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Abstract: Broadband seismometers, ground-based Global Navigation Satellite Systems (GNSS),
and magnetometers that were located within an epicentral distance of approximately 150 km
consistently observed the novel anomalous behaviors of the common-mode ground vibrations
approximately 5–10 days before the M6.6 Meinong earthquake in Taiwan. The common-mode ground
vibrations with amplitudes near 0.1 m at frequencies ranging from 8 × 10−5 to 2 × 10−4 Hz were
generated near the region close to the epicenter of the impending earthquake. The common-mode
vibrations were consistently observed in seismic and GNSS data associated with five other earthquakes
in four distinct areas. The results reveal that the common-mode vibrations could be a typical behavior
before earthquakes. The causal mechanism of common-mode vibrations can be attributed to crustal
resonance excitations before fault dislocations occur. Potential relationships with other pre-earthquake
anomalies suggest that the common-mode vibrations could be ground motion before earthquakes,
which was investigated for a significant length of time.

Keywords: common-mode ground vibrations; pre-earthquake ground motion; pre-earthquake
anomalous phenomena
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1. Introduction

The existence of pre-earthquake anomalous phenomena is a highly controversial issue in
the scientific community [1–4]. This debate exists mainly because these phenomena generally pass
statistical tests, but they originate from unknown sources [5–7]. Atmospheric acoustic-gravity waves
have been considered as one of the factors that induce changes in ionospheric density, which could
cause seismo-ionospheric perturbations before earthquakes [8–12]. However, seeking seismic-related
vibration sources such as crustal displacements [13–18] and ground motion occurring before earthquakes
has remained a great challenge until the present. On 6 February 2016, the M6.6 Meinong earthquake
(22.92◦ N, 120.54◦ E) occurred in southern Taiwan (Figure 1a), causing the loss of hundreds of lives [19].
The continuous seismic data recorded by the broadband seismometer at the B770 (22.54◦N, 120.39◦E)
station, which is operated by National Center for Research on Earthquake Engineering (NCREE) of
Taiwan, show that variations in the amplitude of ground velocity doubled from the background noise
level (i.e., the double-amplitude vibrations) for 10–15 days before the earthquake (Figure 1b). Spectra
of the double-amplitude vibrations were mainly distributed at frequencies near 1.4 × 10−4 Hz (a period
of 2 h) (Figure 1c). These amplifications lasted for 10 days and became minimal within a few days
after the earthquake’s occurrence (Figure S1). We chose the seismic data recorded approximately 100
days before the earthquake for examining whether the existence of the amplification is permanent
or provisional. Figure 1c shows that the associated amplification cannot be observed approximately
100 days before the earthquake. The result suggests that the amplifications are not permanent but
could be pre-earthquake anomalous phenomena associated with the Meinong earthquake. Note that
the behavior of the associated amplification at frequencies near 1.4 × 10−4 Hz is distinct from that
of slow earthquakes, microcracks, and tremors, which are observed at relatively high frequencies
(0.1–10 Hz) [19–22].
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by red symbols in (a) and are shown in (b–c) and (d–e), respectively. Note that the stations are selected 
based on the short epicentral distance and the continuity of the recorded data. (b) and (d) demonstrate 
changes in vertical velocity recorded by the seismic stations and vertical displacements recorded by 
the GNSS stations via the CSRS-PPP during an interval of 0–25 days before the earthquake, 
respectively. The amplitude varied with the frequency computed from the seismic and GNSS data in 
the interval of 20–25 days before the earthquake (black lines) and in the interval of 10–15 days (red 
lines) before the earthquake are shown in (c) and (e), respectively. Notably, the gray line shows the 
variations of amplitude retrieved from the seismic data 100 days in (c) for reference. Significant 
amplification of the amplitude can be found at frequencies of about 1.4 × 10−4 Hz (a period of 

