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Abstract: Urban growth and natural hazard events are continuous trends and reliable monitoring is
demanded by organisations such as the Intergovernmental Panel on Climate Change, the United
Nations Office for Disaster Risk Reduction, or the United Nations Human Settlements Programme.
CORONA is the program name of photoreconnaissance satellite imagery available from 1960 to 1984
provides an extension of monitoring ranges in comparison to later satellite data such as Landsat
that are more widely used. Providing visual comparisons with aerial or high-resolution OrbView
satellite imagery, this article demonstrates applications of CORONA images for change detection
of urban growth and sprawl and natural hazard exposure. Cases from El Alto/ La Paz in Bolivia,
Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA are analysed.
After a preassessment of over 20 disaster events, the 1970 Yungay earthquake-triggered debris
avalanche and the natural hazard processes of the 1980 Mt St. Helens volcanic eruption are further
analysed. Usability and limitations of CORONA data are analysed, including the availability of
data depending on flight missions, cloud cover, spatial and temporal resolution, but also rather
scarce documentation of natural hazards in the 1960s and 70s. Results include the identification of
urban borders expanding into hazard-prone areas such as mountains, riverbeds or erosion channels.
These are important areas for future research, making more usage of this valuable but little-used
data source. The article addresses geographers, spatial planners, political decision makers and other
scientific areas dealing with remote sensing.

Keywords: urban sprawl; city expansion; disaster risk; land cover change; land use change; image
interpretation; manual visual image interpretation; data usability; Geographic Information System;
remote sensing

1. Introduction

Despite knowing more and more about disaster risk, losses keep mounting, researchers have
observed since at least the year 1945 [1,2]. While there are several reasons for an increase of disaster
losses such as increased awareness and reporting on registered disaster losses, insurance cover etc.,
many researchers and institutions attribute this increase to urban and settlement growth as well [3,4].
Population density and exposure of settlement areas to natural hazards such as earthquakes, floods or
landslides are one of the most commonly used explanatory variables for disaster risk and resulting
losses, often using remote sensing data for measuring this [5–7]. This is also reflected in the range of
actions and activities fostering research and disaster risk reduction for urban areas, especially large cities
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within campaigns of the United Nations or private institutions, recently for example, within ‘resilient
cities’ campaigns [8–11]. Additionally, urban growth and sprawl are highly important areas for disaster
risk research [12].

Within international agendas such as the Sendai Framework for Disaster Risk Reduction [13],
one key priority is creating more knowledge about disaster risk and one of the methods often suggested
is risk assessment. Monitoring on urban sprawl or land cover change considering natural hazards
is also demanded in the context of Climate Change by the IPCC, especially for extreme events [14],
and in the context of urbanisation by UN HABITAT [15].

Within risk assessment, spatial assessments are one among many other approaches [16] and are
characterised by using data such as census data or Geographical Information Systems. Urban growth
can be measured by comparing old land surveying maps, but one of the most useful data is remote
sensing imagery from satellites since they capture large areas with a snapshot of their sensors. There is
ample of research on utilising remote sensing data for urban growth [17–19] and mapping of many risk
aspects, ranging from climate change affecting land cover change and contributing to flooding or rock
falls risk [20], over earthquake risk in urban areas [21], or specific risks to slums [22]. Remote sensing
imagery is also increasingly used for monitoring and documenting disaster losses, for example within
international ‘space charter’ calls which provide high-resolution imagery often free of charge of
disaster-affected areas immediately after the events [23].

1.1. Usage of Satellite Imagery in Context of Disaster and Natural Hazard Research

Since the ‘international charter space and major disaster’ has come into effect in the 2000s,
an increasing number of (public) disaster loss imagery and related usage in literature can be
observed [24]. Remote sensing imagery such as Landsat is widely used for mapping urban growth or
related topics of urban settlements or populations [25], also concerning natural hazard or risk [26],
using mainly Landsat at the beginning with visible geometric resolutions starting at 79 m per pixel in
the year 1972, then 30 m per pixel since the year 1982, per pixel, later 15 m per pixel since the year 1999.
A first literature survey also revealed a relatively low number of publications by comparison on utilising
older satellite imagery, before the 1980s [26,27]. There might be several reasons for this; much of the
now available satellite imagery before the 1980s is limited to the provision by the United States of
America, who started in 1995 to disclose their previously classified former espionage imagery of several
missions [28,29]. Additionally, since this imagery is not largely known beyond academic institutions
teaching photogrammetry, it had not been publicised as much as other products. Another reason
may be due to the type of imagery. CORONA and other film-based photo satellite data such as Zenit
(see specifications in Sections 2.1 and 4.4) are greyscale photographic film images, in the visible range
of the spectrum, with rather rare exceptions of colour or infrared film [30]. Most other remote sensing
products typically used within Earth Observation and related data applications that often started
in disciplines such as geodesy, geography, ecology or similar, were using multispectral information,
not just greyscale visible information. For example, multispectral information such as infrared, or many
other wavelengths is preferred in several band combinations to display and help separate land use
categories such as vegetation from buildings etc. much better than just black and white images [31].
Therefore, it might be the case that CORONA and similar data are rather underestimated, which might
explain the surprisingly low range of publications to be found under search terms such as “CORONA”
and “natural hazard” for example (see Appendix A). However, publicly available CORONA imagery
can, just like aerial imagery, provide a relatively high resolution, of up to 2–4 feet (0.6–1.2 m) per pixel.
However, more important even, CORONA data is ranging back until the year 1960, often resembling
the only known existing snapshots of a time and human footprint of those periods. Additionally,
since urban growth has overgrown many formerly natural areas, this data offers unique insights of
areas of potential exposure to natural hazards, when settlements have now grown into slopes of
mountains or former riverbeds.
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1.2. Description of CORONA and Other Old, Public Reconnaissance Satellite Imagery in General

CORONA had been a program providing satellite or aerial imagery, originally deployed by the
United States of America for espionage purposes, especially of the Soviet Union and Chinese nuclear
and strategic missile programs [29,32]. This includes high altitude planes such as the U2 mission
since around the year 1956 [29,33] and then specifically, reconnaissance satellites launched by rockets
and also equipped with panoramic photo cameras with a black and white film, taking imagery from
19 August of 1960 to May 1972 [28] with a return-capsule to earth instead of electronic transmission to
save costs [29]. The program was called CORONA, a codename spelt out in capitals in military-style
and comprises six satellite models and different photo camera models (see Table 1). The CORONA
data has been declassified and made available in three stages; in the years 1996, 2002 and 2011 [34],
with exceptions [32]. There is much older aerial imagery, often related to land surveying or war
impact documentation, even with partly higher spatial resolution. However, this suite of imagery
from reconnaissance and espionage imagery is unique, since it covers large parts of the planet surface,
including areas never been mapped by aerial imagery before. It also uses images that cover areas
much larger by one image than many aerial images. Additionally, one CORONA mission covered a
larger area than all previous U2-missions together [28]. All missions together collected over 800,000
photographs and covered around 557 million square miles (896.4 km2) [29]. This comes at the cost of
spatial resolution but enables analyses of larger areas based on a single timestamp and with similar
sensor information. It also provides an archive of the landscape surface of the year 1960 to the 1970s at
least, which enables methodological comparisons using the same material. The main usage, as this
article tries to show, is documentation of changes of land use over much longer time when Landsat
imagery became of wide usage since the year 1972, and especially with better resolution since 1982.
It also enables documentation of geomorphological surfaces before urbanisation. Additionally, as a last
characteristic feature, the data is available at low cost or even for free by the United States Geological
Survey (USGS) for many countries and areas in the world. Limitations of this imagery include
cloud coverage [35], which shrinks the number of areas that can be used for land use documentation,
especially in humid areas. The spatial resolution also depends very much on the mission, hence also
on the year and camera system used, but also on flight paths and swaths covered [36]. Coverage is also
much more frequent for areas that were of strategic interest to the USA [35,36].

