euclidean distance.

Many studies based on traditional computer vision methods have been studied to solve the
real-world tasks [11–24]. Also, these computer vision methods [25–28] are widely used to solve
retrieval problems. However, these methods are time inefficient and have low accuracy, as they do
not effectively reflect the similarities between images. Therefore, with the enhancement of computing
power and the availability of access to large amounts of data, deep learning has gained attention
in various areas of computer vision [29–32]. Accordingly, attempts have been made to apply deep
learning in the field of image retrieval [8,10,33].

However, these methods are specific to general image retrieval and are not effective in RSIR.
RS images are large and are taken at high altitudes compared with ordinary images. As a result,
there are many small objects in one image, making the structure highly complex [6,34]. To resolve this
problem, the RS community has introduced various approaches. Yang et al.[35] published a 21-class
scene classification dataset called the "UC Merced land use dataset," and Xia et al.[36] published a
30-class scene classification dataset called the “Aerial Image Dataset (AID)”. These two datasets have
become the most popular RSIR datasets.

However, these datasets and methods are used for image retrieval that is oriented toward scene
classification. Buildings in different locations are considered the same under the label “building”,
and airports in different locations are considered the same under the label “airport”. Therefore,
classification-oriented learning is not appropriate for image retrieval of identical regions. As a result,
attempts were made to use the global position system (GPS) locations for remote sensing image
retrieval. One study [37] proposed a method to retrieve the aerial images from a ground-view image
and estimate the GPS location. In our work, we focus on the task of retrieving the remote sensing
images from an input aerial image.

Content variation exists owing to the conditional differences between the database images and
the query images. For images of the same region, the contents of the images change greatly according
to the variation in time, season, and shooting range. For images of different regions, the contents of the
images can appear similar. These two factors have a great impact on the degradation of image retrieval
performance.

To overcome the aforementioned limitations, we need to consider the relationship between the
images of each region when searching for images with identical regions. Deep metric learning is
a method of training a network to learn the relationship between predefined images. Contrastive
loss [38,39] and triplet loss [5,40–42] functions are representative examples of deep metric learning.
These methods are used for defining two or three image tuples and for learning the binary relationships
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Figure 2. Illustration of the feature embedding concept. First, the regions between images are
distinguished in a binary manner, which denotes the same region or not. Then, the degree of similarity
is defined as a label, which indicates how the contents of the images overlap each other. The distance
of the features is rearranged according to the similarity.

between images within the tuple. Deep metric learning solves the suboptimal problems caused by
cutting the networks taught by image classification, and enables learning for retrieval purposes. It also
provides connectivity between the feature extraction and the similarity comparison stages, in order
to achieve higher performance. In addition, the recently introduced log ratio loss function [43] goes
beyond the binary relationship of previous metric learning and uses the continuous relationships
between the images to effectively train the network.

We propose a framework based on deep metric learning to search for query images that are
identical to the region of a database image. We deal with the situation in which 50%≈100% of the
identical areas between the query images and the database images are used. Our purpose of learning
is to embed features, as shown in Figure 2. The framework is trained using the coarse-to-fine method.
For the coarse step, the learning is done to distinguish binary information for regional differentiation.
Despite the changes in the same region, the coarse step focuses on the regional differentiation through
training to extract similar features. Images with time differences at exactly the same location are used
for training. By acknowledging the similarities between these images, we can extract features with
time and season variations. For the fine step, the learning is done to extract features that depend
on the similarity of contents between the images. We use three images with varying parallel shifts
in one region and define the similarities using continuous values. The similarities are calculated by
comparing how much the regions of the images overlap one another. Moreover, we propose a new
loss function for the fine step. This function improves the consideration of partial relationships within
the tuple of existing methods by regarding the entire relationships. By learning the entire relationship
within the tuple, the proposed function can perform an improved RSIR through delicate embedding.
Even with the difference in shooting range, robust feature extraction is possible.

The main contributions of this paper are as follows:

• We propose a coarse-to-fine deep metric learning method for RSIR. In the first step, the network
learns the binary relationship and is then retrained to learn the continuous relationship in the
second step. The proposed method is end-to-end trainable using the similarity between images.