Figure 1. Locations of seismometers and ground-based Global Navigation Satellite Systems (GNSS)
receivers on a topographic map and the variations of the vertical component data from two example
stations for an interval of 0–25 days before the 2016 Meinong earthquake in Taiwan. Locations of
seismometers and GNSS receivers are denoted by squares and triangles, respectively, in (a). The red
star shows the epicenter. Seismic and GNSS data recorded by the B770 and LGUE stations are denoted
by red symbols in (a) and are shown in (b,c) and (d,e), respectively. Note that the stations are selected
based on the short epicentral distance and the continuity of the recorded data. (b) and (d) demonstrate
changes in vertical velocity recorded by the seismic stations and vertical displacements recorded by
the GNSS stations via the CSRS-PPP during an interval of 0–25 days before the earthquake, respectively.
The amplitude varied with the frequency computed from the seismic and GNSS data in the interval of
20–25 days before the earthquake (black lines) and in the interval of 10–15 days (red lines) before
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the earthquake are shown in (c) and (e), respectively. Notably, the gray line shows the variations of
amplitude retrieved from the seismic data 100 days in (c) for reference. Significant amplification of
the amplitude can be found at frequencies of about 1.4 × 10−4 Hz (a period of approximately 2 h)
between grey dashed lines shown with the red reversed triangles. Vertical dashed lines indicate
the frequency at 8 × 10−5 Hz (a period of 3.5 h) and 2 × 10−4 Hz (a period of 1.5 h).

Surface displacements monitored by using the ground-based Global Navigation Satellite Systems
(GNSS) data can exhibit similar elastic deformation and/or oscillation in the spatiotemporal domain if
the double-amplitude vibrations actually exist. Vertical displacements retrieved from ground-based
GNSS receivers were taken into consideration to examine whether the double-amplitude vibrations
in seismic records are affected by dynamic ranges at such low frequencies (i.e., a cycle of near 2 h).
The GNSS data in Taiwan were provided by the Geophysical Database Management System of
the Central Weather Bureau [23]. However, parts of the stations only record the Global Positioning
System (GPS) observations. For the consistency of the data processing, only GPS observations were
taken into account in this study. A total of thirty-six GNSS stations were selected, and the Canadian
Spatial Reference System (CSRS) Precise Point Positioning (PPP) online computation system was utilized
to calculate the 3D coordinates of the GNSS stations. The CSRS-PPP system uses the precise GNSS
satellite orbit ephemerides; therefore, the coordinates in this study were taken from the International
Terrestrial Reference Frame 2014. Moreover, the kinematic mode was adopted in the data processing
and the coordinates were produced every 30 s. To increase the accuracy of the data processing,
an ocean tide loading correction was applied and the NAO.99b model was used to obtain the optimal
correction effect [24]. The amplification can also be found in the vertical component of the GNSS
data at the LGUE (22.99◦N, 120.54◦E) station between 10 days and 15 days before the earthquake
(Figure 1d,e). The amplification exhibits that the Earth’s surface oscillates vertically with an amplitude
of approximately 0.1 m with a cycle period of approximately 2 h. The oscillation shares similar
characteristics in the frequency (i.e., near 1.4 × 10−4 Hz) and the occurring time with those signals in
the seismic velocity data (Figure 1d,e). Meanwhile, an average rate close to 6.17× 10−6 m/s derived from
the associated oscillation of the Earth’s surface also shows an agreement with the seismic data. Note that
the frequency of the amplification is different compared with the well-known frequency-dependent
effects (such as the lunar elliptic tides, lunar semi-diurnal tides, lunar-solar semi-diurnal tides and so on)
on the surface displacements [25,26].

2. Methodology

To understand the spatiotemporal distribution of the double-amplitude vibrations associated
with the earthquake, we collected seismic ground velocity data at the thirty-one stations, which are
operated by NCREE, and the GNSS data in Taiwan. The background amplitude was computed by
utilizing the data in the frequency band of interest (i.e., from 8 × 10−5 to 2 × 10−4 Hz) within a time
span of 0–60 days before the earthquake for each station using the Fourier transform. In contrast,
the monitoring amplitude was computed by using the data in the same frequency band within
a moving window spanning 5 days from 25 to 0 days before the earthquake. The amplification ratio was
calculated by dividing the monitoring amplitude by the background amplitude. Spatial distributions
of the amplification ratios were obtained by applying a gridding method for the amplification ratios of
all the stations.