1.3. Short Overview of CORONA Satellite Imagery Concerning Urban and Hazard Aspects

CORONA imagery in general academic literature is mainly used in the fields of archaeology [37,38],
geomorphology [39,40], land-use change [41], coast-line [42] or forest cover change [43]. After declassification
in 1995, applications were expected for natural hazard monitoring such as volcanoes and land-use change
monitoring such as for the Aral Sea [44].

Urban growth or sprawl is covered by studies in archaeology that are analysing impacts of
urban sprawl on archaeological remains or cultural heritage [45,46]. Urban expansion and growth
analyses are using such satellite imagery to compare different stages of development of cities [47,48],
population growth [49] and interrelations with the environment and hinterland of cities [50]. For later
lines of the CORONA series, the GAMBIT and HEXAGON images, usage in archaeology also exists on
the same case studies [51] and are also applied for urban land cover analysis [52].

Urban growth in combination with natural hazards analyses has used CORONA images for
detecting vegetation changes concerning gully erosion and pluvial flood damages [53]. Another topic is
glacier outburst danger [54], glacial debris flows and glacier collapses [55] or glacier coverage changes
in general [56].

Not explicitly concerning urban development or growth, CORONA and other satellite imagery
are used for other natural hazard types, including landslide susceptibility mapping [57]. Due to
CORONA data also consisting of stereo-pair images often, the extraction of digital elevation models
(DEM) [58,59] is also common for usage in archaeology [60], land use and especially, glacier change or
glacier lake outbursts [61]. Interestingly, usage of CORONA imagery seems rather rare for several
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natural hazards, for example, regular floods and not only glacier outburst-related floods. However,
even review papers on a large range of remote sensing imagery applications do not mention CORONA
or related mission data [26,27]. This cannot be fully covered here but may warrant more extensive
literature review analyses.

Based on this background, this article investigates the main guiding research question: How can
satellite imagery ranging back to the 1960s help to map urban sprawl and reveal information about
natural hazard risk?

To break this encompassing question down, the following aspects are broken down to be analysed
in a qualified manner in this article:

1. How useful is old declassified satellite imagery to map urban sprawl and natural hazard risk?
2. Where are the limitations and what additional range of years going back from the 1980s can be

added to map urban sprawl and natural hazards using openly available data?
3. With respect to urban change detection, what additional information about urban and physical

morphology can be derived from these images?
4. Which are recommendable aspects and areas for further research?

Since these questions may be of general interest for many regions worldwide, the article will use
example data from several regions in the world, to demonstrate the potential, but will also highlight
limitations. Arid and semiarid regions in Latin America and central Asia were selected for similar
natural conditions, the prevalence of natural hazard occurrence and high ranges of experienced disaster
losses in the past. Additionally, of course, this partly avoids one major constraint of visible satellite
imagery, cloud cover.

The article is further organised with a method and materials section, including a description of key
features of such satellite imagery, a short overview on usages of similar satellite imagery concerning
urban aspects, followed by an overview on the imagery used for the descriptive analysis in this article.
The main part of this article follows in the assessment section, where examples from case studies
are used to demonstrate usability as well as limitations. The following discussion section takes up
the structure of the research questions to detail usefulness and limitations for other similar research.
The conclusion section summarises the findings and highlights some future research options.

2. Materials and Methods

This article analyses the potential of using pre-1980s satellite imagery for disaster risk reduction
and urban sprawl in combination. This is conducted descriptively by showcasing examples of imagery
depicting either typical hazard or exposure features of natural hazards, or changes in urban and
built infrastructure fabric. Therefore, the characteristics of such satellite imagery are described first,
followed by a short overview of typical applications with respective literature, then a description of
the satellite material and cases selected.

2.1. Methodological Background of the Manual Visual Image Interpretation

This article conducts a multitemporal image comparison by manual visual image interpretation.
Manual visual image interpretation has a long history but has taken a major step in methodological
development connected to the CORONA program. Image interpretation relies on sensor optics,
accurate orientation, image calibration and many other aspects related to image generation
and processing [21]. This first step already influences the products, satellite images, and hence,
manual interpretation very much. However, image interpretation also relies very much on further
processing and the skills of the interpreter. Next to providing a great amount of funding for the
reconnaissance missions and hence, data retrieved, new centres for image interpretation were founded
in the USA, including the National Photographic Interpretation Center (ibid., p. 200) adding to the
US Geological Survey (ibid., p. 210). Education at universities was extended and methodological
innovations included a new global mapping model of the globe, which helped establish the World
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Geodetic System—WGS-1966, then 1972 and finally, 1984 WGS ellipsoid (ibid., p. 206), and next to an
accurate model of the globe, several other factors constrain the manual interpretation. This includes
lighting conditions (ibid., p. 222), broken film, image scene borders, dirt and training (ibid.).

In later literature on remote sensing and image interpretation, several factors influencing manual
interpretation have been added [62]. Data obstacles are one factor, such as shown by the elements of
image interpretation (texture, colour). Another area is the social environment, that includes sharing
of experience, working environment, shared work by different persons, interruption of working
days, etc. Perception and cognitive factors of the interpreter are influenced by experience and
training, connected also to study backgrounds, for example on geology for detecting land features and
natural hazards [63]. More specific abilities and constraints cover correct topography and sun angle
interpretation, amodal completion of objects partly covered, contour identification, transparency and
other options of shape discrimination, image representation and interpretation [64,65]. There is literature
in the field of Geographic Information Systems and remote sensing dealing with information uncertainty,
perception, data recognition obstacles and other uncertainties of the interpreter [66]. For instance,
spatial and thematic conditions which imply the existence of an object (‘existential uncertainty’),
the uncertainty of spatial extend on an object (‘extension uncertainty’) or the precision of measuring
the boundaries of an object (‘geometric uncertainty’) [67]. Many other aspects play a role such
as completeness, positional accuracy, attribute accuracy, logical consistency, mapping technique,
aggregation and overlay, interpolation, subjectivity and many more [68,69]. Uncertainties concerning
geographic information include several aspects related to cognitive entities such as memory, thinking,
that interrelate with imprecisions or inconsistencies generated by the human–machine relations such as
ambiguity or approximation [70]. At the example of building identification factors such as overlapping
roof structures or rising morphologic complexity, in general, are challenges for manual visual image
interpretation, especially for very high-resolution optical satellite images [71]. Results are different
according to individual interpreters regarding the number of objects, building size, orientation or
density identified (ibid.). Concluding, the limitations of image interpretation are known in the field of
GIS and remote sensing already and are not specific for greyscale photoreconnaissance imagery only.