• We introduce a new loss function to learn continuous information. The triangular ratio loss
function considers all the detailed relationships within the tuples, and, therefore, it is appropriate
for highly complex RS images that contain many objects.

• Using the intersection-over-union (IOU) ratio between images, we confirmed that it is effective to
define a continuous similarity between images.
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2. Related Work

In general, there are two commonly used deep learning approaches: conventional classification
convolutional neural network (CNN) methods [4,7,8,10,44,45] and deep metric learning methods
[5,32,39,41–43,46,47].

2.1. Image Retrieval for the Conventional CNN Method

Image retrieval using the conventional CNN method is performed as follows [7]: (i) Train the
classification task in the conventional CNN structure. (ii) Extract the features from the convolutional
layer or fully connected layer of the trained network. The convolutional layer abstracts the image
information through window sliding, using shared filter values, and converts it into feature map
information. The outputs of the convolutional layer are the feature maps of the image. These feature
maps are known to have spatial information and local information about the image. The feature maps
are flattened to obtain a set of feature vectors. Let n and m be the number and the size of the feature
maps, respectively. The descriptor can be defined as

F = [x1, x2, x3, ..., xm],

where xi(i = 1, 2, 3, ..., m) is an n-dimensional feature vector. However, the dimension of the feature
vector is so large that it is difficult to efficiently summarize it for use in image retrieval. The fully
connected layer generates a high-level feature by considering all relationships within the feature
summarized through the convolutional layer. The fully connected layer feature is known to lose spatial
information and local information because the nodes in the current layer are linked to all nodes in the
previous layer. However, the fully connected layer summarizes the entire contents of the image and
briefly summarizes the dimensions of the features. Thus, it is effective in summarizing large-capacity
images concisely. The feature extractor using fully connected layer is shown in Figure 3.

Figure 3. Overview of the conventional CNN architecture used in image retrieval. The network is
trained to classify labels with learning high-level features of the contents. Those features are then
utilized to retrieve the images.

2.2. Image Retrieval for the Deep Metric Learning Method

The use of the conventional classification CNN method for image retrieval has problems, however.
The retrieval process consists of two stages: feature extraction and similarity comparison, as shown in
Figure 1. The previous methods do not have these two stages connected. Moreover, the purpose of
the training is not for retrieval because only part of the network trained on classification is used as a
feature extractor. To overcome these problems, deep metric learning trains the network through the
Euclidean distance between features, which is a way to compare the similarity.

Sun et al. [39] proposed the adoption of a metric learning function to a deep network. They trained
a deep network through the sample relationship rather than through the class label unit. They utilized
a traditional contrastive loss [38] function for the deep network. The authors trained the network by
using the relationship between the samples. If two samples had the same attributes, they minimized the
Euclidean distance between these samples, and if two samples had different attributes, they maximized
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the Euclidean distance between these samples. Using this method, they eliminated the need to match
the number of nodes in the fully connected layer with the number of labels and solved the suboptimal
problem of using only part of the network. Therefore, the contrastive loss function has achieved
excellent results in the deep learning field. However, this method does not consider how close/far the
samples are to/from each other.

Hoffer and Ailon [42] proposed a triplet loss function. In triplet loss, the distances of same
attributes are defined as a positive distance, whereas the distances of different attributes are defined
as a negative distance. Using these distances, the function trains the network so that the negative
distance is greater than the positive distance in the feature space. Contrastive loss uses the absolute
distance of the features, whereas triplet loss uses the relative distance of the features for training.
Therefore, in general cases, triplet loss is known to have better performance than that of contrastive
loss in the deep learning field. However, defining relationships as binary limits the representation
of attributes to just two: they are either the same or different. In addition, network performance
varies greatly depending on the sampling methods, and it is difficult to train the network because
of the hyperparameter, which is the margin that represents how closely the positive distance will be
compared to the negative distance.

As a result, Kim et al. [43] proposed a log ratio loss function that trains the network using
continuous relationship. The log ratio loss function defines the similarity between images as a constant
value between 0 and 1. Then, the network is trained to learn the ratio of the distance between
the features and the defined continuous similarities. Compared with the previous loss function,
this function can search for images with more similar content by learning the relationship between
images as a continuous variable, and it does not require hyperparameters.

