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Abstract: Where urban dwellers live at a fine scale is essential for the planning of services and response
to city emergencies. Currently, most existing population mapping approaches considered census
data as observational data for specifying models. However, census data usually have low spatial
resolution and low frequency. Here, we presented a framework for mapping populations in residential
neighborhoods with 30 m spatial resolution with little dependency upon census data. The framework
integrated remote sensing and crowdsourcing data. The observational populations and number
of households at residential neighborhood scale were obtained from real-time crowdsourcing data
instead of census data. We tested our framework in Beijing. We found that (1) the number of
households from a real estate trade platform could be a good proxy for accurate observational
population. (2) The accuracy of the mapping population in residential neighborhoods was reasonable.
The mean absolute percentage error was 47.26% and the R? was 0.78. (3) Our framework shows great
potential in mapping the population in real time. Our findings expand the knowledge in estimating
urban population. In addition, the proposed framework and approach provide an effective means to
quantify population distribution data for cities, which is particularly important for many of the cities
worldwide lacking census data at the residential neighborhood scale.

Keywords: urban population estimation; remote sensing; fine-scale; census; dasymetric mapping;
nighttime light

1. Introduction

Population distribution data are critical for planning, governance, and research in urban
areas [1-3]. The spatiotemporal resolution of population distribution data affects decision-making and
planning [4], the ability to address city emergencies (e.g., the Corona Virus Disease 2019, earthquakes,
and tsunamis) [5,6], the credibility of some studies (e.g., social equity [7], disaster assessments [8],
and site selection [9]), etc. The most commonly used population data in the world are official census
data, which are always obtained at a low spatial resolution and low frequency (even though the data are
unavailable in some poor or politically unstable countries) [2]. However, the population distribution
in an urban area exhibits strong heterogeneity. This coarse spatiotemporal resolution of census cannot
match the strong heterogeneity of the urban population [10,11]. Consequently, a lack of precise
population data has become an obstacle for governors, planners, and researchers in heterogeneous
urban areas.
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The increasing power of geographic information systems (GISs), massive remote sensing products,
and multiple geospatial big data have improved population estimations, especially at the regional and
global scale [5]. Such advances have greatly improved the spatiotemporal resolution and the standards
of population maps. Additionally, improved classification technology (e.g., land cover/land use) and
many emerging ancillary data have also greatly contributed the improvement of population mapping.
Many population datasets have been developed and are commonly used (Table 1) [5]. Such datasets
include the Gridded Population of the World (Gpw4.11), Worldpop, and the LandScan Global
Population Database (LandScan Global) [5,12,13]. In addition, some studies focus on populations in
small areas, with spatial resolution less than 100 m (Table 1) [14-16]. These cases lay a good foundation
for developing and improving precise population data in urban areas.

Table 1. Detailed characteristics of population data at different scales.

Method Spatial Resolution References
Areal interpolation Balk et al. 2006;
Global-scale (Dasymetric }rjna ing) 100-1000 m Bhaduri et al. 2007;
Y pping Leyk et al. 2019
. . Areal interpolation Li and Zhou 2018;
National/Regional-scale (Dasymetric mapping) More than 100 m Azar et al. 2013; Deville et al. 2014

Dong et al. 2010; Silvan-Cardenas
et al. 2010; Weber et al. 2018;
Wang et al. 2019

Note: The blocks are commonly generated by enclosed transportation networks, which always contain several
residential neighborhoods.

Statistical modeling Less than 100 m/

Local-scale approach block level

Among these cases, the population mapping approaches can be summarized into two
categories: statistical model and areal interpolation. Statistical modeling approach is a historical
and census-independent population mapping approach. This approach is designed to address the
shortcomings of a census, including its high cost, low frequency, low spatial resolution, and labor
intensity [2,17]. Statistical model estimates population directly via the relationship between the
population and population-related factors using statistical models, such as Ordinary Least Squares
(OLS) regression, geographically weighted regression, random forest (RF), and neural networks,
in small areas [14-16,18]. Samples in small areas are obtained by field surveys or a partial census [2].
Although this approach directly estimates the population of small areas or high spatial-resolution grids,
the total population in administrative units can also be estimated by aggregating these high-resolution
predictions [2]. However, there are some differences between the aggregated population data and
census results. For example, the aggregated population in a country using the statistical modeling
approach is always slightly different from the census results in the country.

