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Abstract: Remote sensing datasets with both high spatial and high temporal resolution are critical
for monitoring and modeling the dynamics of land surfaces. However, no current satellite sensor
could simultaneously achieve both high spatial resolution and high revisiting frequency. Therefore,
the integration of different sources of satellite data to produce a fusion product has become a popular
solution to address this challenge. Many methods have been proposed to generate synthetic
images with rich spatial details and high temporal frequency by combining two types of satellite
datasets—usually frequent coarse-resolution images (e.g., MODIS) and sparse fine-resolution images
(e.g., Landsat). In this paper, we introduce STAIR 2.0, a new fusion method that extends the
previous STAIR fusion framework, to fuse three types of satellite datasets, including MODIS, Landsat,
and Sentinel-2. In STAIR 2.0, input images are first processed to impute missing-value pixels that are
due to clouds or sensor mechanical issues using a gap-filling algorithm. The multiple refined time
series are then integrated stepwisely, from coarse- to fine- and high-resolution, ultimately providing
a synthetic daily, high-resolution surface reflectance observations. We applied STAIR 2.0 to generate
a 10-m, daily, cloud-/gap-free time series that covers the 2017 growing season of Saunders County,
Nebraska. Moreover, the framework is generic and can be extended to integrate more types of satellite
data sources, further improving the quality of the fusion product.

Keywords: fusion; MODIS; Landsat; Sentinel-2

1. Introduction

High spatiotemporal-resolution time series of optical satellite data are critical for the effective
modeling and precise monitoring of land surface features and processes. Rich spatial information and
temporal dynamics of surface reflectance can improve the output accuracy of several applications,
including land cover mapping [1,2], evapotranspiration estimates and crop monitoring [3], crop yields
estimates [4–8], and urban applications [9,10].

The currently available satellite missions, however, cannot simultaneously achieve both high
spatial resolution and high revisiting frequency due to the tradeoff between scanning swath and
pixel size [11]. For example, MODIS, AVHRR, and SeaWiFS provide daily images but their spatial
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resolutions ranges from 250 m to 1 km. On the other hand, Landsat and Sentinel-2 deliver a finer spatial
granularity (e.g., 10–30 m), but in a lower sampling frequency (from days to weeks). The revisiting
frequency can extend longer due to clouds, cloud shadow, atmospheric conditions, and satellite sensor
damages (e.g., the failure of the scan-line corrector (SLC) of Landsat 7) [12]. Therefore, lack of dense
time series with high spatial resolution becomes the one major obstacle, particularly considering the
need for precision agriculture and capturing in field variabilities [13,14].

Data fusion algorithms have been developed for integrating multiple optical satellite sources
and generating high spatiotemporal data from simple [7,15] to more complex approaches [3,16].
Notable examples, among others, include the STARFM algorithm [17] and its successor Enhanced
STARFM (ESTARFM) [18] that blend Landsat and MODIS datasets. These methods generally follow
similar principles: (i) using matching pairs of coarse- and fine-resolution images from the same date;
(ii) considering a coarse-resolution image of the target date; and (iii) generating a fine-resolution
image for the target date using a weighted neighborhood voting process. Several attempts have been
proposed to improve STARFM and ESTARFM, and the details of these algorithms can be found in [19].
The major limitation of methods sharing the same spirit as STARFM is the need for the manual selection
of matching pairs of cloud-free images acquired on the same date, which significantly hinders their
applicability in generating dense high-quality time series of surface reflectance data. To address these
challenges, we previously developed STAIR, a generic and fully-automated method for fusing multiple
sources of satellite data and generating a cloud-/gap-free data with both high frequency and high
resolution [20]. STAIR benefits from a filling algorithm that can effectively impute the missing pixels
(due to cloud or sensor damage) as well as an automatic fusion framework that does not require the
manual selection of matching pairs of cloud-free images as input. The advanced performances of the
algorithm for fusing Landsat and MODIS data and generating 30-m daily surface reflectance data has
been validated over a large agricultural landscape [20]. The availability of Sentinel-2 data has created
new opportunities to enhance the spatial resolution of the Landsat-based fused products. In particular,
the recent Harmonized Landsat and Sentinel-2 (HLS) project combines surface observations from
Landsat 8 and Sentinel-2, with necessary radiometric and geometric corrections, to provide a near-daily
surface reflectance dataset at 30-m resolution [21].

While the fusion of two satellite sources has been extensively studied, the increasing number of
satellite missions and their complementary characteristics open new avenues of the fusion of more than
two satellite datasets. For example, CESTEM (a CubeSat enabled spatiotemporal enhancement method)
was proposed to integrate three satellite sources, including MODIS, Landsat 8, and PlanetScope [22].
However, the main purpose of CESTEM is to use Landsat and MODIS data to correct for radiometric
inconsistencies between CubeSat acquisitions of PlanetScope images. Additionally, CESTEM is not
able to remove and impute cloud pixels in the input images, and thus still requires manual selection of
near-coincident, cloud-free input images. To the best of our knowledge, to date, the fusion of a more
rigorously calibrated satellite data (e.g., Sentinel-2) with MODIS and Landsat has not been explored in
existing works.