2.2. Data Description and Screening Process

The selection of material followed the research questions. These questions include (a) identifying
usefulness and (b) limitations when trying to track (c) change detection of urban development
and other aspects related to natural hazards and disaster risk assessment and (d) showing up new
areas for application. To cover this, examples from several countries and continents were targeted.
Structuring this, several steps were conducted; the time phases were identified where the highest
spatial resolution imagery of CORONA and similar missions are available. Table 1 lists variants of data
available for the CORONA program, with its different missions and satellite models. The CORONA
satellite models were called KEYHOLE, abbreviated KH, and numbered consecutively. Camera models
and satellite modules were continuously enhanced and given specific code names, such as the ARGON
on KH-5, the LANYARD on KH-6, and the code-named KH-7 GAMBIT and KH-9 HEXAGON
missions [72]. The CORONA photo cameras used an acetate-based, later polyester-based 70-mm
Eastman Kodak Film with 280 line pairs per millimetre over the entire image, while World War II aerial
images often had a resolution of only 10–50 lines per millimetre [29]. Spatial resolution varied and also
improved over the years, from around 40 to 2 feet (12 to 0.6 m), fitting the purpose to first provide
broad overviews and later on, more detailed photo interpretation [32]. The low earth orbit altitudes
could be as low as 92 to 75 miles (148 to 120.7 km) [32]. The Aerial Imagery is provided by USGS
as digital scans, with the Medium Resolution Scan Product having approx. 400 dpi (dots per inch),
the High-Resolution Scan Product—25 micron or 1000 dpi and the Declassified Imagery Standard Scan
Product—7 micron or 3600 dpi (email retrieved from USGS EROS User Services on 8 September 2020).
The scanned images are separated into tiles, which have to be stitched. File sizes for a full image are up
to over 6 GB for the KH-9 products, for example. This has implications on available storage space
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on mobile devices when gathering multiple images. While previews of the images are available by
low resolution, not all images are already scanned and therefore ready for download free of charge by
the USGS. The cost for one image not already available for download is USD 30 and it takes around
1–2 weeks until the images are provided.

The further screening process methodology is numbered from (i) to (vii) to better guide through
the process steps. Based on images downloaded or ordered from the USGS Earth Explorer website
(i), a first assessment was carried out (ii) on general usability for visual urban sprawl, urban fabric
or natural features to be analysed, the result is briefly summarised in the last column of Table 1.
While low-resolution images still permit to roughly track city borders, spatial ground resolutions
between 25 and 40 feet (7.6–12.2 m) were found not precise enough to delineate buildings from other
features and were excluded from further analysis.

Table 1. Reconnaissance photographic film satellite imagery specifics and usability for visual analysis
of urban sprawl (data from USGS Earth Explorer platform, accessed between July and Sept 2020,
when not indicated otherwise).

CORONA
Satellite Types Time Coverage Spatial Resolution

(up to) Usability/Limitations for Urban Features

KH-1 8/1960 40 feet (12.2 m) General locations of large urban settlements
KH-2 12/1960–7/1961 30 feet (9.1 m) General locations of large urban settlements
KH-3 8/1961–12/1961 25 feet (7.6 m) General locations of large urban settlements
KH-4 2/1962–12/1963 10–25 feet 1 (3–7.6 m) Mapping urban borders, streets

KH-4A 8/1963–9/1969 9–25 feet 1 (2.7–7.6 m) Mapping urban borders, streets
KH-4B 9/1967–5/1972 6 feet (1.8 m) Mapping urban borders, streets
KH-5

ARGON 5/1962–8/1964 460 feet (140.2 m) Not useful

KH-6
LANYARD 7/1963–8/1963 6 feet (1.8 m) Mapping urban borders, streets

KH-7
GAMBIT 7/1964–6/1967 4, later 2 feet 1

(1.2–0.6 m)
Very good; building types

KH-8
KH-8A

GAMBIT
1966–1984 2 6 inches 1, 2.5 inches or

better 2 (15.24–6.35 cm)
Could not be accessed (not declassified yet)

KH-9 3 3/1973–10/1980 20–30 feet (6.1–9.1 m) General locations of large urban settlements
KH-9 HEXAGON 6/1971–4/1986 2–4 feet (0.6–1.2 m) Very good; building types

Data details in sources [32] 1, [30] 2, and KH-9 data published in the 2002 batch 3.

Based on the first data screening results (Table 1), the time range of 1962–1984 was identified for
further analysis (iii). While the overall range of missions of KH-1 to KH-9 ranges from 1960 to 1986,
available images on the USGS platform are limited to the years from 1962 to 1984 when launching
missions started to become successful. To be able to detect urban structures for analysing potential
natural hazard damages, the range of data was further narrowed down to resolutions of around 10 feet
(3 m, KH-4 products, see Table 1) or better. To identify suitable areas and cases (iv), major disaster
events worldwide between the years 1962–1984 were researched using the DESINVENTAR, EM-DAT
databases and web-search. Results are displayed in Table 2, and cases were selected based on the
highest numbers of casualties, area size, variety of disaster types and countries, and availability of
CORONA images. Respective locations were checked (v) on the usability of reconnaissance imagery
available from the USGS Earth Explorer website for that time frame by checking available images on
their fit to the area of interest, resolution and cloud cover via the preview images, too. Very few cases
could be identified where images before and after a disaster event are available in sufficient spatial
resolution to permit the identification of both hazard and urban features. One major reason is lack
of CORONA data of sufficient temporal and spatial resolution, cloud coverage or time fitting close
enough to the events. In some cases that were checked, already one year after a flood or earthquake,
no traces could be found of the natural hazard features or damaged houses anymore. It was especially
difficult, however, to find images before and after an event in sufficient time intervals below one year
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or better, three months. This is not conclusive, since certain events might have been missed out in the
visual screening of many images by the author. Additionally, other disaster events were not selected
since they resulted in lower numbers of casualties. The screening results in Table 2 in the last column
indicate the problems in finding both an image within at least 3–6 months before and after the event of
sufficient resolution and without cloud coverage. Those images finally selected for this article and the
assessment results, are marked with an X.

Table 2. List of major disaster events between 1962 and 1984 and results of screening for available
high-resolution CORONA images (based on information by USGS, DESINVENTAR and web search).

