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Abstract: Daily evapotranspiration (ET) and its components of evaporation (E) and transpiration
(T) at field scale are often required for improving agricultural water management and maintaining
ecosystem health, especially in semiarid and arid regions. In this study, multi-year daily ET, E, and T at
a spatial resolution of 100 m in the middle reaches of Heihe River Basin were computed based on an ET
partitioning method developed by combing remote sensing-based ET model and multi-satellite data
fusion methodology. Evaluations using flux tower measurements over irrigated cropland and natural
desert sites indicate that this method can provide reliable estimates of surface flux partitioning and
daily ET. Modeled daily ET yielded root mean square error (RMSE) values of 0.85 mm for cropland
site and 0.84 mm for desert site, respectively. The E and T partitioning capabilities of this proposed
method was further assessed by using ratios E/ET and T/ET derived from isotopic technology at the
irrigated cropland site. Results show that apart from early in the growing season when the actual E
was reduced by plastic film mulching, the modeled E/ET and T/ET agree well with observations in
terms of both magnitude and temporal dynamics. The multi-year seasonal patterns of modeled ET,
E, and T at field scale from this ET partitioning method shows reasonable seasonal variation and
spatial variability, which can be used for monitoring plant water consumption in both agricultural
and natural ecosystems.

Keywords: evapotranspiration partitioning; TSEB; data fusion

1. Introduction

Approximately one-third of Earth’s land surface is occupied by semiarid and arid regions,
where limited water resources makes it very challenging to provide industrial, agricultural,
and ecological water use requirements. In many of these regions, most of the pressures on water
resources is driven by evapotranspiration (ET) or water use by irrigated agriculture, which consumes
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nearly 80% of water resources from open water bodies and aquifers [1,2]. Increasing water consumption
from agricultural irrigation results in serious degradation of natural vegetation in many of inland
river basins in regions of water scarcity [3]. There is a pressing need to improve agricultural irrigation
management to enhance water use efficiency in semiarid and arid regions.

For ET partitioning, transpiration (T) from crops is beneficial water use associated with crop
production while evaporation (E) from bare soil is regarded as wasted water from an agronomic point
of view [4,5]. Thus, the water efficient agricultural irrigation management strategy is to maximize T
and minimize E. To utilize and manage water resources rationally and maintain ecosystem health in
semiarid and arid regions, accurate spatiotemporal patterns of ET and its partitioning between E and T
at field scale are required to assess and monitor the spatial and temporal distribution of regional water
use and stress [6,7].

Over the last few decades, much research has been undertaken to quantify regional ET using remote
sensing data over a wide range of temporal and spatial scales and climate conditions [8–10]. However,
partitioning ET to E and T has mainly been achieved by measurement methods, such as micro-lysimeter,
sap-flow, and isotropic analyzer [4,11,12]. Micrometeorological methods using eddy covariance
measurements of water vapor and CO2, however, have also emerged (e.g., Scanlon and Kustas, [13])
and continue to be refined and improved [14]. Nonetheless, these measurement methods not only
require complex instrumentation and data processing, they are also difficult to extrapolate from local
patch scale to larger spatial scales [5,15].

A limited number of remote sensing-based models have been developed to estimate ET and
its components E and T at large spatial scales by using land surface parameters (e.g., land surface
temperature (LST), leaf area index (LAI), and fractional vegetation cover ( fc)) derived from satellite
observations. Such remote sensing-based models include the two source energy balance (TSEB)
model [16,17], the Priestley–Taylor Jet Propulsion Lab (PT-JPL) model [18], the Global Land
Evaporation Amsterdam (GLEAM) model [19], and the Penman–Monteith moderate resolution
imaging spectroradiometer (PM-MODIS) [20]. Most of these models have been applied to accurately
estimate ET at regional and global scales, but E and T partitioning capabilities of these models are
rarely evaluated [15]. The TSEB model originally proposed by Norman et al. [16] and subsequent
versions have been applied widely to partitioning ET to E and T under wide range of spatial scales and
environmental conditions [5,17,21–24].

For agricultural water management and ecosystem health assessment, time-continuous ET and
components E and T at field or finer scales (≤ 100 m) are required to provide detailed information about
water use [22,25]. Unfortunately, time-continuous values at field scale cannot be directly computed
using a single satellite system, because no single satellite system is capable of providing optical and
thermal-infrared observations at both high spatial and high temporal resolutions.

Recently, efforts have been made to estimate time-continuous daily ET at field scales based on
multi-satellite data fusion combined with remote sensing-based ET models [26,27]. The existing studies
for estimating time-continuous daily ET at field scales can be divided into two main categories:
(1) ET fusion scheme and (2) input parameter fusion scheme. The first scheme achieves daily
ET at field scales via fusing modeled multi-scale ET products using remote sensing data from
satellites with high spatial resolution (e.g., Landsat) and satellites with high temporal resolution
(e.g., MODIS) [7,22,25,26,28–33]. In the second scheme, daily field-scale ET is directly estimated
based on remote sensing-based ET models (e.g., TSEB and surface energy balance system (SEBS))
using input parameters with high spatiotemporal resolution, which is fused from multiple satellite
sensors [27,34–36]. Both schemes have been successfully used to estimate daily field-scale ET
over rainfed and irrigated agricultural areas [22,25,28,29,33,35,36], forested landscapes [31,32,35,36],
and vineyards [7,30]. Ma et al. [36] reported that both schemes perform similarly for homogeneous
surfaces while the input parameter fusion scheme may have slightly better performance for
heterogeneous surfaces. In these previous studies, the spatial and temporal adaptive reflectance fusion
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model (STARFM) [37] has been widely applied for producing ET and input parameters of ET models
with high spatiotemporal resolution [7,22,25,26,29–33,35].