In this work, we introduce STAIR 2.0, an extension of STAIR which provides a framework to
fuse three satellite data sources (namely, Landsat, MODIS, and Sentinel-2), to generate 10-m and daily
surface reflectance data (Figure 1). We quantitatively evaluate the quality of the fusion results and show
the advantages of using three satellite data sources as compared only using two types of satellite data.
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Figure 1. Schematic overview of the fusion method of STAIR 2.0. STAIR 2.0 is a generic framework 
that can fuse multiple sources of optical satellite data and produce a high-resolution, daily and cloud-
/gap-free surface reflectance product. The input of STAIR 2.0 is multiple sources of optical satellite 
data with different spatial and temporal resolutions, i.e., MODIS (500 m, 1 day), Landsat (30 m, 16 
days), and Sentinel-2 (10–20 m, 10 days). STAIR 2.0 pre-processes the input data, imputes missing-
value pixels (due to cloud and sensor damages), and uses a stepwise strategy—from coarse resolution 
to fine resolution—to produce a high spatial- (10m) and temporal-resolution (daily) product. 

2. Materials and Methods 

2.1. Dataset 

We aimed to build fusion data using MODIS, Landsat, and Sentinel-2 images of Saunders, NE, 
in 2017 to evaluate the performance of STAIR 2.0. We selected MODIS, Landsat, and Sentinel-2 
surface reflectance data that cover various dates in the growing seasons from 1 April to 1 October 
across six spectral bands (red, green, blue, NIR, SWIR1, and SWIR2). More specifically, we collected 
MODIS MCD43A4 products [23,24], Landsat data (Landsat 5, 7, and 8) [25,26], and Sentinel-2A and -
2B Level 1C products for the year 2017 that cover Saunders, NE. The MODIS product has a frequent 
(daily) revisit cycle, but a coarse spatial resolution (500 m). While the Landsat product has a higher 
spatial resolution (30 m), its temporal resolution is relatively lower (16-day revisit cycle), and the 
images in Landsat are often cloud-contaminated. The Sentinel product has a 20-day revisiting 
frequency, and the spatial resolution is 10 m for the RGB and NIR bands and 20 m for SWIR1 and 
SWIR2 bands. We further used the Sen2Cor processor [27] to perform the atmospheric, terrain, and 
cirrus correction of Sentinel-2 Level 1C products, which also resampled the SWIR1 and SWIR2 bands 
to 10-m resolution. Radiance calibration and atmospheric corrections were applied to both Landsat 
and MODIS surface reflectance data, and only clear-day pixels are retained for fusion. For Landsat 
data, we filtered out cloudy pixels using the cloud mask band in the surface reflectance product, 
while for MODIS data only pixels flagged as “good quality” were used for fusion. We excluded scenes 
with the fraction of cloud pixels greater than 75%, as the non-cloud pixels in those images are often 
low-quality and inaccurate. SWIR1 and SWIR2 bands in sentinel-2 were resampled to 10-m resolution 
before the fusion.  
  

Figure 1. Schematic overview of the fusion method of STAIR 2.0. STAIR 2.0 is a generic framework
that can fuse multiple sources of optical satellite data and produce a high-resolution, daily and
cloud-/gap-free surface reflectance product. The input of STAIR 2.0 is multiple sources of optical
satellite data with different spatial and temporal resolutions, i.e., MODIS (500 m, 1 day), Landsat
(30 m, 16 days), and Sentinel-2 (10–20 m, 10 days). STAIR 2.0 pre-processes the input data, imputes
missing-value pixels (due to cloud and sensor damages), and uses a stepwise strategy—from coarse
resolution to fine resolution—to produce a high spatial- (10 m) and temporal-resolution (daily) product.

2. Materials and Methods

2.1. Dataset

We aimed to build fusion data using MODIS, Landsat, and Sentinel-2 images of Saunders, NE,
in 2017 to evaluate the performance of STAIR 2.0. We selected MODIS, Landsat, and Sentinel-2 surface
reflectance data that cover various dates in the growing seasons from 1 April to 1 October across six
spectral bands (red, green, blue, NIR, SWIR1, and SWIR2). More specifically, we collected MODIS
MCD43A4 products [23,24], Landsat data (Landsat 5, 7, and 8) [25,26], and Sentinel-2A and -2B Level
1C products for the year 2017 that cover Saunders, NE. The MODIS product has a frequent (daily)
revisit cycle, but a coarse spatial resolution (500 m). While the Landsat product has a higher spatial
resolution (30 m), its temporal resolution is relatively lower (16-day revisit cycle), and the images
in Landsat are often cloud-contaminated. The Sentinel product has a 20-day revisiting frequency,
and the spatial resolution is 10 m for the RGB and NIR bands and 20 m for SWIR1 and SWIR2 bands.
We further used the Sen2Cor processor [27] to perform the atmospheric, terrain, and cirrus correction
of Sentinel-2 Level 1C products, which also resampled the SWIR1 and SWIR2 bands to 10-m resolution.
Radiance calibration and atmospheric corrections were applied to both Landsat and MODIS surface
reflectance data, and only clear-day pixels are retained for fusion. For Landsat data, we filtered out
cloudy pixels using the cloud mask band in the surface reflectance product, while for MODIS data only
pixels flagged as “good quality” were used for fusion. We excluded scenes with the fraction of cloud
pixels greater than 75%, as the non-cloud pixels in those images are often low-quality and inaccurate.
SWIR1 and SWIR2 bands in sentinel-2 were resampled to 10-m resolution before the fusion.