Location Hazard Occurrence Fatalities 1 Available High-Resolution
Satellite Data

Qazvin, Iran Earthquake 1962, Sept 1 12,000 1973

Hamburg, Germany Coastal flood 1962, Feb 16–17 300 Not useful

Skopje, Macedonia Earthquake 1963, July 26 1000 Not useful

Longarone, (Vaiont), Italy Landslide 1963, Oct 9 2000 Not useful

Hope, BC, Canada Landslide 1965, Jan 9 4 Not useful

New Orleans, USA Hurricane 1965, 27.8.–13.9. 80 29-MAY-65

Florence, Italy Flood 1966, Nov 4 100 Not useful

Xingtai, China Earthquake 1966, March 22 8000 KH-4A

Dasht Bayaz and Ferdow, Iran Earthquake 1968, Aug 31 12,000 KH-4B

Tonghai (Kunming, Gejiu), China Earthquake 1970, Jan 4 15,000 KH-4B

Yungay, Peru Earthquake 1970, May 31 70,000 1966 KH-4B

Yungay, Peru Landslide 1970, May 31 22,000 1966 KH-4B

Qir, Iran Earthquake 1972, April 10 5300 KH-4B

Rapid City, South Dakota, USA Flood 1972, June 9 230 KH-4B (until May 1972)

HongKong Landslide 1972, June 18 150 Not useful

Darwin, Australia Cyclone Tracy 1974, Dec 25 70 Not useful

Tanghshan, China Earthquake 1976, July 28 240,000 Only before event: KH-4B
1966, 11-JAN-1976

New Jersey, USA Wildfire 1963, April 7 Low resolution 1963-08-29

Big Sur, Monterey, California, USA Wildfire 1977, August 4 Low resolution 1978

Laguna Mountains, CA, USA Wildfire 1970, Sept–Oct 16 KH4B, 19-NOV-1970

Volcán de Fuego, Guatemala Volcanic eruption 1974, Oct 15–21 0 Until 1969

Mount St. Helens, USA Volcanic eruption 1980, May 18 50 KH9-16, 30-JUNE-1980,
D3C1216-100112A003

1 Since fatality numbers often vary, numbers were rounded down.

Based on the preliminary data screening results so far, additional cases were selected (vi) that
can demonstrate urban sprawl or natural hazard features. Visual and descriptive interpretation of
the images was conducted to demonstrate usability and limitations. Several sources of imagery from
CORONA missions were selected (vii) to demonstrate the capability of extracting urban sprawl and
natural hazards. Additionally, openly available aerial images from the USGS portal were selected
where suitable CORONA images were not available in high resolution (Table 3). For comparison of
changes of urban features over time, openly available satellite data with high resolution were selected
from OrbView3, since this was the most recent (2004–2007) data in the USGS Earth Explorer archive,
with a much better spatial resolution (up to 0.9 m per pixel) than Sentinel data (10 m). IKONOS images
were not available. Other platforms were tried, too, without success. Table 3 provides an overview
of locations and images used in the results section. Images were analysed regarding histograms,
then min–max and contrast adjusted for better display.
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Table 3. High-resolution CORONA images, aerial photography and OrbView3 satellite data used for
visual interpretation (based on information by USGS).

Location CORONA Images Images for
Comparison

Hazards/Disaster
Events on Images Lat Lon

El Alto/La Paz,
Bolivia

KH-7, 5-JUNE-1967,
DZB00403800013H008001_b 1

OrbView3,
23-JUNE-2004,

001649892

Erosion and pluvial
flood hazards −16.5 −68.2

Santiago de
Chile, Chile

KH9-3, 11_JUL-1972,
D3C1203-100061F023_a 1

OrbView3,
30-MAR-2006,

00161416

Earthquake and flood
hazards −33.4 −70.5

Yungay, Peru KH-4A, 11-MAR-1966,
DS1030-1030DA028_a

Aerial photo,
14-JUL-1970,

AR6148000205138

Earthquake and
landslide 1970, May 31 −9.12 −77.6

Qazvin, Iran

KH9-6, 22-AUG-1973,
D3C1206-300399A001,
KH9-14, 19-AUG-1978,

D3C1214-401249F010_a 1

Aerial image,
15-SEP-1955,

ARA0158M0915124
OrbView3,

6-MAR-2005,
001640111

Earthquake 1962,
Sept 1, flood hazard 36.3 50.0

Mount
St. Helens, USA

KH9-16, 30-JUNE-1980,
D3C1216-100112A003

Volcanic eruption and
forest fire 1980, May 18 46.2 −122.2

1 Ordered from USGS Earth Explorer for this article.

3. Results

Results are presented based on the selection process indicated above concerning urban sprawl,
natural hazards and in some cases, disaster sites. A multitemporal image comparison was conducted
by manual visual image interpretation.

3.1. Urban Change and Sprawl into Hazardous Areas

Urban growth or sprawl can easily be detected using CORONA images by visual interpretation of
the greyscale photographic images if spatial resolution and cloud cover permit it.

3.1.1. El Alto and La Paz in Bolivia

The two cities of El Alto and La Paz in Bolivia, close to the Peruvian border and Lake Titicaca
have experienced massive urban growth since at least the 1970s [73]. This can be monitored by several
temporal snapshots from CORONA and other satellite images. Figure 1 shows a CORONA image
from the year 1967, KH-7, with many areas around the airport still undeveloped. For comparison,
an OrbView3 image from 2004 shows the extend of urban growth. Both images are not corrected to
the same northern orientation since adjoining other tiles or images were not available to the West for
KH-7 and further to the East for OrbView3 only with cloud cover. Erosion at the escarpment [74]
of the ‘altiplano’ of El Alto bordering the valleys of La Paz (Figures 1 and 2), and related possible
landslides and known problems with flood gushing down these steep valleys are one of the natural
hazards affecting El Alto and La Paz [75,76]. Dependence on glacier melt for water supply and its
interrelation with glacier lake outburst flood risk is another topic [77]. What has been former urban
borders, where urban sprawl has taken place, now are two cities grown into a joint metropolitan area.
The high resolution allows to visually compare gullies formed by erosion (Figure 2a, indicated by the
arrows) that have been modified by construction works of the expanding city (Figure 2b) and buildings
and roads exposed on both the plateau rim as well as on the steep flanks.
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Figure 1. El Alto/La Paz, Bolivia. Area east of the airport in (a) 1967 and (b) 2004, showing urban
growth on the plateau of El Alto, districts 1 and 2, towards the city of La Paz. White box A showing
position of Figure 2. (Data, incl. coordinates: Table 3).

Figure 2. El Alto/La Paz, Bolivia. Area east of the airport in (a) 1967 and (b) 2004, showing urban
growth into steep flanks of a valley (Data: Table 3).