Although daily field-scale ET has been achieved over different landscapes and environmental
conditions in these previous studies, there are only a few studies estimating daily field-scale E and T
based on multi-satellite data fusion. Following the basic scheme of estimates of daily field-scale ET,
an ET partitioning method based on TSEB and STARFM is proposed for estimating daily field-scale E
and T in this study. The ET partitioning method is applied to estimate daily field-scale ET, E, and T using
MODIS and Landsat data collected over an arid region in China, which is mainly covered by irrigated
cropland and sparsely vegetated desert. Moreover, the performance of this method is assessed by
comparing modeled and measured instantaneous turbulence fluxes and daily ET for irrigated cropland
and desert steppe, and by comparing modeled and measured ratio of E and T to ET over irrigated
cropland. Furthermore, spatiotemporal water consumption of study area is analyzed using ET, E,
and T maps at field scale produced using this ET partitioning method.

2. Materials and Methods

2.1. Study Area

The evapotranspiration partitioning method was applied in a desert–oasis zone, which is located
in the middle reaches of Heihe River Basin in northwest China, as shown in Figure 1. This study
area is 30 km × 30 km characterized by sparsely vegetated desert (36%), and an artificial oasis
(>60%) dominated by irrigated maize, vegetables, residential areas, orchards, and poplar shelterbelts.
This study area has an arid continental monsoon climate characterized by rainy summers and dry
winters with over 60% of precipitation occurring in the summer [38]. The annual mean air temperature
is approximately 6–8 ◦C [39] and the annual precipitation is about 100–250 mm, while the annual
potential evaporation ranges from 1200 mm to 1800 mm [40]. The water resources for this area are
the Heihe River and groundwater [39]. There is considerable amount of water consumed by irrigated
cropland surrounded by desert creating an oasis type setting. Given that a fraction of the irrigated
water is lost via soil evaporation and therefore not used in crop biomass accumulation, accurately
partitioning of evapotranspiration into evaporation and transpiration is crucial to evaluate strategies
for reducing E that will lead to water conservation.

In 2012, the Heihe Watershed Allied Telemetry Experimental Research–Multi-Scale Observation
Experiment on Evapotranspiration (HiWATER-MUSOEXE) was launched for studying the
spatial-temporal variations as well as the impact factors of ET within this desert–oasis ecosystem [41–44].
In HiWATER-MUSOEXE experiment, the intensive observations of ET and atmospheric and biophysical
data were collected over this study area between 3 May and 21 September in 2012 [42], while long term
observations of ET in cropland and desert steppe have continued since 2012 [41].

2.2. Field Measurements

Two study sites, Daman superstation (DM) and Huazhaizi desert station (HZZ), for obtaining
long-term observations in HiWATER-MUSOEXE were selected for applying and evaluating estimates
of ET and ET partitioning in this study, as shown in Figure 1.

The Daman superstation (Figure 1c) is located in cropland covered by seeded maize, which is
usually planted in late April and harvested in late September. In the early stage of growth, the maize
grows quickly and reaches its maximum canopy height (~2 m) and LAI (~4.5) at the end of June [23].
The soil moisture in this cropland is relatively high (ranges from 0.2 to 0.5 m3/m3) due to flood irrigation
and precipitation during the whole growing season [23]. To reduce the loss of evaporated water from
the soil surface for improving water use efficiency, plastic films are used in this cropping system.
The plastic films cover approximately 60% of the soil surface. The Huazhaizi desert site (Figure 1d)
is located in a natural desert steppe dominated by perennial short shrub-Reaumuria soongaria with
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constant canopy height of 0.3 m, maximum LAI of ~0.7, and soil moisture ranging between 0.07 and
0.2 m3/m3 [45].

1 
 

 

 

 

Figure 1. Land covers and location of study area ((a) and (b)) and photos of Daman superstation (c) and
Huazhaizi desert station (d).

At each site, a tower-based observation system is installed and is still in operation, which
includes a four-component radiometer, automated weather stations (AWSs), eddy covariance (EC)
systems, and soil heat flux plates, and soil moisture and temperature measurement systems (SMTMS)
buried around the EC tower. The meteorological observations for model input and surface fluxes for
model evaluation span from 1 May to 31 October for the years 2012–2016 were extracted from the
HiWATER-MUSOEXE data archive at the Cold and Arid Regions Science Data Center at Lanzhou
(http://card.westgis.ac.cn/).

A detailed description of all weather and surface energy balance measurements is provided
in Xu et al. [44] and Liu et al. [41]. A brief description of the measurements used in this study is
provided here. Meteorological data including air temperature, air pressure, wind speed and direction,
and humidity at height of 5 m above ground level (agl) for DM and 3 m agl for HZZ were obtained
from AWSs at 10 min averaging intervals. The four components of radiation (incoming and outgoing
shortwave and longwave radiation) at height of 12 m agl for DM and 2.65 m agl for HZZ were measured
by a 4-way radiometer at 10 min averaging intervals. The surface soil heat flux was calculated using
heat flux plate measurements at a depth of 0.06 m combined with soil moisture and temperature
at a depth of 0.02 m and 0.04 m measured by SMTMS at 10 min averaging intervals based on
the one-dimensional equation of soil thermal diffusion [46]. The surface soil heat flux, radiation
observations, and meteorological data were processed to 30 min averages.

The sensible (H) and latent (LE) heat fluxes used to evaluate the accuracy of modeled turbulent
fluxes and daily ET were measured from EC systems installed at 4.5 m agl for DM and 2.85 m agl for
HZZ. The EC system consists of an open-path infrared gas analyzer and a 3-D sonic anemometer with
a sampling frequency of 10 Hz. The high frequency data collected from EC system were processed to
produce 30 min average turbulent fluxes of sensible and latent heat and net carbon flux exchange using

http://card.westgis.ac.cn/
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Edire software (http://www.geos.ed.ac.uk/abs/-research/micromet/EdiRE/). For more details of the EC
instrumentation and processing of the 10 Hz data, please refer to Liu et al. [43] and Xu et al. [44].