Dasymetric mapping is a typical areal interpolation approach [17,19,20], and some enhanced
forms have been developed, including those employing empirical sampling for each class [21], limiting
variable estimation [3], and regressions [22]. Assuming that people do not die and are not born,
these approaches redistribute the population from the source units (high level population units) to the
target units (a low level population unit) using population-related ancillary information [19,22-24].
Ancillary information, such as land use/land cover data, can provide a good proxy for where people
live and how many people live there [18,22]. The spatial heterogeneity of populations in a source
unit is expressed by this ancillary information with a weight coefficient (W;) in the disaggregation
process, and therefore the population in the source units is allocated to the target units according to W;.
The general formula is as follows,

PxW;

P; =
;'1:1 Wi

)
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where P is the total population in a source unit (the population to be allocated), P; is the population
of the ith target unit or pixel in the source unit, W; is the population-based weight of the ith target
unit or pixel, and n is the total number of target units or pixels. How to obtain W; from ancillary
information is the most controversial and crucial factor for this approach [20]. Earlier, W; was generated
by land use/land cover data [25]. Uninhabited and inhabited areas (a binary classification) in a large
region were first marked according to their land cover. Then, the population in a large region was
redistributed to inhabited areas and aggregated at the subdistrict level. Later, statistical model was
introduced to dasymetric mapping to quantify the relationship between ancillary information and
the population [26]. Since then, defining W; via the initial estimated value from statistical model has
become prevalent [20,22]. However, census data are the only effective and available population data
for source units, and some flaws of the population census data limit the value of dasymetric mapping.
For example, the precise population or density is controlled by the difference in scale between the
source units and target units, and the temporal resolution of a population in a target unit is controlled
by that of the census, which is always low (e.g., 10 years in China at the subdistrict level).

With these two approaches, many ancillary information sources or factors related to population
have been discussed and used to estimate population. Satellite imaging products, given their high
resolution and short acquisition cycle, have been the most common ancillary datasets used to map
the populations, e.g., land cover/land use data and nighttime light (NTL) imagery, over the past few
decades [18,22,27,28]. Land cover/land use data represent human modification of the earth’s surface.
Different land cover/land use always have different population densities [22]. NTL can serve as an
indicator of human activities [27]. High human activity is more likely correlated with a high NTL
value. However, these satellite image products generally have a coarse resolution, which cannot reflect
the strong heterogeneity in a city; these products have limited capabilities to reveal the socioeconomic
features related to the population distribution [29-31]. In recent years, some geographical data have
showed great potential for mapping populations at a fine sale. Examples include building features
(e.g., the number of buildings, floor area, and building area), road density, location, phone calls,
and location-based service data, such as points of interests (POls), traffic card information, Tencent
user data, and mobile phone data [1,18,23,32-35].

The population distribution in urban areas exhibits strong heterogeneity [11,18]. However, only a
few of studies have been estimated at a fine local scale (less than 100 m) in urban areas. In addition,
regression is the most commonly adopted method in both the statistical modeling approach and
dasymetric mapping, and observational populations are the dependent variable in a regression.
For accurately estimating urban population, an accurate observational population are indispensable.
Recent studies at fine local scale had showed some means of obtaining population samples data,
but most of them were hard to collect for general researchers. These studies always obtained
population samples from labor-intensive surveys and expensive or biased Tencent user data [16,18]. As
a compromise, population samples at a large scale were used to construct a model and estimate results
at a finer scale in some studies [1,11,20,29]. Note that the estimated populations from these statistical
downscaling approaches may be biased. This problem arises because the rules may change at different
scales, which is a widely accepted phenomenon in ecology and geology [36-39]. Therefore, a lack of
accurate population samples for general researchers has become the primary limitation of estimating
accurately population in fine local scale. Moreover, some population-related factors were used to map
the urban population, such as land use/land cover, NTL imagery, and building structures [1,18,28].
However, at a fine local scale, the relationships between these factors and population require further
confirmation, and the relative importance of the factors remains unclear.