3.1.2. Santiago de Chile

Santiago de Chile in Chile has experienced similar urban growth and sprawl along its western
borders in a similar period, visible on CORONA images of the year 1972 and in the year 2006 on
OrbView3 images for comparison (Figure 3). Additionally, as it is the case with La Paz, this urban
growth expands into areas potentially exposed to multiple natural hazards. In the case of Santiago
de Chile, the growth to the east expands into mountainous terrain with landslide and erosion risk,
exacerbated by the nearby San Ramos Fault [78]. River valleys (Figure 3a) expose settlement and
infrastructure to river floods, with steeper valleys and snowmelt from the Andes contributing to
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the hazard development. By comparison, in the year 2006 the city has grown over the pediment to
the east and even onto the mountains, but also the river has been trained and enclosed by built-up
area (Figure 3b). Several hills within the 2006 city area have now been fully overgrown by the built
environment (Figure 4, and white box B in Figure 3). Additionally, a former ravine/riverbed with a
form of a gully (in Figure 4a) has been filled, then overgrown with roads and settlement area (Figure 4b).
This hill and the former riverbed close to it are areas where exposure towards floods and erosion
should be analysed further. However, transformation also includes more vegetation cover on that hill
as compared to the year 2006, which is a good measure to reduce erosion.

Figure 3. Santiago de Chile, Chile. Area east of city centre in (a) 1972 and (b) 2006, showing urban
growth into bordering mountainous area. Inlet in (b) shows trained river area, and the white box B
indicates the location of Figure 4. (Data: Table 3).

Figure 4. Santiago de Chile. Area east of city centre in (a) 1972 and (b) 2006, showing hill and rivers
transformed by urbanisation. (Data: Table 3).
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3.2. Natural hazard and Disaster Examples

It was quite difficult finding examples of natural hazard events on CORONA images, due to
several factors. First of all, the availability of images in high resolution and without cloud cover before
and after an event. However, the search on suitable events also revealed a gap in the documentation of
natural hazard events in general, and in South America more specifically (see discussion). It also seems,
that even despite known underreporting in the time before the 1970s [79,80], also natural hazard events
were less common for hazards such as hurricanes or earthquakes, as in comparison to the later 1980s or
earlier than the year 1960 [81]. Besides, for events such as earthquakes or wildfires, identifying traces of
damages with the available spatial resolution was also found challenging. Therefore, in the following
not only examples from Latin America and Asia, as was originally planned, are shown, but also from
other countries hit by natural hazard events between the years 1960 and 1984.

3.2.1. Landslides and Mass Movements

Certain types of gravitational mass movement can be detected quite well on photo imagery since
the surface reflection does drastically change over often large swathes of land. While large rock or
mountain slides will be quite difficult to detect if the surface with vegetation can stay more or less intact,
certain types of landslides such as mudflows result in different surface material as compared to the
surrounding landscape, with characteristic homogenous reflectances. The example of the landslides
that took place in rural Peru in 31 May 1970 is one such case of a material mass movement. Triggered by
the Ancash earthquake, the northern part of the Nevado Huascarán mountain collapsed, causing a
major glacier icefall that together triggered a massive debris flow or avalanche [82]. The (old) city
of Yungay (Figure 5a) that had around 17,000 inhabitants was almost totally covered by that debris
avalanche (Figure 5b) and only 400 people survived [83]. The old city of Yungay is left as a memorial
and the new city of Yungay now is situated immediately north of it. The debris flow came down at
speeds between 280 and 400 km per hour over more than 11 km, and people on the slightly elevated
hill of the cemetery (Figure 5d) were among those who survived. The CORONA image of 1966 shows
the settlement before the disaster, and while the resolution is not optimal at around 9 feet (2.7 m) or
more, the settlement area can be detected (Figure 5a). The near-infrared aerial images were selected for
comparison since no high-resolution CORONA image was available after the disaster (Figure 5b–d).
They reveal the extent of the damage quite in detail.

Figure 5. Yungay, Peru. The urban area before and after destruction by a landslide (a) 1966 (CORONA
image) and (b) 1970 (Aerial image, near-infrared), with (c) (white box A in (b)) details of debris covering
road layout and city area and (d) (white box B in (b)) round shape of elevated cemetery area saving
people due to elevation (Data: Table 3).
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3.2.2. Earthquake and Flood Hazard

Qazvin and the nearby plain close to the Ipak Fault, Iran experienced a major earthquake in
1 September 1962, (Table 1) with 12,225 victims [84]. This area is notable since it is along with the
Alborz mountain range with major fault lines close by. Cities in close distance of around 150 km such
as Tehran and Karaj, have experienced massive urban growth since the 1970s [85], and the city of
Qazvin also experienced great urban growth rates (Figure 6). However, urban growth started a bit
later and is not as massive in scale as Karaj, for example. While the images reveal that Qazvin has
doubled its built-up area between the years 1973 and 2005 (Figure 6), the city of Karaj has expanded
more than 10 times in a similar period [85]. No images close to the earthquake fault line could be
acquired, and in Qazvin itself, no traces of earthquake damage could be detected (Figure 7). This is also
probably due to a lack of images close to the earthquake in the year 1962. However, it is of interest, too,
how a city develops in the vicinity to natural hazards. Additionally, for Qazvin it seems that built-up
area has expanded into hazard-prone areas such as riverbeds. Close up views of the images reveal a
transformation in the urban fabric between the years 1955–2005 (Figure 7). Built-up area expands into
the former riverbed, including new building types with larger blocks since the year 1973, south of the
northern roundabout, followed by smaller houses even closer to the river in the year 1978.

Figure 6. Qazvin, Iran. Urban area in (a) 1955, (b) 1973 and (c) 2005. (Data: Table 3).
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Figure 7. Qazvin, Iran. Urban area around a riverbed in (a) 1955, (b) 1974, (c) 1978 and (d) 2005. (Data: Table 3).

3.2.3. Volcanic Eruptions

Volcanic eruptions in South America happened in the time between the years 1962–1984, but either
documentation is scarce or major urban areas were not affected. The example of Mount St. Helens
was selected, although it also did not affect an urban, because it is one well-researched and known
event, and reveals many different effects of a volcanic eruption. The event included a collapse of a
mountain flank, lava flows (Figure 8a) and burnt forest area (Figure 8b). The near-infrared CORONA
image reveals areas of forest still intact as well as burned (Figure 8c, arrow). That differentiation is
more difficult to discern in the same image converted into greyscale (Figure 8d).

Figure 8. Mount St. Helens, Washington, USA. Lava lobes in (a), (near-infrared) lava streams cutting
through the forest in (b), burnt forest in infrared in (c) and in (d) converted to greyscale for comparison.
(Data: Table 3).
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4. Discussion

The main research question guiding this article, “How can satellite imagery ranging back to the
1960s help to map urban sprawl and reveal information about natural hazard risk?” was addressed by
both investigation of availability and usefulness of materials and methods in Section 2 and expressed
by selected examples from cases in five different countries in Section 3. To detail and interpret this
further, this discussion section follows the sequence of the four more detailed research questions.