Generally, the sum of H and LE from EC system is less than the difference between net radiation
(Rn) measured from radiometer and the ground soil heat flux (G) calculated from soil heat plates,
as known as surface energy imbalance or lack of energy balance closure. The average closure ratios
(i.e., (H + LE)/(Rn −G)) during study periods for DM and HZZ were 0.80 and 0.79, respectively.
To compare with the modeled fluxes, which requires energy conservation, energy balance closure was
imposed on the observed fluxes. Given that the surface energy imbalance is mainly associated with
underestimation of LE from EC systems [47], the forced closure fluxes were achieved by using the
residual-LE closure method (assigning the residual (Rn −G−H − LE) to observed LE) [48].

Measurements of δ18O of ecosystem water pools and their flux ratios from an isotropic analyzer
were obtained to evaluate the accuracy of partitioned E and T at Daman superstation from 27 May
to 21 September in 2012 during HiWATER-MUSOEXE experiment [12]. In this study, the ratio of E
from soil and T from maize canopy to the total ET from cropland (E/ET and T/ET) were directly
computed by Wen et al. [12] using the isotope method, which is based on the isotopic compositions of
water fluxes from soil, foliage, and composite land surface. According to Wen et al. [12], the isotopic
compositions of ET (δET) was determined by flux-gradient technique, the isotopic composition of E
(δE) was calculated using Craig–Gordon model, and the composition of T (δT) was estimated based
on xylem water under isotopic steady state assumption. Finally, E/ET and T/ET were estimated by
conservation principles based on δET, δE, and δT.

2.3. Model Inputs

The ET partitioning method based on TSEB and data fusion can be driven by meteorological,
radiation, and remote sensing data at coarse and fine spatial resolution. To estimate regional ET, E, and
T, the regional meteorological forcing including air temperature (Ta), wind speed (u), relative humidity
(RH) and air pressure, and radiation forcing including downward solar radiation (DSR) and longwave
radiation (DLR) were determined by interpolating the observations at two study sites based on the
inverse distance weighted method.

The remote sensing data used in this study included the MODIS surface reflectance product
(MOD09GA) and LST product (MOD11A1) at 500m–1km spatial resolution and level-1 data of Landsat
7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)/Thermal
Infrared Sensor (TIRS) at 30m–100m spatial resolution. To obtain more continuous MODIS LST,
a robust LST reconstruction method proposed by Sun et al. [49] was used to recover clear sky LST for
cloud-contaminated pixels in MODIS scenes with <25% cloud cover. Both MODIS reflectance and LST
products were projected to UTM projection and resampled using nearest neighbor algorithm to spatial
resolution of 100 m, which is consistent with Landsat 8 TIRS images. All the Landsat 7 data used
in this study have striped gaps due to the scan-line corrector (SLC) failure of ETM+ since May 2003.
Therefore, a simple gap-filled method proposed by Scaramuzza et al. [50] was used to create filled
scenes of Landsat 7. To derive Landsat reflectance images from visible near infrared and shortwave
bands of Landsat 7/8, the Fast line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) module of
ENVI were applied for atmospheric correction. The Landsat LST were derived by using the radiative
transfer based method [51] to thermal infrared bands of Landsat 7/8. Landsat reflectance and LST
images were resampled to spatial resolution of 100 m. Excluding the cloud-contaminated data, a total
of 416 days of MODIS products and 34 days of Landsat products were used in this study from 1 May
to 31 October for years 2012–2016, as described in Table 1.

http://www.geos.ed.ac.uk/abs/-research/micromet/EdiRE/
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Table 1. List of moderate resolution imaging spectroradiometer (MODIS) and Landsat 7/8 imagery
used in this study.

Years Number of Days with
Useable MODIS Imagery

Day of Year (DOY) with A
Clear Landsat 7 Overpass

DOY with A Clear
Landsat 8 Overpass

2012 92 176, 192, 240, 272, 288, 304 —-
2013 90 130, 178, 242, 290 154, 186, 202, 282
2014 81 229, 245, 277, 290 125, 205, 221
2015 80 136 240, 256, 272, 288
2016 73 123, 219, 283 179, 211, 259, 275, 291

The key land surface inputs required for TSEB including LST, fc, LAI, and canopy height (hc)
were derived based on STARFM using MODIS and Landsat data. The fused LST were directly
used in TSEB model algorithms. The vegetation inputs fc, LAI, and hc were calculated based on
the normalized difference vegetation index (NDVI), which was estimated using fused red and
near-infrared land reflectance. The value of fc was estimated based on a NDVI-based formulation
(i.e., fc = 1−

(
NDVImax−NDVI

NDVImax−NDVImin

)p
, where NDVImax = 0.8 and NDVImin = 0.1 are the maximum and

minimum NDVI values in study area, coefficient p = 0.6 and p = 0.7 were used for vegetated area
and desert, respectively) from Gutman and Ignatov [52] and LAI was determined from fc using a

logarithmic relationship (i.e., LAI =
1−ln(1− fc)

0.5 ) proposed by Choudhury [53]. For vegetated desert and
forest, hc was considered as constant (hc = 0.3 m for vegetated desert [45] and hc = 8 m for forest [35]).
For the oasis region growing mainly irrigated maize, hc was calculated using a relationship between hc

and NDVI (i.e., hc = 2.9184×NDVI1.65) [35].
To specify surface roughness parameters based on land use types in TSEB, the monthly land cover

map at 30 m resolution in study area were collected from dataset of land cover map of Heihe River
Basin derived by using multiple classifiers and multisource remote sensing data [54]. The land cover
map was aggregated to spatial resolution of 100 m by majority class assignment to match up to the
fused reflectance and LST inputs.