Furthermore, we utilized the data at two horizontal components in each station to evaluate
the azimuth of wave propagation (excited by the ground vibrations) using the maximum horizontal
amplitude [27] for further determining location sources of the ground vibrations. Areas that potentially
reveal the locations of sources were defined by using a sector centered on the propagation azimuth
with an expansion angle of 15◦ on both sides. This implies a resolution of 30◦ in the determination of
the propagation azimuth. The radius of a sector was determined to be 300 km because enhancements
of 10–20% were distributed in areas covering the whole Taiwan island. The locations of sources were
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determined by using intersectional areas of the sectors, which overlapped at least three stations with
significant enhancements.

On the other hand, once the multiple stations detected the double-amplitude vibrations,
the principal component analysis (PCA) method [28] was also employed to extract common-mode
ground vibrations from the thirty-one seismic stations in Taiwan during the Meinong earthquake.
The ground velocity data within a time span of one year from all the seismic stations were filtered
by using a bandpass filter of 8 × 10−5–2 × 10−4 Hz (i.e., a period of 1.5–3.5 h). Strong peak values,
which are caused by unwanted influences (i.e., artificial noise, local earthquakes, teleseismic waves
and so on), were mitigated through the summation of the filtered amplitudes as a daily value [29].
The summated daily values at all the stations were processed through the PCA method, to extract
common-mode ground vibrations during the Meinong earthquake. The PCA method is a statistical
procedure that widely utilizes an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of linearly uncorrelated variables called principal components [28].
The first principal component retrieved from the PCA method was determined as the common-mode
ground vibrations that were further compared with other potential interferences to clarify the causal
mechanism. Finally, Molchan’s error diagram [30] was utilized to evaluate the prediction performance
of the phenomena of the common-mode ground vibrations for earthquake forecasting. Molchan’s
error diagram can evaluate the prediction curve via the rate of earthquakes detected against the rate of
alarming cells. Notably, a modified area skill score measured the area between the actual prediction
curve and the random prediction line that is conducted in Molchan’s error diagram. The scores above
zero indicated that the prediction is better than the random and the observation contained precursory
information. We show the flow chart in Figure 2.
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3. The Spatiotemporal Distribution and the Source Location of the Vibrations

The amplification ratio of the vertical seismic data was near one for 10 days before the earthquake
(Figure 3a–c). In contrast, the amplification ratio significantly enhanced to close to 2 and was widely
distributed in the area entirely covering Taiwan about 5–10 days before the earthquake (Figure 3d).
In terms of 0–5 days before the earthquake, the enhancements gradually attenuated in the whole study
area, except for a local region in the southern part of Taiwan (Figure 3e). Regarding the amplification
ratio of the vertical displacement of the GNSS data, the ratios were roughly near 1 for approximately
10–25 days before the earthquake (Figure 3f–h). The ratios obviously enhanced to 2 about 10 days
before the earthquake that roughly covered the whole Taiwan island (Figure 3i). Similarly, the ratios
attenuated to about 1 and were comparable with the background (i.e., 10-25 days before the earthquake)
for 0–5 days before the earthquake. In short, consistent behaviors related to the changes in time-variant
spatial distributions can be seen in the GNSS data (Figure 3f–j). The amplification ratio near 2 distributes
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in a wide area that is significantly larger than the fault rupture zone of the earthquake about 5–10 days
before the event. However, the boundary of the enhancements is vague due to the limitation posed by
the land area of Taiwan.
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Figure 3. Spatial distribution of amplification ratios computed from data for an interval of 0–25 days
before the Meinong earthquake. The upper (a–e) and lower (f–j) panels denote amplification ratios
obtained from seismic and GNSS data. The amplification ratio of >1 (or <1) suggests enhancement
(or attenuation) of ground vibrations in the particular duration. Time intervals of 5 days were used for
the analysis process. The red star denotes the epicenter. Red curves indicate portions of circles with
a radius of 300 km from the epicenter of the earthquake.