By addressing these gaps in population mapping for urban areas, we present a new approach that
integrates remote sensing and crowdsourcing data to map urban population at residential neighborhood
level (Figure 1). Populations in a residential neighborhood in this paper are the people who live
in the residential neighborhood, which is similar to household survey data (census data). A proxy
for accurate observational population (the number of households in a residential neighborhood),
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crowdsourcing data from a real estate trade platform, was first used as the sample for regression.
Ten population-related factors from five aspects—the building features, activity, environment, location,
and traffic—were discussed and employed. In this study, we (1) revealed the relationships between
these population-related factors and population and the relative importance of the population-related
factors at the residential neighborhood level, and (2) estimated populations in residential neighborhoods
in the Beijing fifth-ring area using statistical modeling approach and generated a gridded prediction
of population density at 30 m spatial resolution. A flowchart of this approach is shown in Figure 1.
The approach can generate fine-scale population information and closely match the strong heterogeneity
of an urban population.

Population (number of households) Population-re latiﬂacﬁ
Residential neighorhood level

A 4 A 4
Relationships between Relative importance Population estimated from
population and related factors of related factors statistical model

|

Estimation of the population in
residential neighborhoods

I

Figure 1. Flowchart for mapping urban A gridded population density at
population in residential neighborhoods 30 m spatial resolution

Figure 1. Flowchart for mapping urban population in residential neighborhoods.

2. Study Area and Data

2.1. Study Area

We focused our study on areas within the fifth-ring road of Beijing, which is the core urban area
of the city. Beijing is a megacity and the capital of China. The total area of Beijing is 16,410 km?,
and it contains 16 districts (equivalent to level 3 of the Global Administrative Unit Layer defined
by the Food and Agriculture Organization) and 325 subdistricts (equivalent to level 4 of the Global
Administrative Unit Layer). The population data from the government have relatively coarse temporal
and spatial resolutions. Two types of population data were generated. The first type of data is from a
population census every 10 years at the subdistrict level, and the second type is from a population
sampling survey conducted every year at the country level. From the population sampling survey in
2018, the permanent population was estimated to be 21.54 million and the population density was
1313 people per square kilometer (Beijing statistical yearbook, 2019). Beijing has a typical concentric
circle structure because of its long history. The population density follows a roughly decreasing trend
from the center to the suburbs. The fifth-ring area is the core area of Beijing and is the most densely
populated area containing nearly half of the population in 4% of the area (Beijing Municipal Bureau of
Statistics, 2016). Although the fifth-ring area is a deeply rooted concept that has been embedded in
residents’ lives and one of the most popular study areas, the population survey data from 2015 are
the only record of this area because of the mismatched boundary between the fifth-ring area and the
administrative unit. Therefore, we selected the fifth-ring area in Beijing as our study area (Figure 2).
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Figure 2. Study area within the Fifth-ring road in Beijing, the urban core areas of Beijing.
2.2. Data and Processing

Residential neighborhoods, which were used as our mapping unit, were visually interpreted at a
1 m spatial resolution and were generated using very high-resolution imagery (GeoEye) in 2009 and
the POls of residential neighborhoods from the BaiduTM map data (map.baidu.com) in 2010. A POI
provided the location and name of the residential neighborhood located at a point. The GeoEye data
were further used to identify the boundaries of residential neighborhoods via visual interpretation.
Finally, 3164 total residential neighborhoods (Figure 2) were mapped, and their areas were calculated.

Multiple ancillary or “covariate” data were employed to quantify the relationship between
population and population-related factors and then to estimate the population. In practice, integrating
population-related factors from different facets is likely to be able to generate a more accurate estimation
of population [2]. Here, we considered population-related factors and collected ancillary data from
five aspects: building morphology, human activity, environment, location, and traffic. These five
aspects were selected based on their potential impacts on population distribution/density, as reported
from previous studies, as well as data availability. For example, previous studies have shown that
building morphology generally performs better than land cover for estimating population, as building
morphology data can offer more direct residence information about dwellers [15,31]. Environmental
factors such as vegetation cover may also affect population distribution due to people’s preference
on green space [29,40,41]. Gaughan et al. (2016) showed that location is related to population
density, indicated by a decay distance of population density from urban core area to urban edge [42].
Additionally, traffic is directly related to dwellers’ travel, which affects population distribution on some
extent [29]. Building morphology was represented by the area of residential neighborhoods and some
features in a residential neighborhood, including the average number of building floors, the building
area, the number of buildings, the floor area, and the area of impervious surfaces. The building
area is defined as the area of the building footprint or the vertical projected area of the building [43].
The floor area is defined as the total floor area of a building. Activity, environment, location, and traffic
data are represented by the annual average nighttime lights, the area of vegetation in a residential
neighborhood, the distance from the center of Beijing (distance), and the length of roads around a
residential neighborhood, respectively.