2.4. ET Partitioning Method

The ET partitioning method based on TSEB and multi-satellite data fusion is illustrated in Figure 2.
For clear-sky days, the fused land surface reflectance at visible near infrared and shortwave bands and
LST with MODIS temporal resolution and Landsat spatial resolution were derived based on STARFM.
Then, the instantaneous land surface fluxes and the ratio of latent flux to insolation for soil ( fSUNs),
canopy ( fSUNc), and composite land surface ( fSUN) were estimated based on TSEB by using land surface
parameters calculated from fused data combined with regional meteorological inputs interpolated
from observations. For cloudy days, the instantaneous fSUNs, fSUNc, and fSUN were obtained by linear
interpolation based on an assumption that fSUNs, fSUNc, and fSUN changes linearly between the two
adjacent clear days. Finally, the time continuous regional daily E, T, and ET were calculated based on
the assumption of fSUNs, fSUNc, and fSUN is constant during the daylight hours [3].
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Figure 2. Schematic flow-chart of estimating time continuous daily evapotranspiration (ET), evaporation
(E), and transpiration (T) at 100 m resolution based on two source energy balance (TSEB) and
multi-satellite data fusion.

2.5. TSEB Model

To estimate surface energy fluxes from soil and canopy components, Norman et al. [16] originally
proposed the TSEB model, which has undergone several revisions [17,55–59] to accommodate more
diverse land cover conditions. In TSEB, the surface energy balance for soil, canopy and the composite
land surface are expressed as

Rns = LEs + Hs + G (1)

Rnc = LEc + Hc (2)

Rn = LE + H + G (3)

where Rn is net radiation, LE is latent heat flux, H is sensible heat flux, G is ground soil heat flux
(all in W/m2). Subscript s and c represent soil and canopy components, respectively. Apart from G,
all the land surface fluxes in Equation (3) can be calculated as the sum of soil and canopy components
in Equation (1) and (2). G is usually calculated as the fraction of Rns [16],

G = cGRns (4)

where cG is an empirical coefficients, which varies with time, soil type, and soil moisture. For satellite
overpass time around solar noon, cG is assumed to be constant value of 0.35 for many soil type and
moisture conditions [60].

The net radiation for soil (Rns) and canopy (Rnc) are given as [17],

Rns = τlongwaveL↓ +
(
1− τlongwave

)
εcσT4

c − εsσT4
s + τsolar(1− αs)S↓ (5)
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Rnc =
(
1− τlongwave

)(
L↓ + εsσT4

s − 2εcσT4
c − εsσT4

s

)
+ (1− τsolar)(1− αc)S↓ (6)

where L↓ and S↓ are incoming longwave and shortwave radiation (W/m2), respectively. τlongwave and
τsolar are the transmittances of longwave and shortwave radiation through the canopy, respectively.
ε and α are the emissivity and albedo, respectively. Subscript s and c represent soil and canopy
components, respectively. Ts and Tc are soil and canopy components temperature (K), respectively.

By permitting the interaction between soil and canopy fluxes, Norman et al. [16] proposed a
“series” version of TSEB, which is more robust to compute the sensible heat fluxes [61,62]. Following
Norman et al. [16], H, Hs, and Hc are expressed as

H = ρCP
Tac − Ta

ra
(7)

Hs = ρCP
Ts − Tac

rs
(8)

Hc = ρCP
Tc − Tac

rx
(9)

where ρ is the density of air (kg/m3), CP is the specific heat of air (J/(kg·K)), Tac is the air temperature in
the canopy air layer (K), Ta is the air temperature in the soil-canopy combined surface (K). ra is the bulk
aerodynamic resistance (s/m), which is computed by using Monin–Obukhov surface layer similarity
theory. The soil resistance rs (s/m) is derived according to Kustas and Norman [17]. rx is the boundary
layer resistance of the canopy elements (s/m).

In TSEB, Ts and Tc in Equations (5), (6), (8), and (9) are related to satellite derived directional
surface temperature (TR(θ)) and the fraction vegetation cover ( fc(θ)), as expressed in [63],

TR(θ) =
[

fc(θ)T4
c + (1− fc(θ))T4

s

]1/4
(10)

where θ is the view angle of thermal sensor. Ts and Tc can be calculated by iteration for Equations (2)–(10)
with an initial value of LEc, which is estimated based on Priestley–Taylor equation,

LEc = αPT fg
∆

∆ + γ
Rnc (11)

where fg is the fraction of LAI that is green, ∆ is the slope of the saturation vapor pressure versus
temperature curve (kPa/◦C), γ is the psychrometer constant (~0.066 kPa/◦C). The αPT term is the
Priestley–Taylor parameter, which is assumed to be constant value of 1.26 for unstressed transpiring
canopy. For stressed conditions which can cause LEs < 0, TSEB iteratively reduces the value of αPT

from 1.26 until LEs > 0 [63]. In addition, for the sparsely vegetated desert, the modification for initial
value of LEc proposed by Zhuang and Wu [59] was adopted since it reduced bias between measured
and modeled H. This modification was not as reliable in partitioning ET between E and T as the original
TSEB for the cropland and therefore was not applied to this land cover type.

The instantaneous surface energy fluxes for soil, canopy, and composite land surface at MODIS
overpass time are solved for iteratively with Equations (1)–(11) and are then upscaled to daily ET, E,
and T based on the ratio of instantaneous to daily insolation approach [3,22,29–31],

fSUNi = LEi/Rsi (12)

LEid = fSUNi ×Rsid (13)

where Rsi are instantaneous insolation. Subscript i represents soil, canopy, or composite land surface.
LEid and Rsid are daily latent heat flux and insolation for soil, canopy, and composite land surface,
respectively. Then LE, LEs, and LEc are converted to daily ET, E, and T by dividing the latent heat
of evaporation.
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2.6. STARFM

The STARFM, originally proposed by Gao et al. [37] for fusing MODIS and Landsat surface
reflectance, has been widely used to obtained high spatiotemporal information of LST [35,36], land use
types [64], and ET [22,26,29–33]. In this study, STARFM was used to produce LST and land surface
reflectance at spatial resolution of 100 m with temporal resolution of MODIS (hereinafter referred to as
Landsat-like). When Landsat data are not available, the predicted Landsat-like data is determined
by using existing Landsat/MODIS data pair/pairs based on a weighting function, which is developed
using a moving search window method. In STARFM, the weighting function for central pixel of
moving window can be expressed as