In Figure 4, we further discuss the source location of the enhancements associated with the ground
vibrations. No obvious source location can be observed 15 days before the earthquake from either
seismic (Figure 4a–c) or GNSS (Figure 4f–h) data due to insignificant enhancements (Figure 3a–c
and f–h). In contrast, seismic and GNSS data indicate the coincidence of the intersectional areas located
close to the epicenter of the Meinong earthquake that can be observed about 5–10 days before the event
(Figure 4d,i). In terms of 0–5 days before the earthquake, no source location can be determined
(Figure 4e,j) due to the attenuation of the enhancements.
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seismic and GNSS data, respectively, in distinct time spans following (a–j). Black arrows lie on stations
with significant amplitude enhancements, as shown in Figure 3, and point toward potential sources of
crustal vibration excitation before the earthquake. The red star denotes the epicenter. Green areas on
the map indicate the locations of potential crustal vibration sources, as determined by at least three
stations showing significant enhancement.

4. The Principal Component Analysis and the Molchan’s Error Diagrams

Figure 3d,i show the distribution of the enhancements in a wide area that suggests the existence of
common-mode vibrations before the earthquake. Vertical velocity data at all the seismic stations from
200 days before to 150 days after the Meinong earthquake were filtered by using the band-pass filter
of 8 × 10−5–2 × 10−4 Hz to examine the similarity of the time-varied amplitude in different stations
along the time. The results show that the amplitude of filtered data exhibits similar changes in wave
envelopes among the most stations along the time (Figure 5). The applied PCA method can retrieve
a common component of data recorded from multiple stations regardless of the spatial distribution
due to the fact that the enhancements cover the whole Taiwan island.

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 13 

 

the epicenter. Green areas on the map indicate the locations of potential crustal vibration sources, as 
determined by at least three stations showing significant enhancement. 

4. The Principal Component Analysis and the Molchan’s Error Diagrams 

Figure 3d,i show the distribution of the enhancements in a wide area that suggests the existence 
of common-mode vibrations before the earthquake. Vertical velocity data at all the seismic stations 
from 200 days before to 150 days after the Meinong earthquake were filtered by using the band-pass 
filter of 8 × 10−5–2 × 10−4 Hz to examine the similarity of the time-varied amplitude in different stations 
along the time. The results show that the amplitude of filtered data exhibits similar changes in wave 
envelopes among the most stations along the time (Figure 5). The applied PCA method can retrieve 
a common component of data recorded from multiple stations regardless of the spatial distribution 
due to the fact that the enhancements cover the whole Taiwan island. 

 
Figure 5. Variations of seismic velocity data in the vertical component filtered using a bandpass filter 
of 8 × 10−5–2 × 10−4 Hz from 200 days before to 150 days after the Meinong earthquake. Red lines 
indicate occurrence times of two M > 6 earthquakes listed in Table 1. Similar variations can be seen 
from most stations in Taiwan. Notably, gaps were found in data from the B020 and B530 stations and 
are ignored in this study. 

Table 1. Earthquake information in Taiwan from 200 days before and 150 days after the Meinong 
earthquake. Earthquakes with magnitude > 6.0 are listed. 

Year Month Day Magnitude Longitude (°E) Latitude (°N) Depth (km) Days to the EQ 
16 2 5 6.6 120.544 22.922 14.6 0 
16 5 12 6.1 121.980 24.692 8.9 96 

The analytical results show that the first principal component with the enhancements appeared 
approximately 20 days before the Meinong earthquake (Figure 6a). The principal component 
retrieved from stations located within the area with a radius > 100 km suggeststhe common-mode 
vibrations and local events (such as artificial activity, landslides, etc.) are not driving sources. Severe 
weather (e.g., typhoons) can also enhance ground vibrations in this frequency band for a short 
duration (Figure 6a). Typhoons impacted the Taiwan area at both ends of the studied one-year 
interval. Time discrepancies reveal that the common mode is not dominated by severe weather. 
Additionally, foreshocks (with an epicentral distance < 50 km) maintain at a low level (i.e., 