2.2. Data Preprocessing

2.2.1. Spatial Co-Registration

To correct the spatial shifts existing in MODIS, Landsat, and Sentinel-2 images, we used Landsat
images as the reference and performed spatial co-registration to correct the pixel coordinates of MODIS
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and Sentinel-2 images. Due to the difference in spatial resolutions, we used different registration
approaches for MODIS–Landsat and for Sentinel–Landsat.

We first co-registered each Landsat–MODIS pair acquired on the same day by enumerating all the
possible shifts of the Landsat image in each of the four cardinals and four ordinal directions. In each
direction, we shifted the image by at most 20 pixels. This choice was made based on the fact that
one MODIS pixel approximately corresponds to one block of 17 × 17 pixels in the Landsat image.
The optimal shifting that maximized the correlation between the shifted Landsat and the MODIS
images was then applied to co-register the Landsat–MODIS pair.

We used an algorithm based on tie point detection to perform co-registration between Landsat
and Sentinel 2 images. We first used the Scale-Invariant Feature Transform (SIFT) [28] to find image key
points in Landsat and Sentinel 2 images. For each key point on the Landsat image, we then searched
for potential matching key points in the Sentinel 2 image. The matching criteria for the key points
included: (1) close pixel distance; and (2) similar corner orientation. The matchings were used to fit
a transformation of geolocation. In this step, we provided the flexibility of three methods to perform
the co-registration to better accommodate different use cases: (1) assume a constant offset vector across
the image and derive it by averaging over the shift vector of all matching key point pairs; (2) smooth
the spatial variance of shift vectors of the matching key points and perform a 2D interpolation of
the shift vector to generate an offset map; and (3) assume affine transformation and fit the following
transform using all matching key point pairs

d(p̂) = wp̂ + r̂ (1)

where p̂ is the position on the image; d(p̂) is the offset vector at p̂; w is a 2 by 2 weight matrix; and r̂ is
an offset vector. w and r̂ are the fitted values. Finally, the offset map generated by either one of the
three methods was applied to the Sentinel 2 image, completing Landsat–Sentinel geometric calibration.

2.2.2. Spectral Adjustment

It is necessary to perform the spectral adjustment of surface reflectance values before the fusion
step. There are small differences of wavelengths existing between equivalent spectral bands of Landsat
and Sentinel-2 satellite sensors (Table 1). For example, the central wavelengths of the blue band in
MODIS, Landsat 5/7, Landsat 8, and Sentinel-2 are 469, 477, 482, and 490 nm, respectively. Here,
we used Landsat images as the reference and adjust the MODIS and Sentinel-2 spectral bands to it.
We first used the regression model derived in previous work [29] to transform the surface reflectance
values of Landsat 5/7 to the comparable bands of Landsat 8. We then adopted the approach used in
previous work [21], which systematically collected Landsat and Sentinel scenes worldwide and built
a linear regression model to adjust Sentinel-2 spectral bands to Landsat bands. We applied the same
technique to adjust the equivalent spectral bands of Landsat and MODIS datasets.

Table 1. Band wavelengths (nm) of MODIS, Landsat 5/7/8, and Sentinel-2 satellite sensors.

Band MODIS Landsat 5/7 Landsat 8 Sentinel-2

Blue 459–479 441–514 452–512 458–523
Green 545–565 519–601 533–590 543–578
Red 620–670 631–692 636–673 650–680
NIR 841–876 772–898 851–879 785–900

SWIR1 1628–1652 1547–1749 1566–1651 1565–1655
SWIR2 2105–2155 2064–2345 2107–2294 2100–2280

2.3. Imputation of Missing Pixels

For MODIS, Landsat, and Sentinel-2 images of frequently cloudy regions, there is often a large
portion of missing-value pixels being masked out by the cloud mask due to cloud contamination,
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leaving only a small fraction of pixels unmasked. In addition, Landsat 7 SLC-off data’s utility was
greatly limited by the spatial discontinuity (strips) caused by sensor damage. The imputation of
missing-value pixels, including cloudy and/or un-scanned pixels, not only helps reconstruct the full
view of the region but also facilitates analyses and applications such as the data fusion of multiple
satellite images.

Here, we describe our effective algorithm for imputing the missing-value pixels in
MODIS/Landsat/Sentinel-2 images caused by clouds or sensor damage. As an overview, the gap-filling
algorithm takes as input time-series images of one type of satellite data (MODIS, Landsat, or Sentinel-2),
and iteratively fills images in the time series that have missing pixels. At each iteration, two images are
processed: an image with missing pixels (hereinafter, target image) and the temporally closest image
that has valid non-missing pixel values (hereinafter, reference image) at the missing regions in the target
image. Missing pixels in the target image are first filled by the alternative pixels from the same land
cover region in the reference image, and then adjusted by a pixel-wise correction step, which improves
the filling quality. The imputation approach of STAIR 2.0 has improvements in both efficacy and
efficiency as compared to that of STAIR. First, STAIR 2.0 additionally uses the similarity between
time series of pixels to identify similar neighborhood pixels to correct filled values, which makes the
gap-filling more robust and accurate. Second, the gap-filling process is parallelized on multiple CPU
cores, speeding up the process by up to 20 times.