3. Coarse-to-Fine Deep Metric Learning

In this section, we describe a novel network architecture for RSIR. Training is done in two steps
using the coarse-to-fine method. In the coarse step, binary information is taught to distinguish the
difference of regions. The purpose of this training step is to extract features as similar as possible
in identical regions and as different as possible in different regions while ignoring the changes in
time instances between the same regions. However, the network will not have the ability to properly
distinguish the differences between images of similar regions and identical regions just by this step.
Therefore, additional fine learning is necessary to identify the variations of same location regions.
In the fine step, the continuous information is learned to realize how much the regions are related.
The purpose of this step is to extract features that depend on the similarity of contents between the
images. The network is trained according to the change in contents owing to the variation in time
instances and parallel shifts of the images with the same region. Once the learning has been completed
through these two steps, retrieval can be performed robustly at different time instances or coverage
areas between the query image and the database images.

The overall network is used by modifying the last layer using the conventional CNN method.
ResNet-34 [30] uses a global average pooling layer to synthesize the channel’s information into the
average value of the entire feature map. However, in the case of remote sensing images, spatial
information is important, because there are many local features and various objects. Therefore,
we applied cross-channel pooling [48] to our network. The illustration of process is shown in Figure 4.
Cross-channel pooling is a type of pooling that reduces the dimension of a feature; however, it works
differently from conventional maximum pooling and average pooling. Conventional maximum
and average pooling methods compress the information within each feature map. They preserve
the number of channels but reduce the width and height values of the feature maps. In contrast,
cross-channel pooling preserves the width and height values but reduces the number of channels by
convolutions of the elements in the same locations of each channel. Through cross-channel pooling,
we can reduce the dimension of the features and retain important spatial and local information about
the remote sensing images. The fully connected layer consists of an output vector with a dimension of
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512, which is the same as that in conventional ResNet-34. Moreover, we used the initial values of the
network, which were pretrained on the ImageNet [49] dataset. The overall architecture is shown in
Figure 5.

Figure 4. Illustration of the cross-channel pooling process. The pooling operation is done using the
elements in the same location of each feature map. As a result, the width (w) and height (h) of the
feature maps are preserved while reducing the dimensions of the channel (c).

Figure 5. Overall architecture of the proposed training step. There are two streams: (i) Training with
the contrastive loss function using Step 1 tuples, which contain two same images and one different
image. (ii) Retraining with the triangular loss function using Step 2 tuples, which consist of three same
region images.

In addition, defining the tuple process is known to be important in metric learning. In the coarse
step, we define image i as a location where the longitude and the latitude are exactly the same as those
of the anchor image, and we define image j as a different location from that of the anchor image. In the
fine step, we create three images so that the IOU region overlap is at least 26% for any two of the three
images. Through this process, the network can learn automatically without any human annotation.

3.1. Step 1: Coarse Deep Metric Learning

For training, we constructed data tuples with three images involved. The data tuples consisted
of two images from the same region and one from another region. Images from the same region had
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a time difference of approximately 1 year. The data tuple example of Step 1 is shown in Figure 6.
Moreover, the dense triplet mining method [43] was used for efficient learning by organizing images
from another region. This method is a way of defining the data tuples for effective metric learning.
Using this method, we composed image j, which had the closest Euclidean distance to the anchor
image for each mini-batch B.

In Step 1, the network is taught end to end using contrastive loss. Through contrastive loss
learning, the network can distinguish information between the regions. As a result, the network
extracts more similar features for the same region and more different features for different regions.
However, this type of training leads to poor performance when the database image and query images
do not have completely identical regions, and additional training must be done to resolve this problem.

Figure 6. Data tuple example of Step 1. The data tuples consist of the anchor image, image i, and image
j. Image i is taken from the same area of the anchor image, and image j is taken from different areas of
the anchor image.

