
Supplemental Material for:

The Applicability of SWOT's Non-Uniform Space-Time Sampling in Hydrologic Model Calibration Cassandra Nickles ¹, Edward Beighley ^{1,2} and Dongmei Feng ³

- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02215, USA; r.beighley@northeastern.edu
- ² Department of Marine and Environmental Sciences, Northeastern University, Boston, MA 02215, USA
- ³ Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst 01002, MA, USA; dongmeifeng@umass.edu
- * Correspondence: nickles.c@northeastern.edu

Contents

Table S1 provides details for the USGS gauges used in the study, active between 2010–2018. Table S2 compares statistics for the top 3 model choices depending on which timeseries was used for calibration. Figure S1 plots Kling-Gupta Efficiency (KGE) values vs drainage area for all three calibration methods across the 39 gauges. Tables S3, S4, and S5 provide detailed results of the sensitivity analyses using different synthetic mission lifetimes. Comparisons use different discharge timeseries for hydrologic model calibration: daily gauge (Qg), SWOT temporal sampling (Qgs), and synthetic SWOT sampling with uncertainty as well as the temporal sampling (Qs).

Figure S1. Plot of KGE vs. Drainage area across all 39 gauges for each timeseries calibration method (Qg, Qgs, and Qs).

Table S1. IDs, locations, and drainage areas for 39 USGS gauges in the Ohio River basin.

Gauge ID	Gauge Station Name	Lat (dec)	Long (dec)	Area (sqkm)
03011020	Allegheny River at Salamanca, NY	42.156	-78.715	4165
03024000	French Creek at Utica, PA	41.438	-79.956	2663
03030500	Clarion River near Piney, PA	41.193	-79.440	2463
03041500	Conemaugh River at Seward, PA	40.419	-79.026	1852
03057000	Tygart Valley River at Colfax, WV	39.435	-80.133	3530
03075070	Monongahela River at Elizabeth, PA	40.262	-79.901	13831
03107500	Beaver River at Beaver Falls, PA	40.763	-80.315	8045
03146500	Licking River near Newark, OH	40.059	-82.340	1391
03155000	Little Kanawha River at Palestine, WV	39.059	-81.390	3926
03171000	New River at Radford, VA	37.142	-80.569	7166
03184000	Greenbrier River at Hilldale, WV	37.640	-80.805	4193
03192000	Gauley River above Belva, WV	38.233	-81.181	3411
03197000	Elk River at Queen Shoals, WV	38.471	-81.284	2966
03198000	Kanawha River at Charlestown, WV	38.371	-81.702	27060
03219500	Scioto River near Prospect, OH	40.420	-83.197	1469
03226800	Olentangy River near Worthington, OH	40.110	-83.032	1287
03234500	Scioto River at Higby, OH	39.212	-82.864	13289
03274000	Great Miami River at Hamilton, OH	39.391	-84.572	9402
03303280	Ohio River Cannelton Dam at Cannelton, IN	37.900	-86.706	251229
03322900	Wabash River at Linn Grove, IN	40.656	-85.033	1173
03324300	Salamonie River near Warren, IN	40.713	-85.454	1101
03328500	Eel River near Logansport, IN	40.782	-86.264	2044
03329000	Wabash River at Logansport, IN	40.746	-86.378	9788
03333050	Tippecanoe River near Delphi, IN	40.594	-86.770	4841
03340500	Wabash River at Montezuma, IN	39.793	-87.374	28795
03354000	White River near Centerton, IN	39.498	-86.401	6330
03360500	White River at Newberry, IN	38.928	-87.011	12142
03364000	East Fork White River at Columbus, IN	39.200	-85.926	4421
03373500	East Fork White River at Shoals, IN	38.667	-86.792	12761
03404500	Cumberland River at Cumberland Falls, KY	36.837	-84.343	5120
03421000	Collins River near McMinnville, TN	35.708	-85.732	1658
03431500	Cumberland River at Nashville, TN	36.161	-86.773	33297
03455000	French Broad River near Newport, TN	35.982	-83.161	4812
03466500	Nolichucky River below Nolichucky Dam, TN	36.066	-82.866	3067
03503000	Little Tennessee River at Needmore, NC	35.336	-83.527	1129
03566000	Hiwassee River at Charleston, TN	35.295	-84.760	5952
03584600	Elk River at Prospect, TN	35.014	-86.995	4675
03603000	Duck River above Hurricane Mills, TN	35.930	-87.743	6623
03604000	Buffalo River near Flat Woods, TN	35.496	-87.833	1158