Figure 5. Variations of seismic velocity data in the vertical component filtered using a bandpass filter
of 8 × 10−5–2 × 10−4 Hz from 200 days before to 150 days after the Meinong earthquake. Red lines
indicate occurrence times of two M >6 earthquakes listed in Table 1. Similar variations can be seen from
most stations in Taiwan. Notably, gaps were found in data from the B020 and B530 stations and are
ignored in this study.

Table 1. Table1. Earthquake information in Taiwan from 200 days before and 150 days after the Meinong
earthquake. Earthquakes with magnitude >6.0 are listed.

Year Month Day Magnitude Longitude (◦E) Latitude (◦N) Depth (km) Days to the EQ

16 2 5 6.6 120.544 22.922 14.6 0
16 5 12 6.1 121.980 24.692 8.9 96

The analytical results show that the first principal component with the enhancements appeared
approximately 20 days before the Meinong earthquake (Figure 6a). The principal component retrieved
from stations located within the area with a radius >100 km suggeststhe common-mode vibrations
and local events (such as artificial activity, landslides, etc.) are not driving sources. Severe weather
(e.g., typhoons) can also enhance ground vibrations in this frequency band for a short duration
(Figure 6a). Typhoons impacted the Taiwan area at both ends of the studied one-year interval. Time
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discrepancies reveal that the common mode is not dominated by severe weather. Additionally,
foreshocks (with an epicentral distance <50 km) maintain at a low level (i.e., approximately 25 events
per day). They are not the primary factor triggering the common-mode vibrations.
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Figure 6. The common mode of daily summated amplitude from 200 days before to 150 days after
the Meinong earthquake. The common-mode vibrations are determined by using the first principal
components retrieved from the PCA method shown in (a). The green line reveals the daily count
of earthquakes in the Taiwan areas. T marks (in blue) indicate the time that typhoons impacted
Taiwan. Occurrence times of earthquakes with magnitude ≥ 4 during the study period are shown in (b).
Two major earthquakes with magnitude ≥ 6.0 are marked. The associated information is shown in
Table 1. (c–f) demonstrate Molchan’s error diagrams of the optimal prediction strategy based on the first
principal component versus to earthquakes with different criteria of their magnitude. The prediction
curve shown by the red line is clearly above the random prediction line given by the black diagonal
line. The 90% and 95% confidence intervals are shown by the dashed dark blue and dashed blue
lines, respectively.

To examine whether the common-mode ground vibrations can be rerated as a useful precursory
information in Taiwan, Molchan’s error diagram is utilized to assess the efficiency of prediction
strategies for different earthquake magnitudes. We used 186 earthquakes with magnitude ≥ 4 that
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recorded by the Central Weather Bureau, Taiwan, and occurred around the Taiwan area during
the study period (Figure 6b) to examine whether the common-mode vibrations contain precursory
information statistically. The statistical results show that the prediction curve and the 90% confidence
interval are comparable for earthquakes with magnitude ≥ 4 and ≥ 4.5 (Figure 6c,d). In contrast, most
of the prediction curve is over the 90% confidence interval, and quite a lot exceeds the 95% confidence
interval that can be found for earthquakes with magnitude ≥ 5.0 and ≥ 5.5 (Figure 6e,f). These results
suggest that the common-mode ground vibrations are highly related to earthquakes with magnitude ≥
5. In other words, the common-mode ground vibrations are difficult to distinguish from the noise for
earthquakes with magnitude <5.