3.1.1. Contrastive Loss

Contrastive loss [38,39] is the basic loss function for deep metric learning. This function is
appropriate for distinguishing a given pair of images. For training, a data pair ({Ii, Ij}) is required.
The contrastive loss function minimizes the distance in the embedding space when the labels are the
same and separates them with a fixed margin when the labels are different. When the contrastive loss
training is done, features with the same properties are embedded into the same space, although they
have different visual structures. This has been a drawback for other tasks; however, we were able
to use it to cope with the variation in content over time that occurred in the same region. The loss
function is defined as follows:

L(i, j, yi,j) = yi,jD( fi, f j) + (1− yi,j)[m− D( fi, f j)]+. (1)

Here, Ii and Ij are the image pairs, and fi and f j denote the features of each image. y is the
indicator of the label. For example, if two images have same label, yi,j becomes 1, and 0 in the other
case. [∗]+ is the hinge function, D(∗) is the squared Euclidean distance between two features, and m is
the margin parameter.

Originally, this loss function was structured to learn about two random data and labels. However,
because our data tuple trains three images in units, the loss function was defined as follows:

L(a, i, j) = D( fa, fi) + [m− D( fa, f j)]+. (2)

Here, [Ia, Ii, Ij] is an image tuple; and fa, fi, and f j are the features of each image. [∗]+ is the hinge
function, D(∗) is a squared Euclidean distance between two features, and m is the margin parameter.
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3.2. Step 2: Fine Deep Metric Learning

In the previous step, the network learns the binary relationship that separates the same and
different regions. Even if the same area is taken, changes in the shooting range and time instance
cause a variation in image contents. Moreover, remote sensing images may have similar contents, even
though different regions are captured. With only the first step, the relationship within the region is not
learned and the exact regions cannot be retrieved. In addition, the network responds sensitively to
small image changes in the same region. To solve this problem, we further train the network to learn
the similarity within the region. For the fine step, a tuple with three images is necessary. Three images
are extracted from two images of the same area at different times. In each image, one or two crops are
performed to obtain three images. The data tuple example of Step 2 is shown in Figure 7. Moreover,
the IOU overlaps that measure the amount of common areas between the images are generated.
The network is trained through the IOU values obtained.

Figure 7. Data tuple example of Step 2. The data tuples consist of the anchor image, image i, and image
j. All images were taken from the same area but had different variables during capture.

3.2.1. Triangular Loss

The triangular ratio function was modified according to the log ratio loss function. The log ratio
loss function learns the relationship between the anchor and other two images using the continuous
label. The log ratio loss function is defined as follows:

Llr(a, i, j) = {log
D( fa, fi)

D( fa, f j)
− log

D(ya, yi)

D(ya, yj)
}2.

Here, fa is feature for the anchor image (Ia), fi is the feature for image i (Ii), and f j is the feature
for image j (Ij). D( fα, fβ) is the feature distance (squared Euclidean distance) between two samples
(α, β). Moreover, D(yα, yβ) is a label distance between two samples (α, β).

The log ratio loss function has the advantage of being able to learn the continuous relationship
compared with the previous functions that learns the binary relationship. By approximating the ratios
between continuous label distances instead of the binary label, the log ratio loss function can learn
more accurately in a feature space. Moreover, ideally, the distance between two images in the feature
space will be proportional to their label distance. However, because only two of the relationships
among the three images were used for training, there was the disadvantage of not considering the
relationship between samples i and j.

These problems arise from the consideration of the anchor images. If learning is done in a single
step, the definition of the anchor image determines the order of the images being trained. Moreover,



Remote Sens. 2020, 12, 219 9 of 20

the anchor also plays a key role in bridging the relationship between the other two images in this loss
function. However, this consideration is not necessary in our coarse-to-fine training. Thus, instead
of considering the anchor, we added the relationship between images i and j. We consider when all
images become a key factor in the function and modify the formula accordingly. Our triangular ratio
loss is defined as follows:

LTgr(a, i, j) = mean{Llr(a, i, j),Llr(i, a, j),Llr(i, j, a)}.

Comparing this function to the log ratio function, we observe that the log ratio function directly
matches the relationship between a and i to the relationship between a and j. However, our proposed
function is taught like the length ratio of a triangle, by considering all relationships in the three images.