2.3.1. Step 1: Segmentation of Land Covers

A single satellite image often contains heterogeneous land cover types, and each type may exhibit
a unique temporal changing trend in the time series. Considering these differences in changing
patterns of heterogeneous pixels, we thus filled the missing pixels of each group of homogeneous
pixels separately in the target image. For this purpose, we first applied a clustering algorithm to
partition an image into multiple segments, with each segment containing a set of homogeneous pixels
corresponding to a specific type of land cover. In contrast to classical clustering workflows where the
number of segments (Ns) needs to be pre-specified, here we also automatized the algorithm in a way
such that it can adaptively choose a proper value of Ns to segment the image. In this work, the k-means
clustering algorithm [30] was applied to partition the image into multiple segments of homogeneous
pixels, with each segment corresponding to a certain land cover. To automatize the selection of the
number of segments (Ns) that optimally explains the heterogeneity of land covers in an image, we used
gap statistic, an index derived in [31], to quantify the dispersion of the image segmentation results
with their expected values under a null reference distribution of the data (a random image with no
obvious clustering). Generally, a higher gap statistic indicates the segmentation that better captures the
grouping patterns in the image. In this work, we iteratively ran the k-means clustering algorithm the
values of Ns ranging 2–8 and computed the corresponding gap statistic for each value of Ns. We then
selected the segmentation with the highest gap statistic value as the optimal one. We observed that
the optimal segmentation was obtained with Ns = 2, 3, or 4 in most cases for the study area in our
work. Since the target image has missing pixels, the segmentation process cannot be directly applied
to the target image. However, given that the target image and the reference image are temporally
close, and it is unlikely to have rapid land cover changes in the short time frame, we first applied the
segmentation on the reference image and then applied the segmentation results of the reference image
to the target image.

2.3.2. Step 2: Temporal Interpolation through a Linear Regression

To fill the missing-value pixels in the target image, one straightforward approach is to use a linear
regression model to linearly interpolate the missing values in the target image using the available
pixel values of the geolocation in other temporarily close reference images. The assumption behind
this solution is that the surface reflectances typically change in a linear way within a reasonably
short period of time. This local-linearity property enables one to derive the value of gap pixels or
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cloud pixels in the target image by linearly interpolating the pixel values of the reference image(s),
whenever these pixels in the reference image are clear (not in gap or cloud region). Given the fact
that Landsat 7 stripes or cloud pixels generally have offsets across images in the time series over the
same region, it is likely to find a temporarily close reference image that contains gap-/cloud- free
pixels at the geolocation that corresponds to cloud regions or Landsat 7 stripes in the target image,
which makes the linear interpolation a feasible solution to gap-filling. Formally, let I(pc, t0) and I(pc, t1)

be the surface reflectance values of pixel pc of land cover class c in the reference image and the target
image, respectively; then, the temporal relationship between the two surface reflectance values can be
modeled by a linear function:

I(pc, t1) = acI(pc, t0) + bc, (2)

where ac and bc are the linear regression parameters specific to land cover class c. To estimate parameters
ac and bc, we fit the linear function using all class-c pixels that are not located in missing-value regions
from the target image and the reference image. The surface reflectance value of each pixel (including
missing pixels and non-missing pixels) in the target image can then be filled as:

Î(pc, t1) = âcI(pc, t0) + b̂c, (3)

where â and b̂ are the estimated regression parameters and Î(pc, t1) is the predicted surface reflectance
value of pixel pc in the target image.

Despite its simplicity and effectiveness, in practice, the approach based on linear interpolation
does not always give satisfactory filling results [20]. One of the potential reasons is that the temporal
dynamics of surface reflectance could exhibit rapid changes in some time frames throughout the
year. For example, surface reflectance changes rapidly and possibly also non-linearly in May and
September, due to the fast emergence after planting and fast senescence before harvesting. In this
case, the temporal dynamics of surface reflectance are often nonlinear, and a simple linear regression
may result in inaccurate interpolation results, In addition, the systematic bias in the reference images,
e.g., differences of atmospheric correction across different images, may also lead to inaccurate linear
interpolation, causing the derived values of missing-value pixels in the target images to be over- or
underestimated and thus display visually noticeable stripes or cloud shapes. To provide high-quality
gap-filled input images for the fusion algorithm, therefore, it is desirable to have the magnitude
of values of filled pixels matched with that of the surrounding original pixels in the target image,
without displaying any visually noticeable artifacts.

2.3.3. Step 3: Adaptive-Average Correction with Similar Neighborhood Pixels

To remove visual artifacts in the gap-filling results and quantitatively match the filled pixels to
be consistent with surrounding original pixels in the target image, we propose to correct the biases
(over- or underestimation) of the filled pixels using a “correcting-by-neighborhood” approach. A key
observation here is that, although being inharmonic with the surrounding original pixels in terms of the
absolute surface reflectance value, the filled pixels have captured the correct texture patterns, and what
we need to correct is to adjust the value or magnitude of filled pixels so that the visually noticeable
artifacts can be smoothed out. Our correction method is built upon an invariance across images in the
time series—the relative difference between a pixel and its neighborhood pixels rarely substantially
changes across dates in the time series, especially within a short period of time. Formally, let Î(pc, t1)

be the predicted surface reflectance value (described above) at pixel pc of land cover class c in the
un-scanned SLC strips or cloud regions in the target image at date t1, and Î(qc, t1) be the predicted value
at a pixel qc of the same land cover class in the target image, which is close to pc (called neighborhood
pixel) but not in strips or cloud regions. Similarly, let I(pc, t0) and I(qc, t0) be the actual pixel values of
the same geolocation in the gap-/cloud-free reference image at another date t0. Note that by definition
here I(pc, t0) is a clear pixel. Our above observations imply that if the two images are temporarily close
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(e.g., dates t0 and t1 are away from each other by less than two or three weeks), the relative changes of
surface reflectance values relationship in pixels pc and qc can be regarded roughly as the same. That is,