Table S2. Comparison of modeled results (A, B, C) for the top parameter sets selected from table 2 for the median values of the 39 gauges per statistic. Kling Gupta Efficiency (KGE) values are given for the Qm modeled result following each parameter set vs. the Qg, Qgs, and Qs timeseries. The average of the annual statistics derived from the median values of the 39 gauges (mean annual flow and peak annual flow) are given and the percent difference calculated among them.

	Median KGE								
Model	I	A	В		C				
Qm vs Qg	0	51	0.50		0.46				
Qm vs Qgs	0.	48	0.52		0.43				
Qm vs Qs	0	50	0.49		0.46				
	Average	of Annual Media	n Values	Pe	rcent Difference				
Model	A	В	С	A vs. B	A vs. C	B vs. C			
Mean (m³/s)	74	75	74	-1.2%	0.9%	2.1%			
Max (m³/s)	441	484	436	-9.8%	1.1%	9.9%			

Table S3. Selected parameters and resulting median KGE values from the best iterations per timeseries (Qg, Qgs, and Qs) for all tested calibration time periods.

Mission Life	Timeseries	bi	usoilD (m)	Dsmax (mm/d)	Ds	Median KGE	Maximum KGE
	Qg	0.16	1.4	20	0.3	0.51	0.81
9yr (2010–2018)	Qgs	0.04	1.2	12	1.0	0.52	0.79
	Qs	0.16	1.4	40	0.1	0.46	0.71
	Qg	0.04	1.4	40	1.0	0.50	0.77
3yr (2010–2012)	Qgs	0.12	1.2	36	0.5	0.51	0.75
	Qs	0.04	1.2	40	1.0	0.45	0.76
	Qg	0.12	1.0	40	0.9	0.46	0.76
3yr (2013–2015)	Qgs	0.24	1.0	24	0.1	0.44	0.76
	Qs	0.32	1.2	28	0.2	0.43	0.72
	Qg	0.08	1.2	40	1.0	0.49	0.79
3yr (2016–2018)	Qgs	0.04	1.0	20	1.0	0.48	0.75
	Qs	0.04	1.2	12	1.0	0.47	0.72

Table S4. Average median KGE of all sets of top 100 ordered iterations for each timeseries (Qg, Qgs, and Qs) for all tested calibration time periods.

Mission Life	Average of Top 100 Qg Order Iterations Median KGE			Average of Top 100 Qgs Order Iterations Median KGE			Average of Top 100 Qs Order Iterations Median KGE		
	Qg	Qgs	Qs	Qg	Qgs	Qs	Qg	Qgs	Qs
9yr (2010–2018)	0.50	0.49	0.44	0.48	0.50	0.45	0.49	0.50	0.46
3yr (2010–2012)	0.49	0.49	0.41	0.46	0.50	0.40	0.45	0.47	0.44
3yr (2013–2015)	0.46	0.39	0.39	0.43	0.42	0.41	0.43	0.39	0.43
3yr (2016–2018)	0.48	0.45	0.45	0.44	0.48	0.39	0.47	0.45	0.46

Table S5. Validation exercise comparing median and maximum KGE values for the 9-year period using top iteration parameters gleaned from each calibration period per timeseries (Qg, Qgs, and Qs).

Timeseries	9yr (2010–2018) Calibration Period		3yr (2010–2012) Calibration Period			13–2015) ion Period	3yr (2016–2018) Calibration Period	
	Median KGE	Max KGE	Median KGE	Max KGE	Median KGE	Max KGE	Median KGE	Max KGE
Qg	0.51	0.81	0.49	0.78	0.46	0.72	0.48	0.78
Qgs	0.52	0.79	0.50	0.79	0.42	0.70	0.48	0.75
Qs	0.46	0.71	0.44	0.69	0.36	0.62	0.43	0.74