The areas of vegetation and impervious surfaces in each residential neighborhood were extracted
from land cover classification. The classification was generated from the GeoEye imagery ata 1 m
spatial resolution. The classification method was adopted from [44]. The annual nighttime light data
in 2012 were aggregated to residential neighborhoods. The original nighttime light data were from
the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB), which is composed
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monthly at a spatial resolution of 450 m. Then, the annual average nighttime light data were calculated
using the Google Earth engine and resampled to 30 m [18]. The average number of building floors,
the building area, the number of buildings, and the floor area were calculated using building footprints
from Amap (map.amap.com), and the boundaries of residential neighborhoods were mapped based on
overlay analysis. The road network was collected from Open Street maps (http://openstreetmap.org/)
in September 2010. The lengths of the roads in various buffers around residential neighborhoods
(0.5 km, 1 km, and 2 km) were calculated. The distance from the center of Beijing (Imperial Palace)
was extracted to indicate the location. Except for the distance and length of roads, other variables
were measured using their natural logarithm. Log-transformation is commonly used to achieve a
normal distribution of population-related factors and therefore obtain more accurate relationships and
population [22,43,45].

A total of 943 samples of residential neighborhoods were used to reveal the relationships,
the relative importance level of these factors and the population and construct the RF model (Figure 2).
When a sample population was absent, proxies for the population were always adopted, such as the
number of dwelling units [1], the number of Tencent users [18,32], and mobile phone data [23]. In this
paper, we chose the number of households as a proxy for the population in a residential neighborhood.
The number of households in a residential neighborhood and their locations were obtained from
Lianjia™ (one of the most popular real estate trade platforms in China, https://bj.lianjia.com/). Then,
the number of households was linked to population-related factors based on location.

In addition, we also used census data at the subdistrict level from the 6th National Population
Census of the People’s Republic of China 2010 generated by the National Bureau of Statistics of China.
The boundaries of the countries and subdistricts were those from 2010.

3. Methods

This section is organized as follows (Figure 1). With the number of households in residential
neighborhoods as a proxy for the population, we first quantified the relationships between the
population and population-related factors using the OLS regression and the relative importance using
RF regression with the assistance of the coefficient of determination (R?) value from the OLS results.
After correlation analysis, we mapped the urban population at a fine scale using two popular estimation
approaches: statistical modeling approach and dasymetric mapping. Finally, the mapping accuracy of
the population was assessed.

3.1. Relationships between Population and Related Factors and Their Relative Importance

The relationships between population and its related factors from the samples were investigated
using OLS regression. Population (dependent variable) is represented by the number of households.
The related factors (independent variables) included the areas of vegetation and impervious surfaces,
the NTL data, the average number of building floors, the building density, the number of buildings,
the building area, and the road length (0.5 km buffer, 1 km buffer, and 2 km buffer). Only one related
factor was employed for each OLS model. The R? was used to measure the robustness of the regression
model and the capability of the related factor to explain the population.

The relative importance of the related factors was estimated by RF regression. The percentage-
increased mean square error (%IncMSE) and IncNodePurity are common indexes used to measure
the importance of variables in the RF model from different aspects [46]. The %IncMSE has been
commonly used to measure the increase of the mean squared error after removing a factor from the
RF model. A more important factor has a higher %IncMSE. IncNodePurity is the total decrease in
node impurities from splitting a variable, which is measured by the residual sum of squares in the
regression. In addition, the R? from the OLS regression estimation can also be used to assess the
relative importance of related factors as an auxiliary index.
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3.2. Mapping the Population