4.1. Addressing the Usefulness for Urban Sprawl and Natural Hazard Identification

Regarding the detailed research question, “How useful is old declassified satellite imagery to map urban
sprawl and natural hazard risk?”, the usefulness in general has been verified, with some limitations
outlined in the following. ‘Usefulness’ was analysed in the sense of opportunities provided by such
declassified satellite data for visual interpretation. While usage for visual interpretation or DEM
extraction of CORONA data varies over disciplines, it also appears as if CORONA data is not as widely
applied as other satellite data (see Section 1.3). Especially for the topic of natural hazards, few cases
could be identified by the literature search, while applications for urban growth or sprawl are more
common. Limitations may lie within the literature search, see the next research question below, or since
such data is less known or since it might be less useful. However, the question is not why it is not used
more widely since this would demand a more qualitative investigation by a survey on authors using
other satellite data. However, this might be less informative than analysing the options for natural
hazards detection by investigating the data. Hence, the usefulness of CORONA data was then analysed
by specific examples of urban areas and natural hazard processes in the results section. The results of
the CORONA images show that urban features, especially buildings (mainly, roofs) and roads, can be
identified when high-resolution images are selected, without cloud cover. This excludes a large number
of images provided by the USGS Earth Explorer platform, which often are available with cloud cover
or with medium or low resolution. ‘High-resolution’ follows the nomenclature provided by USGS for
the declassified class 1 suite of CORONA images, where spatial resolutions of 6 feet (1.8 m) or better
(Table 1) were found especially useful to investigate houses whether they are intact after an earthquake
or other natural hazard impact, or trees were felled by a storm. KH-4A was also used in the Yungay
case for lack of alternatives and the resolution of around 9 feet (2.7 m) was just useful to identify the
city area of old Yungay (the year 1966 was a later stage of the missions and therefore likely to result in
the better range from 9 to 25 feet (2.7–7.6 m) (see Table 1). The manual visual image interpretation
highly depends on the geometric resolution resp. image quality and some sources on remote sensing
in general suggest a minimum of 1 m (around 3 feet) for identifying buildings, for example [86].
Sources related to CORONA image interpretation of missile launching sites or airports report that
even in medium resolution interpreters with a certain training could identify individual aircraft or
missile models [29]. Training and experience is also reported for other fields such as archaeology or
similar data such as aerial images [63,72]. In this article, identification of individual features such
as buildings may have been constrained by the authors’ lack of training and experience. Individual
houses or structures could only be identified when they exposed a peculiar pattern, such as public
spaces with crossing roads (Figure 9a, example box C). Other features are vaguely recognisable in the
CORONA image, such as roads (Figure 9a, example box A) or the circular walls of a cemetery mound
(Figure 9a, example box B). The aerial image from the year 1970 in near-infrared shows much higher
spatial resolution (Figure 9b,c), but only covers around 1.5 km per image, while the CORONA images
typically cover an area approximately 14.6 km long and 227.8 km wide [29]. The higher resolution of
the aerial image permits the comparison of intact and partly collapsed rooftops (Figure 9, top right
image, house indicated by the white line).
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Figure 9. Detail of Yungay city, Peru in (a) KH-4A image from 1966 with an aerial image from 1970 in
comparison (b,c), showing limits of spatial resolution (Data: Table 3).

For comparing the resolution, aerial images were shown in Section 3, as for the case of Yungay,
or relatively modern OrbView3 images for other cases. They show how more details can be detected
when using spatial resolutions of 2 feet (0.6 m) or better. Some cases of data analysis are not shown in
the article, where for example the city of Kunming in China was analysed on images from the year
1965 (KH-7 image with high resolution), and after the earthquake in the year 1970, with a KH-4B
image from 1970, but house structures could not be reliably compared for damages, due to the spatial
resolution of the KH-4B image not being sufficient. Certain types of natural hazard were found easily
identifiable, such as landslide debris cover, as in the results section it is demonstrated for the case
of Yungay. This is due to the mudflow characteristic of a rather homogeneous surface that also is
distinct from the surrounding land use features, therefore permitting easy identification. The volcanic
lava or ash/debris flows from Mount St. Helens cutting through forests also exhibit a stark contrast
easy to identify. Urban growth into former riverbeds (Figures 3 and 8) as well as into erosion-prone
areas around gullies (Figures 2 and 4) or flanks of hills and mountains (Figures 1 and 3) are areas
that warrant further investigation since CORONA images here really help with change detection and
also, identification of previous surfaces before urban development has overgrown them. Earthquake
damage, but especially forest fire traces or forest storm damages were found difficult to identify.
Several cases of larger forest fires in California or South America (Table 2) were analysed but spatial
resolution often was not high enough. Additionally, other spectral information than greyscale provides
better opportunities to distinguish burned versus intact forests, as the Mount St Helens infrared
images (Figure 8) reveal. However, colour images or infrared images were rather rare on CORONA
missions which limits their availability. Image interpretation however also depends on the skills of
the interpreter on image analysis [63] and trained experts are capable of identifying features even
under lower resolutions than shown in this article [29]. Coming back to the large range of image
interpretation uncertainties identified in the state of the art (Section 1.1), the following seemed to play
a major role in this article; existential uncertainty did not play a major role, since the analysis was
informed by a preselection of images from locations where historically, natural hazards had taken
place. Extension uncertainty played a role especially for the Yungay case since it was hard to find the
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buried city of old Yungay under the very large extent of the debris avalanche. Geometric uncertainty
of measuring the boundaries of objects has not been a major constraint, except for the details discussed
for each image, such as building size, etc. It was found that image interpretation also depends on
many factors such as a definition of what is a city boundary, too. In this article, only buildings and
directly related spaces such as parking lots were mapped as a boundary, while adjacent parks or larger
empty space areas were not mapped as urbanised areas. Comparison with recent satellite imagery
helped in image orientation, but often only few features could be identified such as river courses to
help identify locations within a city that had overgrown previous land cover. Concluding, individual
image interpretation skills and personal perception certainly played a major role in this article and the
examples presented.

4.2. Limitations of Data Availability

Availability of images is also illustrated by the findings of data according to known disaster
cases (Table 2) and the examples of results in Section 3. However, these findings also point to several
limitations which are addressed by the following research question; “Where are the limitations and what
additional range of years going back from the 1980s can be added to map urban sprawl and natural hazards using
openly available data?” Therefore, limitations have been verified, but also an additional range of 20 years
of data usability since 1960. In the results section, example CORONA images from the years 1966–1980
were used, and the temporal change detection range extended by aerial images back to the year 1955,
and by high-resolution satellite images from OrbView3 to the year 2006 (Table 2). From significant
disasters (Table 1), examples from the earthquake in 1962 in Qazvin, Iran up to the Mount St. Helens,
USA eruption in the year 1980 are provided. However, it became evident that the declassified data
batch number two, released in the year 2002 was hardly useful since most images are provided only in
resolutions of 20 feet (6.1 m) or more. The declassified data batch number three from KH-7 and KH-9
images was found especially useful due to its high resolution. Since this batch was released in the
year 2011, it might be a valuable resource for other researchers, that may have been overlooked a bit.
The declassified data batch number one (USGS Earth Explorer platform) dates back to the year 1960
and is a very useful source to expand urban growth change detection assessments. Finding data close
to disaster events, however, is quite a challenge due to limited image availability or coarse resolution
or cloud cover. Indirectly, this promotes case study selection from arid or semiarid regions, too, due to
more chances of low cloud cover, as compared to humid regions with frequent clouds and related
weather patterns. An exception might be areas of interest to the original mission purpose such as
Vietnam, where intelligence information about war resources was of key interest to the USA [29],
and hence, a great number of images are available for this region when checking the USGS portal.
Comparing the same periods of urban growth between cities such as La Paz/El Alto and Santiago
de Chile generally are possible, but exact periods often difficult, since image availability and quality
(cloud cover) diminish options to find the same years. For certain applications such as vegetation and
land-use change, this is even more difficult when trying to find images from the same month or season.
To provide an example for the search on natural hazards, CORONA images capturing earthquake
damage were not found for Latin America for that period, and some areas such as Kunming or Xingtai,
China or Qir, Iran were tried, but either image resolution was not sufficient, or CORONA or aerial
imagery images either before or after were not available.