I(pc, t0) − I(qc, t0) ≈ Î(pc, t1) − Î(qc, t1). (4)

or, equivalently, we have
δ(pc) ≈ δ(qc), (5)

where δ(pc) = I(pc, t0) − Î(pc, t1) and δ(qc) = I(qc, t0) − Î(qc, t1) are the prediction residuals of pixels pc

and qc, respectively.
Our assumption here is that, if pixels pc and qc are from the same land cover, then they will

experience a similar temporal change in a short time frame. Therefore, even if the value of pc and qc

may change nonlinearly and greatly in that time frame, their relative difference remains roughly the
same. With this assumption, we first computed the prediction residuals of a clear pixel qc outside the
strips or cloud regions and used this residual to correct the filled value at pixel pc derived by the linear
regression model:

I∗(pc, t0) = Î(pc, t0) + δ(pc) ≈ Î(pc, t0) + δ(qc), (6)

where Î(pc, t0) is the filled value derived using the linear interpolation based filling algorithm and
I∗(pc, t0) is the filled value after correction. To make this correction more robust and reliable, we did
not correct the filled value using the residual of only a single clear pixel. Instead, we calculated the
weighted average of prediction residuals of a set of “similar neighborhood pixels” of pixel pc:

δ∗(pc) =
∑

qc∈N(pc)
wqcδ(qc), (7)

where N(pc) is the set of similar neighborhood clear pixels of pixel pc and wqc is the weight that
quantifies the importance of each neighborhood pixel qc in computing the weighted average of
prediction residuals. The identification of similar neighborhood pixels and the determination of
average weights are described in the next step. Given the weighted average of prediction residuals,
the final correction of the filled pixel pc is computed as

I∗(pc, t0) = Î(pc, t0) + δ∗(pc). (8)

We refer to this approach as “imputation with adaptive-average correction” as it adaptively
finds similar neighborhood pixels of the corresponding land covers to correct the filled value of the
filled pixel.

2.3.4. Step 4: Searching Similar Neighborhood Pixels

As described above, to correct a filled value Î(pc, t0), we searched a set of “similar neighborhood
pixels”, i.e., pixels that are spatially close to pixel pc and have similar temporal changing patterns
in the time series. The neighborhood region is defined as a window of 31 × 31 pixels centered on
pixel pc, and all pixels of the same land cover class c in this window are considered as candidate
pixels. Our goal is to find pixels that not only have similar spectral values on date t0 but also share
similar temporal changing patterns across the time series. Therefore, we define the similarity of two
pixels as the cosine similarity of their surface reflectance profiles. For example, the surface reflectance
profile x(p) of pixel p is a vector composed of all surface reflectance values of pixel p in the time
series [I(p, t0), I(p, t1), . . . , I(p, tn)], where n is the number of available images. We then computed the
pairwise cosine similarity between pixel pc and each candidate pixel qc:

s(pc, qc) =

∑n
i=1 I(pc, ti)I(qc, ti)√∑n

i=1 I(pc, ti)
2

√∑n
i=1 I(q, ti)

2
(9)
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in which we ignored surface reflectance values that are missing-value in the summations. The profile
similarity is a value in between 0 and 1, and a larger value suggests the two pixels have similar temporal
changing patterns in the time series.

From the candidate pixels, we selected the top 20 pixels that have the largest profile similarity
with pixel pc as the similar neighborhood pixels. The weight of each selected pixel in computing
the weighted average is defined as wqc = 1/d(pc, qc), where d(pc, qc) is the Euclidean pixel distance
between pixels pc and qc. We then computed the weighted average of prediction residuals δ∗(pc) as
described in the previous step to apply the adaptive-average correction.

The search of similar neighborhood pixels requires exhaustively computing all pairwise similarities
between pixel pc and every candidate pixel qc, which could lead to a long running time. To accelerate
this process, we implemented a multiprocessing searching algorithm that splits the candidate pixels
into multiple groups and compute the pairwise similarity in parallel on multiple CPU cores. In this
work, we found that using 20 CPU cores can speed up the step of similar pixel searching by 20 times.

2.3.5. Step 5: Iterative Imputation Using Multiple Reference Images

For a target image, we sorted other images in the time-series in the ascending order of their
temporal distance to the target image and used each of the sorted images as the reference image
to iteratively fill the missing pixels in the target image, where each iteration is a repetition of the
aforementioned steps. In this way, missing-value pixels in an image can be imputed iteratively and
also further be used to fuse pixels in other images.