The main advantage of the triangular ratio loss function is that it is possible to consider all
relationships within the tuple regardless to the order of anchor and other images. The log ratio
loss function does not train the relationship between i and j. The proposed loss function trains the
relationship from the log ratio loss function and also the relationship between i and j, leading to a more
precise embedding. Learning with this function prevents the divergence of the distance between i and
j during the continuous learning and results in the gathered images with the same region becoming
more closely related to each other.

4. Experiments

4.1. Implementation Details

For the implementation of our network, we utilized the ResNet-34 architecture [30]. We used a
pretraining model learned on the ImageNet dataset [49] and fine-tuned the model to extract the features
suitable for RSIR. There is no remote sensing image dataset available for searching for identical regions;
therefore, we generated training image pairs and retrieval image pairs from the Google Earth South
Korea dataset. A detailed description of the data is shown below. The network was end-to-end trained,
and all parameters of the network were fine-tuned. In training the fine step, we set a small-enough
learning rate because a learning rate that is too big spoils the coarse step. We trained the network
for 100 epochs, each with a batch size of 20, which took approximately 2 days on a single GPU (GTX
1080Ti) and CPU (Intel i-7 8700) for each step. As a result, it took an average of 1.7 seconds to retrieve
one image. In detail, it is as follows: 1.3 seconds for feature extraction and 0.4 seconds for similarity
comparison (for 10,000 database images). Our source code and Google Earth South Korea dataset are
online available at https://github.com/sioot.

4.2. Google Earth South Korea Dataset

We created a multi-temporal dataset for RSIR using Google Earth [50] images, which were
captured by the Landsat 7 and 8 satellites. We acquired three-band (RGB) images from South Korea,
excluding the islands. South Korea is a challenging research area because various environmental
changes exist, depending on the four seasons, and also because of the existence of various regions,
such as cities, mountains, agricultural lands, and the sea. Moreover, the images were geographically
registered; however, they were not orthophotos, and, therefore, tall buildings looked different at
different time instances. There were also color variations. We divided all satellite images into 1080×
1080 images. We gathered satellite images that were taken in 2016, 2017, 2018, and 2019. Each of the
four images had the same area but had different time instances. Among the 120,000 images, owing to
ambiguity (e.g., mostly composed of sea, cloud, river, and forest), we extracted 40,000 images from
them. Figure 8 shows a few examples of these images.

https://github.com/sioot
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Longitude : 34.8011, Latitude : 126.4148

(a) (b) (c) (d)

Longitude : 35.8426, Latitude : 128.4716

(e) (f) (g) (h)

Longitude : 37.5820, Latitude : 126.8695

(i) (j) (k) (l)

Figure 8. Sample images from the Google Earth South Korea dataset. The photographs were taken in
(a,e,i) 2016, (b,f,j) 2017, (c,g,k) 2018, and (d,h,l) 2019.

4.3. Experimental Results

To assess our method and experiments, we followed the standard retrieval and place recognition
evaluation procedure [9,25,51–53]. The query image was deemed to have been correctly retrieved if
at least one of the top n retrieved database images overlapped 50% of the contents from the query
image. The percentages of correctly retrieved queries (recall) were estimated when n = 1, 5, 10,
and 100. The extracted feature dimension was 512. We conducted additional experiments with feature
dimensions of 128, 1024, and 3113 for performance evaluations in various dimensions. The feature
dimension of 128 had a large drop in performance, whereas feature dimensions greater than 512 were
excluded because they did not have any clear improvement in performance.