For consistency, only the USGS Earth Explorer platform was accessed and used in this article.
Original archives were not visited which provide on-site film negative inspection, also due to travel
restrictions during the on-going SARS-CoV2/corona pandemic. Other satellite image archives were
investigated, but no comparable data accessibility of CORONA images was found. Additionally,
for more recent images with similarly high resolution as the OrbView3 data, no comparable site or
satellite product was found with a similar coverage fitting to the case study sites selected, or with
similarly high resolution, without charge. The idea was to demonstrate how openly available data can
be used, however, some of the scenes were only accessible by preview images. Hence, the CORONA
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image scenes for El Alto, Santiago de Chile, Qazvin and Kunming, China (not shown) were ordered
from the USGS site and delivered within 10 days for USD 30 each plus a USD 5 service charge.
The image used in Figure 11b,c had already been ordered in 2003 for then USD 18 for landslide
assessment [87]. Other images were available for free download already and did not require payment.
Interestingly, although the service charge was paid, those images were not made immediately available
for free download until submission of the article, around two months later. The information about costs
can be helpful to fellow researchers without funding or partners in developing countries especially [88].
Delivery times also are important in planning research and have an impact on number of additional
scenes to be checked.

However, in addition to data availability reasons related to CORONA data and the data platform,
other reasons play a role, too. Identification of suitable images is also influenced by the search method
of the author, related to finding suitable disaster cases as well as literature using CORONA images.
Finding information about natural hazard events or related disasters in the 1960s and 1970s, but also
in the early 1980s was found difficult in comparison to events after 1985, or the 1990s. Especially for
South America, even data entries in the United Nations database of DESINVENTAR often are rather
vague, scarce or start only in the 1990s, for example, entries for forest fires in Chile. Other studies
confirm that documentation for forest and wildfires appears to be coarse, with reliable data for Chile
starting in the years 1984–85 [81]. The EM-DAT database is even less useful in this case, since the
detailed data tables provide few further information on the events, additional sources or damage
types, as compared to DESINVENTAR. For specific natural hazards, certain data platforms were also
tried, such as the Darthmouth Flood Observatory which is great for events until it stopped recording
in the year 2008, but it also only started recording events since 1985. There were no findings on
earthquakes in South America, hurricanes, or wildfires that were significant enough to inflict damages
over areas large enough or, where CORONA images were available in either sufficient temporal or
spatial resolution. Hence, the original ambition of this article was given up, to cover South America for
some context consistency, only. However, from the perspective of visual interpretation, other factors
such as cultural or political context were found less significant for this demonstration of usability of
CORONA data research and, therefore, examples of significant natural hazard events worldwide were
added. While more than the 21 cases in Table 2 were searched, certainly many other good examples
are likely to be missed by the author. Especially examples of coastal or river flooding are missing.
However, since the main purpose of this article is to illustrate the general wider applicability of using
CORONA data in combination with other aerial and satellite data for change detection of urban and
natural hazard features, the selection may help to indicate this at least.

Further limitations may lie in the identification of studies and literature already dealing with
CORONA image analysis of urban growth, sprawl or natural hazards and other hazard types.
Search terms are documented in a list in Appendix A and this list indicates also areas for further
literature search. To enable researchers worldwide free access to the same search platform, the free
Google Scholar search site was selected. A literature search for the main body of the introduction
and Section 2.2 was conducted on 23 August to 5 September 2020. It cannot be excluded, that there
might be biases by the search algorithm trained by previous searches by the author. However, since
the main purpose of this article was not to provide an exhaustive literature review article, the selected
examples are from either highly cited papers or those influential in starting research in their discipline.
The search was also hampered a little bit by the collision of search terms similar to the same terms
or abbreviations used in other contexts. For example, the term “GAMBIT” is overlapping with the
normal usage of the word ‘gambit’ in other contexts, not the satellite name. The term “CORONA” was
mainly colliding with authors with such a name, interestingly, not with the SARS-CoV2 ‘corona’ virus
or COVID-19 infection at the time of the search.
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4.3. Extracting Additional Information Next to Location and Exposure

Referring to the third research question, “With respect to urban change detection, what additional
information about urban and physical morphology can be derived from these images?” the usefulness
for change detection has been verified, as well as some further examples of information to be derived
such as change of building density, capturing previous land surfaces, identification of water irrigation
infrastructure and digital elevation models. One example is building and road densification processes
related to urban growth. This includes less space between individual buildings or groups of buildings
(Figures 3 and 4) or construction of more roads and connection on the same building area (Figure 7).
In addition, also visible are modifications in house construction, especially by changes in rooftop
diversity and material types (Figure 7a). Riverbeds closed in or overgrown by buildings and roads
and river training by artificial embankments or walls can also be identified (Figures 3 and 10a).
CORONA but also even older aerial imagery can help to identify presettlement land surfaces too
(Figure 10b). This is especially helpful in hazard-prone areas such as former riverbeds or sediment
fans, river valleys (Figure 10a) or gullies overgrown (Figures 2 and 4) or hills not only overgrown but
transformed in their shape by roads and property lots incised into the hill slopes (Figure 4).

Figure 10. Details of (a) Santiago de Chile, north of the city centre, Plaza Baquedano on (a) KH9-3
image from 1972 and (b) riverbed in El Alto, directly west of the airport on KH-7 image from 1967
(Data: Table 3).

There are, however, even more opportunities provided by CORONA data. One important area
is the application of the stereo-optical photographs taken by the CORONA missions. They permit
not only visual interpretation with specific hardware viewers known from orthophotography and
photogrammetry [31] that adds height information to the observer. This can help to better identify
features such as building heights, topography and more. The availability of stereo-pairs of many of
the images also permits extraction of height information to create three-dimensional digital elevation,
surface or terrain models (DEM, DSM, DTM) [29,54,58–60,89–92]. These are used in literature for
identification of and change detection of artificial human construction of many kinds, including city
dwellings, walls, channels etc. [60]. However, old human channels or irrigation systems as the ‘qanats’
in Iran (Figure 11a) are also important to maintain into modern times for irrigation [93]. However,
they also pose hidden hazards underneath areas overgrown by urban growth in cities such as Tehran
when becoming unstable [94].