To reduce the memory usage during the missing-pixel imputation, we partitioned the whole input
image into small patches of 200 × 200 pixels, applied the imputation algorithm on each of the patches,
and merged all patches together after the missing-pixel imputation. To avoid discontinuities appearing
alone patch boundaries after the merging, in the implementation of our algorithm, we used a sliding
window of 200 × 200 pixels but ensured that two adjacent windows have 100 pixels overlapped.
Furthermore, we attached an adjustable margin to all four sides of the segmented tiles. The margins
come from the neighboring tiles and are only included to ensure that all points within the tile can have
a sufficient search window extending all four ways. When obtaining the final output, the margins are
trimmed off and the “core” parts of the tiles are mosaiced. We found in this way we can effectively
avoid the discontinuity issue.

2.4. Fusion of Multiple Sources of Optical Satellite Data

In this section, we describe the fusion framework that fuses multiple sources of optical satellite
data (Figure 1). After the imputation of missing pixels for each of the satellite data sources, we used
a stepwise strategy to fuse multiple satellite data from coarse resolution to fine resolution. As a proof
of concept, we demonstrated how to generate a daily fusion product with 10-m resolution using
MODIS (500 m), Landsat (30 m), and Sentinel-2 (10 m) images: we first generated a daily fusion
images of 30-m resolution using MODIS and Landsat data, and then fused the Sentinel-2 data and
the MODIS–Landsat synthetic data to generate a fusion product of 10-m resolution. Compared to
STAIR, STAIR 2.0 provides more informative spatial details in the fusion product by integrating the
10-m-resolution Sentinel-2 dataset (Figure 2). The details of the fusion framework are described below.
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Figure 2. Example visualization of MODIS, Landsat, and Sentinel-2 images: (A) three temporarily
close images of MODIS (30 June 2017), Landsat (30 June 2017), and Sentinel-2 (29 June 2017) dataset are
selected and the RGB composite images are displayed for a sub-region of Saunders, NE; and (B,C) two
levels of zoom-in views of the selected region.

2.4.1. Fusion of MODIS and Landsat Data

In the first step, we integrated MODIS and Landsat images to generate a synthetic product with
both high spatial resolution (30 m) and high frequency (daily). This synthetic product were later refined
to 10-m resolution by fusing with Sentinel-2, which we describe in the next subsection. The fusion
method of MODIS and Landsat data was built on our previous algorithm STAIR 1.0. We briefly revisit
the method here and refer interested readers to [20] for more details and motivations of the method.

Suppose our goal is to fuse MODIS and Landsat images to generate a time series that has both
high spatial resolution and temporal frequency for n dates ti (i = 1, 2, .., n), and k matching pairs
of MODIS and Landsat images (acquired on the same day) are available for dates T j ( j = 1, 2, .., k).
After the preprocessing steps, here we assume that the MODIS images have been geo-co-registered
and super-sampled to Landsat images such that images from the two datasets have the same size
and resolution under the same projection system. The MODIS images are also available for dates ti
(i = 1, 2, . . . , n) on which we aim to predict the fine-resolution image.
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Formally, consider a MODIS image M and a Landsat image L that are both acquired on date T j.
We can model the relationship of homogeneous pixels between the Landsat and MODIS images as

L
(
x, y, T j

)
= M

(
x, y, T j

)
+ ε(x, y, T j), (10)

where L
(
x, y, T j

)
is the surface reflectance value at position (x, y) in the Landsat image acquired on

date T j and M
(
x, y, T j

)
has a similar meaning. The term ε(x, y, T j) is the difference between the surface

reflectances captured by Landsat and MODIS for (x, y) at date T j. This difference is often caused by
measurement errors of the sensors, solar and viewing angles, systematic noises or biases, and others [18].
Our task is to predict a fine-resolution image F for date tp where only the MODIS image M is available
but the Landsat image is not provided. Using similar notations, we model pixels in the fine-resolution
image by F

(
x, y, tp

)
= M

(
x, y, tp

)
+∆(x, y, tp), where ∆(x, y, tp) is the prediction residuals between the

surface reflectances in MODIS image M and the predicted fine-resolution image F of position (x, y) at
date tp. Therefore, one solution of predicting a fine-resolution image F is to first predict the residual
term ∆ and then add back the MODIS image M. Our method obtains the residues ∆(x, y, tp) of position
(x, y) at date ti by interpolating the surface reflectance differences between the available matching
MODIS–Landsat pairs. That is, we first calculate the surface reflectance difference of every position
for each date T j ( j = 1, .., k) as ε(x, y, T j) = L

(
x, y, T j

)
−M

(
x, y, T j

)
and then linearly interpolate the

difference terms ε(x, y, T j) into each date ti to obtain the estimated residuals ∆(x, y, ti) for all positions
(x, y) on each date ti. Finally, we add the MODIS image back to obtain the fine-resolution predicted
image following

F(x, y, ti) = M(x, y, ti) +∆(x, y, ti). (11)

Intuitively, the residuals term ∆(x, y, ti) captures the rich spatial information uniquely provided
by Landsat for position (x, y) while the temporal dynamics is encoded in the dense MODIS time
series M(x, y, ti) for dates ti (i = 1, 2, . . . , n). Integrating these two sources of information collectively,
the fine-resolution images thus have both rich spatial details and high frequency. We refer to the
MODIS–Landsat fusion results as ML-fusion.