4.3.1. Quantitative Experiments

We used half of the images for learning (2016 and 2017) and the other half for retrieval (2018
and 2019). We divided the learning set into the training set (90%) and the validation set (10%). In the
retrieval set, we used half as a database (2018) and part of the other half as a query image (2019).
To select the query images, we randomly sampled 500 different regions. Then, we excluded 111 regions
where the contents of the areas were too ordinary to be distinguishable. As a result, image retrieval
was conducted with a total of 389 query images. Moreover, the query image consisted of a more than
50% IOU ratio overlapped with the corresponding database image.
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• The Conventional Learning Methods

To add objectivity to our experiments, we used two types of tuples in the conventional methods.
Training was done in each of the loss functions. The first type consisted of an anchor image,
a positive image with an at least 50% IOU overlap with the anchor image, and a negative image
in a different region from that of the anchor image. The first type of tuple was marked with “†” in
the Table 1. The second type consisted of an anchor image, a positive image in an exactly identical
region as that of the anchor image, and a negative image in a different region from that of the
anchor image. We used the transformed triplet loss of Fan et al. [54] for the evaluation of the
comparison results, because the basic form has performance degradation problems.

Table 1. Results of the conventional learning method (with cross-channel pooling) trained on the
Google Earth South Korea dataset (Recall@n).

Recall@n(%)Methods n = 1 n = 5 n = 10 n = 100
Triplet loss † 18.3 23.4 24.7 40.1

Contrastive loss † 8.7 19.5 25.2 64.5
Triplet loss 37.8 53.5 59.1 78.4

Contrastive loss 38.9 55.8 62.7 81.5

The results for the first tuple type showed that the overall performance improved for both triplet
loss and contrastive losses compared with that of the baseline model. In the detailed comparison
of the two loss functions, triplet loss scored 18.3% for r@1, performing better than contrastive
loss, which scored 8.7%. However, triplet loss scored only 40.1% for r@100, performing worse
than contrastive loss, which scored 64.5%. For the second tuple type, the overall improvement
in performance was greater for contrastive loss than that for triplet loss. Looking into the
results for each type of tuples, we observed that the second type showed significantly better
performance, because exactly identical regions were matched between images by training with
deep metric learning.

We also conducted an ablation study to see the effects of cross-channel pooling. Table 2 above
shows the performance evaluation results of excluding cross-channel pooling from the method
used in Table 1. As a result, most of the loss functions had a noticeable drop in performance.
This shows that cross-channel pooling effectively preserves the spatial information, and has a
positive effect on the improvement in aerial image retrieval performance.

Table 2. Results of the conventional learning (without cross-channel pooling) method trained on the
Google Earth South Korea dataset (Recall@n).

Recall@n(%)Methods n = 1 n = 5 n = 10 n = 100
Baseline network 5.7 11.6 13.9 32.6

Triplet loss † 4.1 10.5 12.9 25.2
Contrastive loss † 17.2 35.2 43.7 79.9

Triplet loss 6.4 10.3 14.4 28.3
Contrastive loss 30.3 44.2 53.0 81.7

• Coarse-to-Fine Learning Method
We conducted an experiment by additional learning with the first coarse deep metric learning
model. As a result of the coarse deep metric learning, we observed that using the second type of
tuple that defined the positive image as an image in the exact same region as that of the anchor
image led to better performance.
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The Table 3 shows the retrieval result using the coarse-to-fine method. We can confirm the
effectiveness of the coarse-to-fine training. Performance improved in the triplet-loss-based model
and in the contrastive-loss-based model.

Table 3. Result of the coarse-to-fine learning method trained on the Google Earth South Korea dataset
(Recall@n).

Methods Recall@n(%)
Step 1 Step 2 n = 1 n = 5 n = 10 n = 100

Triplet loss Log ratio loss 44.2 57.8 2.0 78.7
Triplet loss Triangular loss 46.8 59.4 65.8 82.5

Contrastive loss Log ratio loss 47.6 61.4 66.8 86.7
Contrastive loss Triangular loss 49.1 62.5 67.1 87.1

The performance improved more for the former model than that for the latter model. Triplet loss
forces the distance between the anchor and the positive to be smaller than that between the anchor
and the negative. Contrastive loss maximizes the distance between the anchor and the negative,
while minimizing the distance between the anchor and the positive. Therefore, contrastive loss
identifies the distance between features more strictly than the triplet loss. In addition, it was
shown that coarse-to-fine learning resulted in better performance when trained with strictly
defined features. Moreover, the overall performance showed greater improvement when using
triangular loss than when using log ratio loss. Figure 9. shows examples of the coarse model and
coarse-to-fine model retrieval results based on contrastive loss with the best performance.