L(xw/2, yw/2, t0) =
w∑

i = 1

w∑
j = 1

n∑
k = 1

Wi jk ×
(
M

(
xi, y j, t0

)
+ L

(
xi, y j, tk

)
−M

(
xi, y j, tk

))
(14)

where L and M denote the land surface reflectance/LST of Landsat and MODIS, respectively. w is the
size of searching window. (xw/2, yw/2) and (xi, yi) are the location of central pixel and the neighboring
pixel in searching window, respectively. The time variable t0 and tk are the predication date and
acquisition date of Landsat/MODIS data pair/pairs, respectively. k is the number of Landsat/MODIS
data pair/pairs. Wi jk is the weight that represents the contribution of each neighboring pixel to the
predicted central pixel. The weight Wi jk is determined by spectral difference between MODIS and
Landsat pair at tk, temporal difference between MODIS data at t0 and tk, and the distance between
central pixel and neighboring pixel. For more details of STARFM, please refer to Gao et al. [37].

2.7. Landsat-Only Interpolation

To evaluate the value added by MODIS in the fusion process, the daily ET estimated based on
fused data and the daily ET estimated based on Landsat data using a simple Landsat-only interpolation
scheme were compared with the observed daily ET from the EC flux, radiation and meteorological
observations. The Landsat-only interpolation scheme has been widely used to obtain time continuous
daily ET in Mapping Evapotranspiration with Internalized Calibration (METRIC) model based on the
ratio of ET to reference ET ( fRET) [65],

fRET = ET/ETre f (15)

where ETre f is the reference ET estimated based on the Penman–Monteith formulation of the Food and
Agriculture Organization standard using meteorological data [66]. In this scheme, the time continuous
fRET is determined by linear interpolation based on estimated fRET on Landsat overpass dates.
Then, the time continuous daily ET is derived as the product of fRET and ETre f .

3. Results

3.1. Evaluation of Land Surface Fluxes at The Study Sites

To assess the performance of the ET estimating method, the modeled and measured land surface
fluxes including Rn, G, H, and LE for the satellite overpass times were compared at the two study sites.
For matching with the source areas of observations, the modeled land surface fluxes based on TSEB
and fusion data were averaged over upwind source area (two pixels) at the two study sites [35,67].
The scatter plots in Figure 3 show the comparisons of modeled and measured land surface fluxes at
DM and HZZ sites during 1 May to 31 October from 2012 to 2016. In addition, the statistical difference
between measured and modeled land surface fluxes are given in Table 2, including the bias error
computed as the average difference between measured and modeled fluxes, the root mean square error
(RMSE), and the mean absolute percent difference (MAPD).
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Figure 3. Comparison of land surface fluxes measured from eddy covariance (EC) and automated
weather stations (AWS) systems and that modeled from TSEB using fused data at (a–d) Daman
superstation (DM) and (e–h) Huazhaizi desert station (HZZ) sites during 1 May to 31 October from
2012 to 2016.

Table 2. The statistical difference of measured vs. modeled land surface fluxes at DM and HZZ sites
during 1 May to 31 October from 2012 to 2016.

Study Site Number Error Type Rn (W/m2) G (W/m2) H (W/m2) LE (W/m2)

DM 391 Bias 2 12 −20 4
RMSE 22 41 54 61
MAPD 3% 47% 42% 12%

HZZ 395 Bias 1 13 −24 10
RMSE 26 27 52 61
MAPD 4% 22% 19% 32%

From Figure 3 and Table 2, it appears that modeled Rn, G, H, and LE agree well with the forced
closure observations, with the scatter of points falling generally along the 1:1 line. RMSE values of
~25 W/m2 for Rn, ~40 W/m2 for G, ~55 W/m2 for H, and ~60 W/m2 for LE, indicate reasonable surface
flux partitioning at both DM and HZZ sites. Compared with G, H, and LE, modeled Rn has the best
agreement with measured yielding a MAPD of 3% and 4% for DM site and HZZ site, respectively.
The difference between modeled and measured G is mainly caused by the considerable mismatch in
source areas between soil heat flux plates (0.1–1 m) and the resolution of modeled fluxes (200 m) [68].
Compared with HZZ site covered by sparse vegetation, the modeled G at DM site covered by irrigated
maize with wider range of soil moisture and vegetation cover during the whole growing season, yields
greater scatter with RMSE of 41 W/m2 and MAPD of 47%, but shows a smaller bias of 12 W/m2.

For H, the difference between modeled H and observations from EC system illustrated in
Figure 3c,g indicates a slightly underestimate with bias of −20 W/m2 for DM site and −24 W/m2 for
HZZ site, which is consistent with the results from earlier studies [45,68]. For the residual of the surface
energy balance LE, the values estimated using TSEB and fusion data yield good agreement with Bias
of ~10 W/m2 for both DM and HZZ sites when compared with flux tower observations using the
residual-LE closure method. The MAPD value for LE at DM site (12%) is less than the uncertainty of
the EC measured LE (18%) reported by Wang et al. [69]. However, the MAPD value is as larger as 32%
at HZZ site due in part to the fact that the overall range in LE values are relatively small under sparse
arid vegetation cover and water-limited conditions.
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3.2. Evaluation of Daily ET at The Study Sites

To further evaluate the accuracy of the proposed ET estimating method as well as to assess the
value added by MODIS in the fusion process, the modeled daily ET based on the proposed method and
Landsat-only interpolation scheme were compared with the residual LE observations at the two flux
tower sites (Figure 4). The error statistics for modeled daily ET based on both two methods are listed in
Table 3. Additionally, the time series of observed daily ET and modeled ET based on both two methods
for the period 1 May to 31 October from 2012 to 2016 are shown in Figure 5.
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Figure 4. Comparison of observed daily ET generated from forced closure LE observations from EC
towers and modeled daily ET based on TSEB and spatial and temporal adaptive reflectance fusion
model (STARFM) using fused data and that based on Landsat-only interpolation scheme at (a,b) DM
and (c,d) HZZ sites for the period 1 May to 31 October for the years 2012 to 2016.