The statistical modeling approach was commonly used to map population in fine local scale,
and this approach was employed to map the urban population in this paper. The regression RF model
was used to quantify the relationships between the independent variables (the areas of vegetation
and impervious surfaces, the NTL data, the average number of building floors, the building area,
the number of buildings, the floor area, and the length of roads (1 km buffer)) and the dependent
variable (the number of households in residential neighborhoods). RF is a typical nonparametric
machine learning approach [46]. The approach creates many individual decision trees and then predicts
outcomes based on the average results from all the trees. Due to having minimal assumptions (no need
for normality, homogeneous variance, standardized data, and independence between explanatory
variables), strong robustness, a powerful approximation ability for a nonlinear function, and few
parameters, RF is widely used to map populations [22]. Here, the RF model was used to estimate
the number of households in residential neighborhoods. Two-thirds of the samples were employed
to train the RF model, and one-third of the samples were used as a validation dataset. Then, a fixed
household—population ratio was used to estimate the population using the estimated number of
households. The household—population ratio was calculated by the Beijing statistical yearbook 2010
at the country level. Finally, the population in a residential neighborhood was converted to a raster
format with 30 m spatial resolution. This spatial resolution is considered reasonable, because it is close
to the size of building roofs [18].

For comparison of approach, dasymetric mapping approach also was employed. Generating
weights using a statistical model is an important step in this approach. Here, the estimated populations
of residential neighborhoods from the RF regression were used as the weights [22]. For each subdistrict
(the source unit to be allocated), the population distribution in residential neighborhoods was generated

using Equation (2), as follows, DuE
X .

Pij = = é

i=1"1

@)

where P; is the population of the ith residential neighborhood, P is the total population of the subdistrict,
E; is the estimated number of households in the ith residential neighborhood from the RF regression,
and n is the number of residential neighborhoods in the subdistrict.

3.3. Accuracy Assessment

The accuracies at the residential neighborhood level and subdistrict level were both estimated.
The 1:1 line, R?, mean square error (RMSE), and mean absolute percentage error (P), which are
well-known accuracy assessment metrics of population mapping [1,18,47,48], were selected to
comprehensively assess the accuracy at the residential neighborhood scale. The R? is from a
zero-intercept regression. The RMSE and P are calculated using the estimated population from
the population mapping model and the actual population. The formulas for these indexes are
as follows,

Y.(Ai - E)?
n

1 v Ai—E; .
P=— Zabs(T) x 100% @)

i—1 J

RMSE = 3)

where E; is the estimated population, A; is the actual population, and n is numbers of samples. At the
subdistrict level, only the subdistricts completely located in the fifth-ring area were included because
of the limited census by administration units. In addition, the estimated population from dasymetric
mapping approach was only used to compare with that from the statistical modeling approach at the
residential neighborhood level.
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4. Results

4.1. Relationships between Population and Population-Related Factors

There are various and complex relationships between population and its related factors, including
linear relationships, U-shaped relationships, and inverse U-shaped relationships (Figure 3). The area
of impervious surfaces, the area of residential neighborhoods, the NTL data, the building area, and the
number of buildings exhibited significant positive linear relationships with population. The number of
floors exhibited weak positive linear relationships with population. The length of roads exhibited weak
negative linear relationships with population. Among three buffers around residential neighborhoods,
the length of roads in 1 km buffer exhibited the strongest correlation with population. Therefore,
only the length of roads in 1 km buffer was used to represent the traffic factor to estimate population.
The floor area and the area of vegetation exhibited significant U-shaped relationships with population.
The distance exhibited weak inverse U-shaped relationships with population.
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Figure 3. Relationships between the related factors and population. Here, population is represented
by the number of households in residential neighborhoods, which assumes that the population is
proportional to the number of households. All of the variables are measured in natural logarithms
so that they followed a normal distribution expect distance and the length of roads, which is
normally distributed.

4.2. Relative Importance of Population-Related Factors

The relative importance values of the population-related factors in the RF regression are shown in
Figure 4. The relative importance values of %IncMSE and IncNodePurity were some different.
For example, floor area ranked second for %IncMSE but fifth for IncNodePurity, and area of
impervious surfaces ranked fourth for %IncMSE but increased to second for IncNodePurity. However,
some similarities could also be found. The indexes of the building features all exhibited the highest
importance for %IncMSE and IncNodePurity. The distance and length of roads always had the
lowest importance. The R? values from the OLS regressions are shown in Figure 3. A similar highest
importance of building features and similar lowest importances for distance and length of roads
were also found for the indexes. Floor area has the highest R?, which was the same for %IncMSE
and IncNodePurity.
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Figure 4. Percentage-increased MSE and IncNodePurity indicate the importance of variables in the RF
regression model.