We integrated the steps of the method proposed in Table 4 and evaluated the performance after
training. The overall recall performance degradation occurred when the training was conducted in
integration. This shows that the proposed two-step approach is more effective than the integrated
approach.

Table 4. Results of the conventional learning method trained on the Google Earth South Korea dataset
(Recall@n).

Recall@n(%)Methods n = 1 n = 5 n = 10 n = 100
Integrated method 33.6 44.7 49.4 70.4

Coarse-to-Fine method 49.1 62.5 67.1 87.1

• Comparison with State-Of-The-Art
As shown in the Table 5, we compared various SOTA methods in the field of image retrieval with
our coarse to fine method. The models used for comparison were LDCNN [7], R-MAC Descriptor
[45], NetVlad [51], triplet loss, and contrastive loss. These methods are widely used in image
retrieval. LDCNN is a method of using low-level features of CNN through the mlpconv layers.
R-MAC method identifies the activations of the convolutional feature maps, and uses the features
of the parts determined to be important. LDCNN and R-MAC are classification-oriented methods,
and therefore, a classification-labeled dataset is needed to train these two models. We used the
AID dataset with features (altitude, picture quality, etc.) most similar to the Google Earth South
Korea dataset. NetVlad method is primarily used in a smartphone environment for GPS location
image retrieval. The method is robust to light changes and obscuring objects. NetVlad method
was used with the same conditions as those used for coarse learning, and dense triplet mining
was used for the sampling method. The backbone network used for the comparison methods was
ResNet-34, except for LDCNN, which used the VGG-16 [34] network because of the number of
parameters. As a result, the LDCNN used 490 dimensional feature vectors and the other models
used 512 dimensional feature vectors. We confirm that the coarse to fine method has a noticeable
difference compared to other SOTA methods.
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Table 5. Comparisions of retrieval result with state-of-the-art methods on the Google Earth South
Korea dataset (Recall@n).

Recall@n(%)Methods n = 1 n = 5 n = 10 n = 100
LDCNN 8.2 15.6 19.2 39.3

R-MAC descriptor 15.9 24.7 30.6 48.8
NetVlad 16.2 27.8 33.7 55.0

Triplet loss 37.8 53.5 59.1 78.4
Constrastive loss 38.9 55.8 62.7 81.5

Coarse-to-Fine method 49.1 62.5 67.1 87.1

Figure 9. Examples of the retrieval results on the Google Earth South Korea dataset. Each row
corresponds to one test case: the query is shown in the first column, the baseline in the second column,
the coarse model in the third column, and the coarse-to-fine models in the fourth and fifth columns.
Our trained network shows relatively stable retrieval results despite the variations in time instance and
shooting range.
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4.4. Feature Analysis

4.4.1. Visualization of the Feature Descriptor

We observed the feature distributions of the query image that corresponded to those of the
database image. The database image and the query image shared the same location. However, the two
images had field variations due to the differences in time instances and had content-wise variation
due to the shooting range of the images. The network must recognize these two images as identical to
successfully retrieve under these circumstances. To observe how the baseline network and the network
trained by the proposed method interpreted the two images, we visualized the feature descriptors.
Of the 512 feature dimensions of each network, we plotted for every multiple of four. As shown in
Figure 10, the baseline network feature descriptors have fewer overlaps for the two images, whereas
the proposed network feature descriptor has, relatively, a lot of overlaps. This comparatively shows
that the proposed network recognizes the two images as identical regions.

(a) Database image (b) Query image

(c) Baseline network feature descriptor.

(d) Proposed network feature descriptor.

Figure 10. Visualization feature descriptors on the matching patch pairs of the database image and the
query images. The two pictures on top were the database image and the corresponding query image,
respectively. The graph in the second row shows the feature of the two images using the baseline
model. The graph in the third row shows the features of the proposed coarse-to-fine trained network.
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4.4.2. Location Wise t-SNE

To investigate the embedding distribution of our trained network, we performed an additional
analysis on the Google Earth South Korea dataset. First, we selected 10 different regions from the
said dataset. Then, we selected different times (2016, 2017, 2018, and 2019) and different scopes
(0.26 ≤ IOU ≤ 1) of those regions for intraregional variation, as shown in Figure 11.