Table 3. The statistical results of observed daily ET vs. modeled daily ET based on TSEB and STARFM
using fused data and modeled ET based on Landsat-only interpolation scheme at DM and HZZ sites
for the period 1 May to 31 October from 2012 to 2016.

Study Site Number Error Type Fusion Landsat-Only

DM 825 Bias (mm) 0.01 0.04
RMSE (mm) 0.85 0.91

MAPD 16% 17%
HZZ 791 Bias(mm) −0.25 −0.45

RMSE (mm) 0.84 1.00
MAPD 29% 33%
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Figure 5. Time series of observed daily ET (blue dots) and modeled ET based on TSEB and STARFM
using fused data (black line with dots), modeled ET based on Landsat-only interpolation scheme
(grey line with dots), and precipitation (grey bar) at (a,c,e,g,i) DM and (b,d,f,h,j) HZZ sites for the
period 1 May to 31 October from 2012 to 2016.

For the DM site, the modeled daily ET using both methods agree well with observations,
with similar scatter falling along the 1:1 line (Figure 4). The modeled daily ET using Landsat-only
interpolation method show acceptable accuracy with bias, RMSE, and MAPD values of 0.04 mm,
0.91 mm, and 17%, respectively. By contrast, the modeled daily ET using TSEB and fusion data have
slightly lower bias, RMSE and MAPD values of 0.01 mm, 0.85 mm, and 16%, indicating slightly better
performance using this daily ET interpolation method. Given that there is sufficient irrigation and
precipitation for the irrigated maize field to meet atmospheric demand at the DM site, the variation
of ET is mainly affected by radiation. From Figure 5, we can see that the similar ET trends with
low values correspond to decreased insolation on cloudy days were produced by the two daily ET
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interpolation methods during the whole study period. However, neither model captures the observed
ET values falling below 3 mm. This is likely due to neither interpolation method providing accurate
estimates under these low radiation conditions. Given that the lack of available Landsat data during
DOY 125–170 in 2012 and 2014, and DOY 140–240 in 2015, the daily ET modeled from Landsat-only
interpolation scheme differ greatly from both daily ET observed from EC and modeled from TSEB
using the fusion data. This is an issue using Landsat-only interpolation, especially in regions with
persistent cloud cover.

For HZZ site, better agreement between modeled and observed daily ET is achieved by using
TSEB and data fusion. The modeled values of daily ET from the Landsat-only interpolation scheme
are clearly underestimated when the observed values of daily ET are greater than 3 mm (Figure 4d).
Daily ET modeled based on TSEB using fusion data yields bias, RMSE, and MAPD values of −0.25 mm,
0.84 mm, and 29%, respectively. By comparison, the underestimated daily ET based on Landsat-only
interpolation scheme yields bias of −0.45 mm, RMSE of 1.00 mm, and MAPD of 33%. The HZZ site is
located in a natural desert steppe with sparsely clumped vegetation and low soil moisture. As a result,
the significant fluctuation of time series of daily ET is mainly caused by rainfall events. From Figure 5,
it appears that the trend of daily ET modeled based on Landsat-only interpolation scheme is hard to
capture the oscillations in ET caused by rainfall events, which significantly impacts soil evaporation
and the subsequent rapid drying that again strongly impacts E. Since there is MODIS imagery often
available soon after rainfall events, the more accurate temporal trend of daily ET is captured with
relatively large ET increase after a rainfall event followed by drying of the soil surface, hence decreasing
E and ET. Therefore, using TSEB and fusing MODIS and Landsat significantly improves daily ET over
rainfed ecosystems, particularly with sparse vegetation cover where rapid changes in E significantly
impact ET.

3.3. Evaluation of ET Partitioning Over The Cropland

The assessment of the ET partitioning method based on TSEB and fusion data was conducted by
comparing with the ratios of E/ET and T/ET obtained from isotopic technology at DM site from 27 May
(DOY 148) to 21 September (DOY 265) in 2012 [12], as illustrated in Figure 6 and Table 4. For the
period when the plastic film has deteriorated (DOY >170), the proposed method performs well for
partitioning ET to E and T at the cropland site, with both values scattering around 1:1 line. However,
outliers in E/ET and T/ET are under the early growing season when there is a plastic film significantly
affecting the partitioning. For the whole growing season, this partitioning method based on TSEB
and fusion data yields a bias of 0.1, a RMSE of 0.2, and a MAPD of 107% for E/ET while it produces a
bias of −0.1, a RMSE of 0.2, and a MAPD of 17% for T/ET. The large MAPD value for E/ET is due to
two factors: (1) the impact of the plastic film on E and T partitioning early in the growing season and
(2) with most E/ET values below 0.3, any slight deviation in E/ET estimate significantly increases the
value of the MAPD statistic.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 25 
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Table 4. The statistical results of observed E/ET and T/ET vs. modeled values for the period 27 May to
21 September, 2012 (DOY 148–265) at the DM site. The period where DOY >170 is when the plastic film
has degraded from radiation and farm operations (see discussion below).

Error Type Overall
(Number = 60)

DOY >170
(Number = 47)

E/ET Bias 0.1 0
RMSE 0.2 0.11
MAPD 107% 53%

T/ET Bias −0.1 0
RMSE 0.2 0.11
MAPD 17% 10%

The time series of observed and modeled E/ET and T/ET are illustrated in Figure 7. From Figure 7,
it is confirmed that the large discrepancy between measured and modeled E/ET and T/ET for the group
of points illustrated in Figure 6 occurs in the beginning of the growing season. As a previous study [23]
concluded, this is due to the fact that the actual E/ET is reduced by the plastic film barrier deployed
at the start of the growing season. This thin and disposal plastic film, covering approximately 60%
of the soil surface, degrades from radiation and farming operations during the early growth stage of
the maize. As a result, the plastic film is not an effective vapor barrier affecting observed E/ET and
T/ET by the middle and later part of the growing season. The modeled E/ET and T/ET using TSEB
and fusion data agree well with the observations in terms of both magnitude and temporal dynamics
by the middle of the growing season. This suggests that the ET partitioning method predicted by
TSEB can partition ET into E and T accurately over irrigated cropland as long as there are no artificial
barriers reducing soil E. For the middle and late part of measurement period (DOY >170), the modeled
E/ET from TSEB and fusion data yields bias, RMSE, and MAPD values of 0, 0.11, and 53%, respectively,
and the modeled T/ET results in bias, RMSE, and MAPD values of 0, 0.11, and 10%, respectively.
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Figure 7. Time series of observed (a) E/ET (blue dots) and (b) T/ET (green dots) from isotopic technology
and modeled (a) E/ET (blue line) and (b) T/ET (green line) based on TSEB and fusion data from 27 May
to 21 September in 2012 at DM site.