Remote Sens. 2020, 12, 3246 19 of 26

Figure 11. Feature identification eased by (a) snow cover helping to find water irrigation tunnel entry
pits for maintenance in Tabriz, Iran (Data: KH-7 image from 5 Feb 1967, DZB00403600041H010001_a).
Identification of narrow mudflows in Alborz mountains, Iran, eased by DEM overlay (b) on the top
right image and of the (c) landslide scarp (A) and slump mass (B) on the lower right image (KH-4B
from 31 May 1970, DS1110-2170DF039).

Of course, DEMs are also very useful for identifying any type of gravitational mass movements
such as landslides, mudflows (Figure 10), rock falls, avalanches or glacier outbursts, based on any
type of high resolution aerial or satellite data [95]. There is a strong interrelation between urban
sprawl and topography-related natural hazards, due to hill and mountain slopes being attractive
settlement options in growing large metropolitan areas to escape smog, heat and traffic. Therefore,
it can be observed in several countries around the world, in Tehran, Iran as well as in Santiago de Chile,
that urban growth reaches bordering mountainous areas, despite known earthquake fault lines nearby
and the additional risk of landslides, as well as pluvial floods and erosion. Additionally, it is also
interesting to combine such satellite data with additional information such as demographic statistics,
which in some cases reveals that the more affluent occupy those areas. In other areas, it can be the
urban poor, seeking cheap land in the favelas in Brazil, for example. In the case of the example from
Santiago de Chile (Figure 4), the overgrown hill reveals, by close inspection in map portals such as
Google Maps, that it is characterised by houses with swimming pools on the hill, making it likely that
this points to wealthier neighbourhoods. Due to data property issues, however, such recent satellite
imagery is not on display here.

4.4. Recommendable Aspects and Areas for Further Research

While the above sections already have indicated areas of interest for further research, the final
research question, “Which are recommendable aspects and areas for further research?” highlights two areas
specifically. Urban borders are of general interest for natural hazard research, too, since cities are
expanding into areas with novel hazard exposure. Since more and more knowledge about natural
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hazards and related risks is produced [2] and also made public by many cities themselves [8], and more
and more risk and planning maps publicly available [96], it could be expected that building into
hazard-prone areas is avoided or at least, accompanied by respective building or management measures.
This appears to remain a challenge even in areas with high national importance, such as megacities
or national capitals, though [85]. This often is related to different responsibilities of administrations,
or competing interests and the attraction of those properties still available in city centres close to the
river of on the mountain ranges. It would be interesting to conduct more research on urban areas that
have recently expanded and what percentage grows into more or less hazard-prone areas, adding to
the total ratio of exposed area per city. In the case of Santiago de Chile, it appears that especially growth
into the Eastern parts of the beginning mountain ranges could be of special interest, since it is growing
towards a major earthquake fault line and hence, at least building codes and construction types should
be adapted. However, urban sprawl is also of special interest, within urban areas but also at the
borders, when it leads to different types of settlements with different infrastructure supply quality.
For example, areas in the North of Santiago de Chile differentiating into more wealthy areas with
regular tap water infrastructure next to poorer settlements reliant on water trucks [97]. Or comparing
areas in the West of Santiago de Chile, which experiences a lot of growth and sprawl and includes more
fractions of non-wealthy groups, but where health infrastructure is not keeping pace [98]. Santiago de
Chile is just one example, and the same would be of interest for the vast expanding case of La Paz,
growing into even more remote flanks of valleys and mountains, and El Alto growing rapidly into the
altiplano plain with broad river flood-prone areas.

A second area recommendable for further investigation is the usage of similar but much less
regarded reconnaissance satellite imagery. Especially from Russia and China, it is known that they also
conducted satellite missions similar to CORONA mission of the USA for photoreconnaissance. However,
while the Russian Zenit satellites, based on Vostok modules also retrieved photoreconnaissance data
since the year 1960 (DAY p. 164), they are not as easily accessible. This is due partly to the Russian
language used and hence, problems for English speaking people, but also, a public access central data
platform similar to the one by USGS seems to be missing, still. Stereo pair photo data were gathered
from Komet missions, under the SPIN-2 project, since the year 1981 with the sensors KVR-350 and
KVR-1000 [99], with a spatial resolution of up to 10 or 2 m or even better and areas covered measuring
from 300 × 200 km to 40 × 160 km, respectively [100]. Several sensors exist, similar to KVR-350
and 1000 [101] and follow up missions have names such as Zenit-4 or Resurs-F1. Applications seem
similar to CORONA at first sight, such as including applications for archaeology [72] or measuring ice
masses [102]. Due to language problems, also Chinese reconnaissance satellite data before the year 1985
could not be found immediately (see Appendix A). However, it would be worthwhile to complement
the picture of available pre-1980 satellite imagery beyond data from the United States only.

5. Conclusions

While CORONA photoreconnaissance satellite imagery has found some application in fields
ranging from land use to urban growth change and for certain natural hazards as well, it seems
the full potential of images has not been exploited yet. Using those images for change detection
alone, in urban growth and urban sprawl studies, could extend the range often used back to the
beginning of Landsat image availability in the 1970s to the earliest available CORONA images in the
year 1960. Besides, more and more aerial images become publicly available through platforms such as
the USGS platform Earth Explorer and can help to further extend the range of years to the 1950s or
even earlier. As for natural hazards, it is found that not for all types of natural hazards and not all
countries CORONA imagery has been applied yet. However, the real value lies in combining both
change detection of urban growth and natural hazards since urbanisation is ongoing and therefore,
many cities are expanding their area into new hazard-prone areas such as riverbeds or mountains.
CORONA imagery not only reveals growth into such areas but also provides a glance onto the
landscape before urbanisation. This may help to identify former riverbeds, hills, erosion channels or
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even former underground irrigation structures as shown by the examples in this article. Additionally,
since there is an ongoing trend on urban research concerning disaster risk, it may also be worthwhile
analysing sprawl into different types of topographic environments in compliance with studies on
different patterns of vulnerability [103] of people, their buildings and infrastructure.
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Appendix A

List of search terms used to identify literature:
CORONA imagery
CORONA image AND urban sprawl OR urban growth
GAMBIT urban growth
CORONA image urban growth hazard
CORONA image urban sprawl hazard
CORONA image urban sprawl natural
CORONA image urban growth landslide
CORONA image landslide,
CORONA image flood,
CORONA image wildfire,
Incendios forestales bolivia historicos
China satellite reconnaissance image
CORONA satellite AND Santiago de Chile OR La Paz OR Yungay OR Qazvin OR Mount St. Helens
digital elevation CORONA satellite
digital surface CORONA satellite
digital terrain CORONA satellite
photogrammetry CORONA satellite
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