4.3. Population Accuracy and Methods Comparison

A total of 249 samples (the validation samples in the RF model) were used to assess the accuracy
at the residential neighborhood level. The comparison results of dasymetric mapping and statistical
modeling approach are shown in Figure 4. Most of the evaluation indexes for population in statistical
modeling approach were significantly better than those for dasymetric mapping. Statistical modeling
approach had a higher R? for a zero-intercept regression and a lower RMSE and P than dasymetric
mapping (Figure 5). The P of the statistical modeling approach was 15.27% lower than that of the
dasymetric mapping approach. However, we found that dasymetric mapping was slightly closer to 1
than the statistical modeling approach.

o o
o _ o _
@ a B b

Y=0.68X Y=0.71X
o R2=0.78 o R2=0.74
S - RMSE=639 S - RMSE=745
© P=47.26% © P=62.53%

N=249

Estimated
4000
]
Estimated
4000
]

2000
|
2000
|

T T T T T T T T T T
4000 6000 8000 0 4000 6000 8000

Actual Actual

Figure 5. Comparison of the two mapping approaches at the residential neighborhood level. (a) The
accuracy of the statistical modeling approach. (b) The accuracy of dasymetric mapping. The black lines
are the zero-intercept regression lines.

Supplementary analysis of the accuracy of the statistical modeling approach was carried out at
the subdistrict level. A total of 89 subdistricts completely located in the fifth-ring area were employed
to assess the accuracy of the estimated population from statistical modeling approach. The accuracies
of the number of households and population were similar (Figure 6). The slopes of the zero-intercept
regressions were close to 1, 0.84, and 0.87 for the households and population. The R? values from
the zero-intercept regressions were 0.86 and 0.87 for households and population, respectively. P was
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approximately 33%. In addition, the RMSE was 12,273 for the number of households and 37,868 for
population, respectively.

a4 .
a o b
o Y=0.84X Y:o‘azx
R?=0.86 & o R2=0.87
RMSE=12273 o RMSE=37,868 ]
- P=32.6% _ P=33.1% .
g o N=8g - g _ N=g9 - .
=] 8 w4
=1 1
£ 2
£ £
= < - 3 2 4
i it}
- n —
il =)
] T
2 4 6 8 25
Census(*10000) Census(*10000)

Figure 6. Accuracy of statistical modeling approach at the subdistrict level. (a) The number of
residential households. (b) Population. The black lines are the zero-intercept regression lines.

4.4. Distribution Features of the Urban Population in the Fifth-Ring of Beijing

The population and population density distribution of the residential neighborhoods in Beijing’s
fifth-ring area are shown in Figure 7. The populations in various residential neighborhoods exhibited
significant differences. The highest population of a residential neighborhood was 17,048 people,
and the lowest was only 175 people. The average population of each residential neighborhood was
2337 people. From the center area to the urban fringe, the population of the residential neighborhoods
first increased and then decreased. The population was highest around the 3rd ring area.

Population Densily

Value
e [ligh @ 530040

Population Number

Valuce
e High 17048

0 25 5 10 | [f—— o as2

Figure 7. Population and population density distribution of the residential neighborhoods in Beijing’s
fifth-ring area. (a) Population in each residential neighborhood and (b) population density (people/km?)
at the residential neighborhood level.

The populations in the residential neighborhoods of Beijing’s fifth-ring area are dense
(Figure 7). The average population is 60,770 people/km? in the residential neighborhoods. Meanwhile,
strong spatial heterogeneity can be found in the fifth-ring area. The distribution of the population
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density is similar to the distribution of the population. The highest population density occurs around
the 3rd ring road, and relatively low population density occurs in 2nd ring area and 5th ring area.