5. Discussions and Conclusions

Can the common-mode ground vibrations be observed in other events or in distinct areas in
the world? Here, we take the seismic and GNSS data associated with the other five earthquakes with
magnitudes of 6–7 (Table 2) from world data centers (also see the supplementary) for further examining
whether the phenomena of the common-mode vibrations have typical characteristics (Figures S2–S16).
The selection of the earthquakes is done according to the available data and the existence of adequate
observational networks. The amplification in the relevant frequency band tends to be high around
0–10 days before the earthquake. This can be consistently found in both the seismic and GNSS
data before the earthquakes, except for the largest M7.2 Baja earthquake. The Baja earthquake has
the amplifications in a wide frequency band from 6 × 10−5 to 2 × 10−4 Hz (i.e., a period of 1.5–4.5 h)
appearing 0–5 days before. The significant amplification can be consistently observed from the seismic
or GNSS stations near the epicenters. The 10–20% enhancements of the amplification ratios are
roughly distributed in the areas with epicentral distances of less than 300 km. The intersectional areas
determined from the stations with the enhancements are located close to the epicenters. This suggests
that the common-mode vibrations probably relate to these selected earthquakes.

Table 2. Occurrence time and locations of the six selected earthquakes utilized in this study.

Earthquake Date Location Country or Areas

M6 Parkfield EQ 28 September 2004 35.8◦ N, 120.4◦ W United States
M7.2 Baja EQ 4 April 2010 38.2◦ N, 122.3◦ W Mexico

M6.6 Jinggu EQ 7 October 2014 23.4◦ N, 100.5◦ E China
M6.5 Ludian EQ 3 August 2014 27.1◦ N, 103.3◦ E China

M6.6 Meinong EQ 6 February 2016 22.9◦ N, 120.5◦ E Taiwan
M6.0 Hualien EQ 6 February 2018 24.1◦ N, 121.7◦ E Taiwan

Based on the amplifications in Figure 2, and the common-mode ground vibrations obtained from
the seismic stations in Figure 5, the seismo-ground vibrations are distributed in a wide area before
earthquakes can be concluded. The distribution covers a vast area that is obviously different from
the common idea that earthquake-related stress accumulates within fault zones, triggering dislocation.
Previous studies [31] proposed that pre-earthquake anomalous phenomena can be distributed in
a wide area (called earthquake preparation zones) through the numerical method. Chen et al. [14]
examined the GNSS data in Taiwan and found the filtered crustal displacements that can be dominated
by far larger earthquakes (with a distance of more than 200 km) before they occur. Chen et al. [32]
utilized the same method proposed in [14] to examine the filtered displacements before the 2011 M9
Tohoku earthquake in Japan and found that the crustal displacements in areas with an epicentral
distance >1500 km are related to the event. Note that the similar anomalous phenomena of the crustal
displacements associated with earthquakes can also be obtained by using the traditional method
in a distinct place [13]. Chen et al. [16] utilized a statistical method to examine the relationship
between seismo-crustal displacements in wide areas and earthquakes. The statistical results show
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that the relationship is more significant than random. These results roughly support the existence of
common-mode ground vibrations in wide areas in this study.

If the common-mode ground vibrations in wide areas before earthquakes are true, the question
remains regarding the causal mechanism that can generate relatively low frequency motion. We propose
a bold hypothesis based on limited matches with physical clues observed in this study. Crustal resonance
is a potential causal mechanism, which can excite the common-mode vibrations, when earthquake
faults tend to dislocate in the lithosphere. Notably, enhancements of the vibration processes in response
to dynamic loading from rock pressure experiments conducted in the laboratory have been mentioned
in preliminary reports [33]. The accepted knowledge is that there is a proportional relationship
between earthquake magnitude and earthquake-related stressed areas. The Baja earthquake, exhibiting
the largest magnitude of 7.2 in this study, suggests that the relatively low resonant frequency was
produced from a relatively large stressed volume. This agrees with the observations (intense peaks
with a cycle close to 3.5 h—see also Figure S5). We boldly raise our hypothesis that earthquake-related
stress loading of a square sheet placed horizontally at the depth of the hypocenter excites crustal
resonance close to breaking, not considering the fault type. The resonant frequency at 8 × 10−5–2
× 10−4 Hz corresponds to a square sheet with a width ranging from 150 to 300 km and a thickness
from 500 to 1000 m (Figure 7) [34,35]. Numerical simulation and observations show an agreement
within an order of magnitude. These reveal that the earthquake-stressed volumes are much larger than
the fault rupture zone.
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the mass density, υ is Poisson’s ratio, a and b are the widths of the plate, and m and n are integers.
In this study, a equals b as the sheet is square. Young’s modulus and average density of the crust are 100
GPa and 2700 kg/m3, respectively. Poisson’s ratio is 0.3. Red and black lines indicate the relationships
between the width and resonance frequency computed at varying thicknesses. Notably, m and n are
taken as 1 to estimate the relationship based on a fundamental mode.