4. Discussion

4.1. Spatiotemporal Patterns of E, T, and ET

Overall model validation in Section 3 indicates that the proposed ET partitioning method produced
satisfactory estimates of ET and its partitioning, with statistical errors within the expected and reported
errors in literature. The daily ET modeled based on TSEB using fusion data at study sites is comparable
or had slightly better accuracy than previous studies [3,35,36,67,68]. The magnitude and temporal
dynamics of modeled E/ET and T/ET in this study are consistent with results from model output
based on the dual temperature difference (DTD) approach using MODIS data [3] and output from the
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two-source variational data assimilation (TVDA) system using in situ observations [23]. This indicates
the current modeling approach incorporating data fusion can provide reliable E, T, and ET maps using
Landsat and MODIS data.

The monthly E, T, and ET maps derived from modeled daily values from May to October from
2012 to 2016 in the study domain were produced for evaluating the E versus T as a function of land
cover. From Figure 8, it appears that the seasonal variation and spatial diversity in monthly E fluctuates
slightly from month to month and is affected by different land cover conditions. Given that the
important factor influencing the magnitude of E—soil moisture, which is almost exclusively affected
by the frequency of precipitation in rainfed environments [70], the monthly precipitation derived
from averaged observation of two study sites is listed in Table 5. For sparsely vegetated desert site,
the seasonal fluctuation of monthly E coincides with that of precipitation illustrated in Table 5, due to
the fact that the rate of E is correlated positively with soil moisture under water-limited condition [71,72].
The value of E for the desert site is relatively high in the middle of the summer season (i.e., from June to
August) since the highest amount of precipitation normally occurs during this period, with a monthly
mean precipitation of ~30 mm. On the other hand, precipitation is relatively low prior to June and
after August with monthly mean precipitation of <15 mm.

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 25 

 

from model output based on the dual temperature difference (DTD) approach using MODIS data [3] 
and output from the two-source variational data assimilation (TVDA) system using in situ 
observations [23]. This indicates the current modeling approach incorporating data fusion can 
provide reliable E, T, and ET maps using Landsat and MODIS data.  

The monthly E, T, and ET maps derived from modeled daily values from May to October from 
2012 to 2016 in the study domain were produced for evaluating the E versus T as a function of land 
cover. From Figure 8, it appears that the seasonal variation and spatial diversity in monthly E 
fluctuates slightly from month to month and is affected by different land cover conditions. Given that 
the important factor influencing the magnitude of E—soil moisture, which is almost exclusively 
affected by the frequency of precipitation in rainfed environments [70], the monthly precipitation 
derived from averaged observation of two study sites is listed in Table 5. For sparsely vegetated 
desert site, the seasonal fluctuation of monthly E coincides with that of precipitation illustrated in 
Table 5, due to the fact that the rate of E is correlated positively with soil moisture under water-
limited condition [71,72]. The value of E for the desert site is relatively high in the middle of the 
summer season (i.e., from June to August) since the highest amount of precipitation normally occurs 
during this period, with a monthly mean precipitation of ~30 mm. On the other hand, precipitation 
is relatively low prior to June and after August with monthly mean precipitation of <15 mm. 

 
Figure 8. Spatial pattern of monthly E during May to October from 2012 to 2016 in the study domain. 

 

 

Figure 8. Spatial pattern of monthly E during May to October from 2012 to 2016 in the study domain.



Remote Sens. 2020, 12, 3223 16 of 25

Table 5. Monthly precipitation (mm) during May to October from 2012 to 2016 in the study domain.

Years May June July August September October

2012 1.9 31.1 47.1 24.5 10.5 0.1
2013 18.5 33.0 58.9 17.9 3.0 0.0
2014 6.5 41.6 23.0 42.2 10.3 14.1
2015 18.2 31.2 30.4 12.0 33.1 9.4
2016 16.7 25.4 27.0 38.8 10.0 10.0

The monthly E for the irrigated agricultural area (oasis) shows complex fluctuations during
growing season that is influenced by solar irradiance, soil moisture, as well as vegetation cover.
In the early part of growing season, the soil surface is partially covered by vegetation and soil moisture
is relatively high due to the flood irrigation implemented once prior to the growing season and twice
in the early growing season [23,73]. As a result, the rate of E in May and June is relatively high and
fluctuates from year to year with changes in precipitation and timing of the irrigation. In the middle
part of the growing season, the vegetation cover is relatively high, which rapidly reduces the amount
of the solar irradiation and wind that reaches the soil surface both causing a significant reduction in
E even if there are high soil moisture conditions. This results in the monthly E in July and August
being smaller than that in May and June, even though the soil moisture is still relatively high due to
frequent precipitation events and additional irrigation events. Compared to August, the rate of E in
September is slightly increased mainly caused by the leaf senescence and harvesting crop that leads
to the decrease of interception of solar irradiation and attenuation of wind. Lowest solar irradiation
as well as relatively low soil moisture conditions due to low precipitation leads to the monthly E in
October being the smallest during the study period.