5. Discussion

5.1. Relationships between Population and Population-Related Factors

The NTL data generally exhibit a significant correlation with population. Moreover,
most of the correlations are linear relationships, regardless of whether the dependent variable
is population or population density and whether population or population density and NTL are
log-transformed [18,20,29,49]. In this paper, we also evidenced a linear relationship between population
and NTL after a log-transformation at the residential neighborhood level, but a weaker correlation than
that at the large scale (Figure 3) [28]. It should be noted that the seasonal variability of vegetation results
in varying lumen output, and may change the trends for some of evaluated relationships [50]. In fact,
the same linear relationships between population and other population-related factors can always be
found at different levels, but finding a weaker correlation at the residential neighborhood level than at
a large level was common [14,15,43]. Exceptions also appeared. For example, Gaughan et al. (2016)
assumed that population density decreased as one moved away from an urban center at a large scale.
Our result showed that population density first increased and then decreased in Beijing’s fifth ring area
(Figures 3 and 7). The local policy in Beijing that protects the ancient buildings within the 2nd ring road
may have contributed to this result. It should note that we discussed these relationships, irrespective
of whether variables are log-transformed. However, the log-transformation is an important step of
correlation analysis and OLS regression for non-normal variables. We found the log-transformation
was very necessary in exploring the relationships between population and population-related factors,
because some variables did not meet normal distribution (Figure 8).
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Figure 8. Normality test of some variables. Only the non-normal variables were mapped here.
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5.2. Relative Importance of Population Related Factors

Building features are the most important factors when mapping a population at the residential
neighborhood level (Figure 4). This may be because building features can directly reflect the activity of
city dwellers related to residence. Residence is the most fundamental demand of dwellers. NTL are
the most common data used to map the population at a large scale. We found that NTL exhibited a
relatively lower importance at the residential neighborhood level. This may be due to the mismatch
of the spatial resolution with residential neighborhoods. The coarse resolution of NTL data may
introduce some irrelevant light sources of residential neighborhoods, such as streetlight. The irrelevant
lights cannot be removed by resampling. Location, i.e., the distance from the center of the city, was not
important compared with the above factors. The long history and high urbanization rate of the study
area may be two important reasons for this result. A large number of ancient buildings are located at
the urban core (within the 2nd ring area). The number of people in this area is very limited. In addition,
the high urbanization rate results in a multicore urban structure. The road length had the lowest
importance and a very weak correlation with population for the different buffers. The result may mean
that traffic slightly affects the distribution of the urban population.

Scale effects may lead to different rules at different scales. Although similar results have been
found at other scales, such as the low importance of traffic and distance at a large scale [29,42],
some rules were different. For example, NTL exhibited high importance in estimating the population
at a large scale. Gaughan et al. (2016) showed the highest importance of NTL in estimating the
population at a large scale (administrative level three, based on the Food and Agricultural Organization
framework) [42]. Stevens et al. (2015) showed the second highest importance of NTL at the finest level
of the administrative unit (village, Tinh, Kenya) [22]. Moreover, a noninformative contribution of the
number of floors was found because many observations had the same number of floors at the block
scale [1]. Precipitation was related to the population distribution at a coarse scale but may not be a
related factor at a fine scale because of the homogeneity over a small area.

5.3. Difference between Dasymetric Mapping and Statistical Modeling Approach

Dasymetric mapping assumes that people do not die and are not born during the redistribution
process [24]. This assumption should be matched with a particular administrative unit (source zone).
Small source zones have more precise population maps than large source zones. However, even when
the smallest source zones (subdistrict) were used, the accuracy of the population was worse than
that for statistical modeling approach in residential neighborhoods (Figure 5). The result confirmed
Wardrop et al.’s views [2]. The reason for this result may be attributed to the improper redistribution
of the residuals in dasymetric mapping. Using the dasymetric mapping performed in this paper as an
example, the actual value was equal to the aggregated estimated value plus the aggregated residual for
each subdistrict (Equation (5)). Then, the estimated population of the ith residential neighborhood in
the jth subdistrict can be expressed as Equation (6). After regression, the residuals should follow a
normal distribution and be independent of the RF estimated value in theory. However, in dasymetric
mapping, the residuals were redistributed according to the proportion of the estimated value:

P = E jT 0j 5)

i =EiX o——+ 0iX =
g ] ]

i1 Eij i1 Eij

where Pj, Ej, and ¢; are the population, the total estimated population, and the total residuals of

the jth subdistrict (the difference between the estimated populations from the RF and the census),

respectively. Pij and Eij are the populations of the ith residential neighborhood and the estimated
population of the ith residential neighborhood from the RF regression in the jth subdistrict, respectively.

p (6)

n is the number of residential neighborhoods in the jth subdistrict. In addition to its lower accuracy
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than statistical modeling approach, dasymetric mapping was also limited by the boundary of the
administration units and the temporal resolution of the population data from the government [16].
Obviously, dasymetric mapping does not perform as well at a fine scale as at a large scale (the highest
R? was 0.99 in Bhaduri et al. (2007) [13]). Therefore, it is time to reconsider the value of dasymetric
mapping and its assumption at a fine scale.