2.4.2. Fusion of Sentinel-2 and Synthetic MODIS–Landsat Data

In the last step, we obtain a synthetic MODIS–Landsat product that has daily temporal resolution
and 30-m spatial resolution. In this step, we further fuse this product with Sentinel-2 imagery to
generate a daily, 10-m fusion product. The fusion process is very similar to the fusion of MODIS and
Landsat, except that here Sentinel-2 data are used as the high-resolution image input (10 m) and the
synthetic MODIS–Landsat data are the low-resolution image input (30 m). We resample the 30-m
synthetic MODIS–Landsat images to 10-m resolution and then estimate the pixel difference ∆(x, y, ti)

for all positions (x, y) of the Sentinel 2 image S(x, y, ti) and the synthetic MODIS–Landsat image
F(x, y, ti) at date ti. The final fusion image P(x, y, ti) is obtained by computing

P(x, y, ti) = F(x, y, ti) +∆(x, y, ti). (12)

The final fusion product contains daily, 10 m-resolution images. We refer to the
MODIS–Landsat–Sentinel-2 fusion results as MLS-fusion.

2.5. Assessments of Fusion Results

To quantitatively assess the fusion results of STAIR 2.0, we held out three observed Sentinel-2
images of Saunders County, NE, on 29 June, 19 July, and 8 August 2017, respectively. These three
images were used as the target images and no pixels of target images were available to our fusion
method. The availability of Landsat, MODIS, and Sentinel data over this region is visualized in Figure 3.
We sampled two areas (with size 3 km × 3 km and 5 km × 5 km, respectively) from each of the withheld
images as the test area (Figure S1). The major land cover types for the test areas are corn and soybean.
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For each test area, we applied STAIR 2.0 on all images for this area in 2017 except the target images to
generate a fusion image on that date and compare the fusion image to the observed image.
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Figure 3. Data availability of Landsat and Sentinel-2 imaginary. Each dot represents an acquisition of
Landsat or Sentinel-2 image from 1 April to 30 September 2017, in Saunders, NE. The x-axis shows the
DOY (day of the year) from April 1 (DOY 91) to September 30 (DOY 273). Images with clear pixels less
than 75% were removed and not shown.

We calculated two evaluation metrics, the Pearson correlation and the root-mean-square error
(RMSE), to quantify how consistent the predicted images and the observed images are in both spatial
patterns and surface reflectance values. The Pearson correlation, a number between −1 and +1,
measures the consistency of texture features reconstructed by the fusion algorithm and the actual
ones in the observed image. A fusion algorithm that accurately recovers the textures in the target
image would receive a coefficient close to +1, while an algorithm that poorly captures the textures
would receive a smaller or negative coefficient. This RMSE metric quantifies the absolute difference
between the predicted and observed surface reflectance values. To explicitly visualize the quality
of synthesis, following previous work [32], we calculated the structural similarity (SSIM) for each
pixel between the fused image and the observed image. SSIM is a metric between 0 and 1 that
quantifies the similarity between two images, with 1 indicating a perfect prediction. We used the
scikit-image library (with default parameter) to compute the average SSIM value and generate the
SSIM map. For comparison purposes, we include a baseline method where the STAIR 2.0 fusion
algorithm was applied to MODIS–Sentinel image pairs. We refer to this baseline method as “MS fusion”
while our presented method that integrated MODIS, Landsat, and Sentinel-2 as “MLS fusion” in the
following results.

3. Results

3.1. STAIR 2.0 Generates Daily, 10-m Time Series of Surface Reflectance

We demonstrate the applicability of STAIR 2.0 by applying it to the study area Saunders County,
NE in 2017 to produce a fusion product. We compiled MODIS, Landsat and Sentinel-2 images that
cover the growing season (1 April 207 to 30 September 2017) and manually removed images with less
than 75% clear pixels. In total, 183 MODIS images, 14 Landsat images, and 12 Sentinel-2 images were
used in this study. The temporal coverage of the Landsat and Sentinel-2 images is shown in Figure 3.

Taking daily MODIS time series and sparsely available Landsat and Sentinel-2 images (Figure 4A–I)
as input, STAIR 2.0 generates a surface reflectance product with both high spatial resolution (10 m) and
high temporal resolution (daily). The product contains high-quality time series that covers the growing
season (from1 April 207 to 30 September 2017). Images in the time-series product are cloud-/gap-free.
Missing-value pixels that are due to Landsat 7 un-scanned strips or clouds (e.g., Figure 4D) were
filled accurately and effectively by the imputation process. Using a stepwise fusion strategy, STAIR
2.0 first combines the MODIS and Landsat datasets to generate an intermediate fusion product that
contains daily, 30 m-resolution time series (Figure 4J–L). This MODIS–Landsat fusion product is then
upsampled to 10-m resolution and fused with the Sentinel-2 dataset, resulting in a fusion product that
contains a time series cloud-/gap-free images with 10-m resolution and daily frequency (Figure 4M–O).
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The dense time series produced by STAIR 2.0 also enables the high-resolution monitoring of the 
land surface. For example, for 30 June 2017, where there was one Landsat acquisition for Saunders, 
NE while no Sentinel-2 image was available, we applied STAIR 2.0 to generate a synthetic 10-m 
resolution image (Figure 5). Compared to the available Landsat image, the fusion image provides 
richer spatial information about the land surfaces and reveals many nuanced details that were not 
captured by Landsat due to the limitation of sensor resolution. In the next section, we quantitatively 
show that STAIR 2.0 not only refines the spatial details of land surfaces but also accurately recovers 