The common-mode vibrations can be potential sources of other pre-earthquake anomalous
phenomena. Geomagnetic data show the amplification in the particular frequency band (1.5–3.5 h
periods) for 5–15 days before the Meinong and Parkfield earthquakes (Figures S17–S19). This generally
agrees with the observations of the amplification from seismic and GNSS data, as shown in this
study (Figure 1, Figure 3, Figure 4 and Figures S2–S4). Numerous earlier studies reported that
the seismo-ionospheric anomalies distributed within hundreds of square kilometers over earthquake
epicenters [36] are dominated by an unclear source. Widely observed common-mode vibrations
are a likely candidate for possible sources, which drive large scale seismo-ionospheric anomalies.
Previous studies [8–12] reported that acoustic-gravity waves can propagate upward into the ionosphere.
If the common-mode vibrations are sources of the acoustic-gravity waves before earthquakes, many
significant characteristics can be examined. For example, the frequency of the common-mode vibrations
should be variable and tend to be high with the approaching of forthcoming earthquakes, because
the acoustic-gravity waves are generally triggered by ground motion in a relatively high-frequency
band [37]. This suggests that areas which trigger the common-mode vibrations change from wide
to narrow based on the hypothesis of crustal resonance. Meanwhile, the acoustic-gravity waves
cannot be excited by all kinds of ground vibrations, except for the pressure-shear vertical (P-SV) type
motion [37]. Thus, the existence of the P-SV type motion before earthquakes can be further investigated.
Once the acoustic-gravity waves are generated by the common-mode vibrations, upward propagation
of the waves can change air pressure above the Earth’s surface accordingly. The upward propagation
of the waves can further be monitored by the magnetometers when they arrive at the altitude of about
100 km [37]. The total electron content (TEC) from the global dense ground-based GNSS networks,
which are often used to monitor co-seismic waves in the atmosphere, can be utilized to record the waves
as they reach the ionosphere. These aforementioned clues can help us to examine whether the large-scale
seismo-ionospheric anomalies are driven by the widely observed common-mode vibrations.

In short, common-mode vibrations will extend the debate regarding pre-earthquake anomalous
phenomena. However, examinations of potential links between pre-earthquake crustal common
behavior and anomalies will guide us to the truth. While those relationships cannot be quickly proven,
common-mode vibrations assist our understanding of essential duration changes taking place very
close in time to earthquake occurrences.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3252/s1,
The methodology and data availability for the analysis in the ground vibrations during the 2004 Parkfield, 2010
Baja, 2014 Jinggu, 2014 Ludian, 2016 Meinong, 2018 Hualien earthquakes. The amplitude of the ground vibrations
at the B770 seismic station after the Meinong earthquake is shown in Figure S1. The enhancements of the ground
vibrations at the example stations, the spatial distribution of the enhancements, and the determination of
the source locations are shown in Figures S2–S4 for the Parkfield earthquake, Figures S5–S7 for the Baja earthquake,
Figures S8–S10 for the Jinggu earthquake, Figures S11–S13 for the Ludian earthquake, and Figures S14–S16 for
the Hualien earthquake. The amplitudes computed from the magnetic data could be dominated by the ground
vibrations before the Meinong earthquakes are shown in Figures S17 and S18. The amplitudes computed from
the magnetic data could be dominated by the ground vibrations before the Parkfield earthquakes are shown in
Figure S19.
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