5.4. Real Time Updating of Population Using Statistical Modeling Approach

A national census commonly has a coarse temporal resolution, especially in developing
countries [16,28]. The long intervals have limited the application of census-dependent population
mapping in a timely manner [51]. Statistical modeling approach is a census-independent approach,
which has shown great potential in mapping the population in real time. During the statistical modeling
approach, all of the data can be obtained in real-time. We sampled the number of households of
residential neighborhoods (dependent variable) from a real estate trade platform. This crowdsourcing
data can be updated in real-time. In terms of related factors (independent variables), the number of
buildings, the area of impervious surfaces, the area of vegetation, and the building area can be obtained
from high frequency satellite imagery [33]. The area of a neighborhood, the floor area and the number
of floors can update using remote sensing (e.g., very high-resolution imagery [34]), field investigations
or a real estate trade platform. There are generally few new residential neighborhoods in a short
time interval. Therefore, it is practical to update residential neighborhoods using a field investigation.
POIs and roads can be obtained from open maps (e.g., Baidu™ map and Amap). NTL also has a short
revisit period (one month).

5.5. Population Data from Different Sources

Census data collected from different scales were most widely used for population mapping
worldwide. Obtaining by household survey, population data derived from census data are relatively
accurate. However, census data have some limitations [2,22,23]. First, census data usually have
relatively low spatial resolution. Although the data are obtained by household survey, only low
spatial resolution data (e.g., census blocks in USA and subdistricts in China) can be available for
general researchers. Second, census data usually have low frequency. The household survey
is commonly carried out every 5 or 10 years. Third, household survey is a time-consuming
work. Currently, the population data from remote sensing have become a common supplement
of census data. These population data generally have higher spatial resolution than census data [5,23].
In addition, these population data can be obtained in a very short time. For example, using our
approach, the population in residential neighborhoods can be updated at any time when needed.
However, population data estimated from remote sensing data usually have lower accuracy and higher
uncertainty [1,20,28,29]. Therefore, such population data can be complementary to census data, and are
particularly useful at fine scale where census data are not available.

5.6. Prospects for Future Research

We demonstrated the relationships between population and population-related factors and their
relative importance in Beijing’s fifth-ring area. In the future, more cases at a fine scale will be needed to
verify our results or present different views. Moreover, the number of households was found to be better
than the number of dwelling units as a proxy for population in this paper [1]. However, the number of
households measures the designed households or the largest number of households, which are slightly
different from real households in practice. Thus, some other proxies should be further explored and
discussed to better represent population. In addition, extensive applications of our approach should
be explored in the future. For example, as fundamental data of a city, urban population distribution
data can be used to study social equity and environmental justice, conduct disaster assessments and
site selection at a fine scale.
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6. Conclusions

In this paper, we present a framework for estimating populations in residential neighborhoods with
30 m spatial resolution by integrating remote sensing and crowdsourcing data with little dependency
upon census data. The number of households from a real estate trade platform was first employed as a
proxy for population. The approach was tested in the urban core areas of Beijing. Some conclusions
were drawn as follows. (1) We found that various and complex relationships between population
and its related factors, including linear relationships, U-shaped relationships, and inverse U-shaped
relationships. Compared with the relationships at a large scale, some of the linear relationships were
similar, but there were weaker correlations at the residential neighborhood level. (2) Compared with
NTL, location, and traffic, building features commonly had the highest importance for mapping urban
population. (3) The number of households is a good proxy of population in a residential neighborhood.
(4) Our framework exhibited a reasonable accuracy at residential neighborhood level, with a mean
absolute percentage error of 47.26% and a R? of 0.78. The accuracy increased at the subdistrict level,
with a mean absolute percentage error of 33.1% and a R? of 0.87. (5) Our framework could be used to
renew the population data in real-time.
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