Figure 11. Illustration of the process of generating class images.

(a) Baseline (b) Proposed method

Figure 12. t-SNE figure before and after learning.

Figure 12 shows the t-distributed stochastic neighbor embedding (t-SNE) distributions for 10
different regions of the baseline model and the proposed model. Each of the 10 different regions is
represented in 10 different colors, and the 512 feature dimensions are visualized in two dimensions
through the t-SNE method. The baseline model t-SNE result is shown in Figure 12a. The baseline
model often extracted different features for the same region, depending on the time instance and the
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shooting range of the images. In particular, if the green field is included in the image, the gray-colored
class is considered to be closer to the sky blue-colored class. Moreover, the green-colored class cannot
be clustered or categorized properly within the t-SNE distribution because of the overall change in
color of the images by the variation in time instance. However, training done with the proposed model
shows regionally distinct distributions of the images in the t-SNE distribution despite the variations in
time instance and shooting range. The baseline model t-SNE result is shown in Figure 12b.

4.4.3. Recognition of Differences Between Images

We conducted an experiment to determine what the proposed network considers as an important
difference. Looking into the Figure 13, the difference heat map is shown. For each row, the two
images on the left are input images and two images on the right are what the network considers as the
difference. In the heat map is shown by calculating the squared difference between the convolutional
layer feature maps. Because the network was trained to determine the differences in time variation,
it did not consider field color and vehicle changes as differences because they were natural changes.
However, important information changes, such as new buildings, were considered pivotal differences.

(a) Image for 2016 (b) Image for 2017 (c) Difference heat map

(d) Image for 2016 (e) Image for 2017 (f) Difference heat map

Figure 13. Heat maps representing the differences in features between images.

5. Discussion

We used the Google Earth South Korea dataset to confirm the effectiveness of coarse-to-fine
learning and the proposed loss function. In the quantitative result, coarse-to-fine learning models
showed better performance than that of the single (coarse) learning method. The proposed model
showed the best performance among the models. Comparing the two types of loss functions used for
the coarse method, we observed that contrastive loss showed better performance than that of triplet
loss. The model that used contrastive loss function showed the best performance, with a score of
49.1% for r@1 on the Google Earth South Korea dataset. We conducted three qualitative assessments to
further analyze our trained network. For the first assessment, we compared the trained network and
the baseline network by visualizing the feature descriptors. As a result, the trained network extracted
relatively similar features for identical regions that had different time instances and parallel shifts.
For the second assessment, we selected 10 locations and four different time instances from the Google
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Earth South Korea dataset and made variations in the shooting range to visualize the distribution of
the features. From the t-SNE figure, it is shown that identical regions with different time instances were
recognized as relatively similar to each other. Finally, we analyzed what the trained model recognized
as the differences between the two images with different time instances but with identical regions.
The analysis process used the differences between features in the convolutional layer to observe what
the network recognized as the differences between the images. Natural changes, such as changes
in grasslands and the presence of cars, were ignored, and major changes, such as the presence of
buildings, were recognized as differences.

6. Conclusions

We proposed a novel method based on end-to-end trainable deep metric learning for remote
sensing image retrieval. The proposed method is designed to train by using a coarse-to-fine strategy.
In the coarse step, the images are differentiated in a binary manner and trained. In the fine step,
features are extracted depending on the overlap of contents between images using continuous values.

Furthermore, our network is end-to-end trainable using the similarity between images. Moreover,
we proposed a new loss function for deep metric learning. This function is more precisely teachable
than the previous methods because it reflects the entire triple relationship. As a result, our method can
cope with a change in both time instance and shooting range between the database image and the query
image. Experimental result shows that the proposed coarse-to-fine method improved performance
compared to other methods on the Google Earth South Korea dataset.

In this study, we dealt with the variation in time instance and shooting range of the image.
However, to use the proposed method widely, we should consider the rotational or torsional
transformations. We plan to extend this method to deal with these transformations in the future.
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