The monthly T maps are illustrated in Figure 9. Considering that the seasonal variation trend of
rate of T generally follows the temporal variability in LAI [3,5,72,73], the spatial pattern of monthly
mean LAI derived from fusion data during the study period is shown in Figure 10. From Figures 9
and 10, we can see that the seasonal variation, spatial variability, and differences in monthly T in
different years is almost identical with the discrepancies in monthly mean LAI between different
years. The spatio-temporal pattern for T distinguishes the oasis containing irrigated crops from the
surrounding desert. During the whole growing season, the monthly T can be regarded as constant at
about 20 mm for the desert vegetation and residential areas, while the T maps show seasonal variation
for the oasis area where the value of T is driven by vegetation growth and biomass accumulation.
The monthly T for oasis area increases from May to June with vegetation growth and reaches maximum
in July with highest biomass accumulation of vegetation and then decreases from August to October
associated with the leaf senescence.

As shown in Figure 11, the monthly ET, the sum of E and T, has significant seasonal variation
over the six month period and spatial patterns for the different land cover types in the study domain.
The ET values for cropland is clearly greater than surrounding desert during the whole growing season.
Although the value of ET is dominated by rate of E for sparsely vegetated desert while dominated by
rate of T for the irrigated croplands/oasis, the seasonal variation trend of ET in the oasis is similar to
the surrounding desert. Comparison of ET maps in different years (cf. Figure 11), the trends in the
seasonal variation in ET remain relatively consistent from 2012 to 2016. Naturally, the monthly ET
in the middle growing season is larger than that in early and late growing season due to maximum
plant biomass and precipitation/irrigation inputs. However, differences in amount and timing of the
precipitation and irrigation events, plant growth rates and peak biomass differ from year to year.
As a result, there are some apparent discrepancies in monthly cumulative ET for different years.
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4.2. Water Consumption by Land Type

To characterize water consumption by different land covers in the study domain, the monthly value
of E and T per unit area for cropland, woodland, wetland, water, and desert in 2013 are demonstrated
in Figure 12. The densely vegetated area including cropland, woodland, and wetland significantly
consume more water than the sparsely vegetated desert. The monthly E and T shows that there are
differences in water loss from soil surface and water consumption for vegetation growth of densely
vegetated land types caused by different soil moisture and phenology, growth, and development
characteristics of the vegetation. The woodland consumes greatest amount of water for vegetation
growth in early and late of growing season, while the cropland yielded the most plant water use in the
middle of growing season.

The cropland, covering 53% of study area, consumes the greatest amount of surface water and
groundwater for the study domain mainly from irrigation. To distinguish water consumption of the
cropland for the years 2012 to 2016, the monthly E, T, and ET per unit area are illustrated in Figure 13.
In general, the total water consumption of the cropland area remains relatively constant from 2012 to
2016 with cumulative ET ~675 mm during May to October but the water loss through evaporation from
soil surface increases gradually, especially in July and August. The ratio of cumulative E to cumulative
ET from May through October yields values of 0.31 for 2012, 0.41 for 2013, 0.47 for 2014, 0.46 for 2015,
and 0.53 for 2016, respectively. With this increasing trend in E/ET, better irrigation strategies and water



Remote Sens. 2020, 12, 3223 20 of 25

management decisions are urgently needed to reduce the water loss from the soil in the irrigated
cropland area.Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 25 
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5. Conclusions

To provide detailed information of water use for agricultural water management at field and farm
to landscape scales in semiarid and arid regions, a daily field-scale ET partitioning method developed
by combining STARFM and TSEB was utilized and verified in the middle reaches of Heihe River
Basin in this study. This method was developed by following the input parameter fusion scheme for
estimating daily field-scale ET, which estimates ET, E, and T based on TSEB model formulations using
land surface input parameters derived from data with spatiotemporal characteristics of MODIS and
Landsat fused using STARFM.

In this study, daily ET, E, and T at spatial resolution of 100 m from May through October for the
years 2012 to 2016 for the study area were estimated by using the ET partitioning method. A comparison
of modeled instantaneous land surface fluxes and residual closure observations derived from the EC
systems and AWSs at cropland and desert sites indicate that reliable surface fluxes were estimated
using this method. In addition, the value added by incorporating MODIS in the fusion process for
estimating daily ET, compared to Landsat-only interpolation scheme was assessed by comparing with
ET observations for the irrigated cropland and desert sites. The results demonstrate that more accurate
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daily ET is produced by using the data fusion-based TSEB, with RMSE values of less than 1 mm/day for
cropland and desert. We further tested the E and T partitioning capabilities of this proposed method
for the cropland using E/ET and T/ET observed from isotopic technology. Apart from early growing
season when the actual E was reduced by plastic film covering, the modeled E/ET and T/ET agreed
well with observations in terms of both magnitude and temporal dynamics.

Maps of monthly E, T, and ET from May through October for the years 2012 to 2016 in the
study area show reasonable temporal and spatial variability. The monthly E varies from month to
month due to compounding effects from different land cover types being affected by precipitation,
irrigation events and rate and amount of accumulated vegetation cover/biomass over the growing
season. Meanwhile monthly T shows a consistent seasonal trend associated with vegetation growth
and biomass production. Moreover, water consumption by different land cover types was conducted
based on spatiotemporal distributions of E and T, reflecting the influence of soil moisture, fractional
vegetation cover and phenology on E and T partitioning. The general relative increase in water loss
through evaporation from bare soil in irrigated cropland during the growing season from 2012 to 2016
indicates that irrigation and water management strategies are urgently needed for conserving water
resources in the Heihe River Basin.

As far as modeling the effect of plastic film layers for reducing E, previous studies indicate that the
accuracy in estimating ET and its partitioning using Priestly–Taylor [74] and Shuttleworth–Wallace [75]
modeling approaches with plastic film-mulching can be improved by incorporating the effect of
mulching fraction on E. Based on these previous studies, we plan to develop and evaluate a refinement
in the TSEB algorithm for computing E for fields containing plastic films. Due to the limitation
of observations of ET partitioning into E and T, model validation could only be conducted for the
oasis–desert ecosystem. Future plans include verifying the utility of this ET partitioning method over
a wider range of land cover types using eddy covariance-based techniques [13,14].
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