Figure 4. Example of STAIR 2.0 fusion results. STAIR 2.0 is applied to produce the daily time-series
with 10-m resolution that covers the growing season (from 1 April to 30 September 2017) of a test region
in Saunders, NE in 2017. The input and fused images in June 2017 are shown. (A–C) MODIS images are
available every day and three MODIS images on (A) 1 June 2017, (B) 15 June 2017, and (C) 30 June 2017
are shown. (D–F) Three Landsat images are available, on (D) 6 June 2017, (E) 14 June 2017, and (F) 30 June
2017. (G–I) Three Sentinel-2 images are available, on (G) 2 June 2017, (H) 9 June 2017, and (I) 29 June
2017. (J–L) intermediate MODIS–Landsat fusion product (ML-fusion). MODIS and Landsat datasets
are fused to generate a daily, 30-m fusion product. Three ML-fusion images on (J) 1 June 2017,
(K) 15 June 2017, and (L) 30 June 2017 are shown. (M–O) final MODIS–Landsat–Sentinel-2 fusion
product (MLS-fusion). Three MLS images on (M) 1 June 2017, (N) 15 June 2017, and (O) 30 June 2017 are
shown. Missing-value pixels due to clouds or Landsat 7 un-scanned strips are shown as black pixels.

The dense time series produced by STAIR 2.0 also enables the high-resolution monitoring of the
land surface. For example, for 30 June 2017, where there was one Landsat acquisition for Saunders,
NE while no Sentinel-2 image was available, we applied STAIR 2.0 to generate a synthetic 10-m
resolution image (Figure 5). Compared to the available Landsat image, the fusion image provides
richer spatial information about the land surfaces and reveals many nuanced details that were not
captured by Landsat due to the limitation of sensor resolution. In the next section, we quantitatively
show that STAIR 2.0 not only refines the spatial details of land surfaces but also accurately recovers
the time series of surface reflectance. Taken together, the STAIR 2.0 algorithm has great potential in
enabling a more precise and fine-scale monitoring and analysis of the dynamics of land surfaces.
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Pearson correlation, RMSE, and SSIM. The difference between these two settings is that STAIR 2.0 
further integrates Landsat in the MLS fusion setting but not in the MS setting. We also observed 
similar results for other bands, including green, blue, and SWIR1 bands (see Table S1 for detailed 
results). We visualize one example of the STAIR 2.0 fusion image for both MS and MLS fusion settings 
in Figure 6. The qualitative comparison reveals that the MLS fusion image is more consistent with 
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Figure 5. Comparison of the spatial texture details of the Landsat product (30-m resolution) and STAIR
2.0 fusion product (10-m resolution). The Landsat images (A) were acquired on 30 June 2017, while no
Sentinel-2 image (10-m resolution) was available on that day. STAIR 2.0 was applied to generate
10 m-resolution images for this date (B). Sentinel-2 images (C) from the closet date (29 June 2017) are
shown for reference. All images are visualized in RGB composition.

3.2. Quantitative Assessments

By evaluating STAIR 2.0 on the withheld test areas, we found that STAIR 2.0 produces accurate
fusion results with an RMSE <0.1, a correlation around 0.8–0.9, and an SSIM >0.9 for red, NIR,
and SWIR2 bands on all of the test areas (Table 2). These results suggest that STAIR 2.0 is able to both
capture the spatial texture patterns and accurately predict the surface reflectance values. In addition,
STAIR 2.0 under the MLS fusion setting consistently outperforms the MS fusion setting in terms of
Pearson correlation, RMSE, and SSIM. The difference between these two settings is that STAIR 2.0
further integrates Landsat in the MLS fusion setting but not in the MS setting. We also observed
similar results for other bands, including green, blue, and SWIR1 bands (see Table S1 for detailed
results). We visualize one example of the STAIR 2.0 fusion image for both MS and MLS fusion settings
in Figure 6. The qualitative comparison reveals that the MLS fusion image is more consistent with the
observed image in color scheme and provides more accurate texture details. This was also confirmed
by the quantitative evaluation, where the MLS fusion achieved higher correlation and lower RMSE
than the MS fusion (Figure 6). For example, for the NIR band, the RMSE and correlation of the
MLS fusion are 0.037 and 0.965, which outperforms the MS fusion (with RMSE 0.048 and correlation
0.939). To further assess the fusion quality, we calculated the SSIM values for both MS and MLS fusion
results. MLS fusion improved the SSIM value from 0.943 to 0.956 as compared to MS fusion (Table S1).
We visualized the SSIM maps to show the pixel-level SSIM values in Figure S2, which clearly shows
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that MLS fusion captures more details accurately then MS fusion. These results thus indicate that
multiple sources of optical satellite data can mitigate the sparsity in the data and improve the accuracy
of the fusion images.
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Figure 6. Visualization and evaluation of STAIR 2.0 fusion example. STAIR 2.0 was applied to produce
a fusion image for an area in Saunders, NE, on 19 July 2017. The fusion image produced by MS fusion
and MLS fusion are compared to the observed image, respectively. (A) RGB visualizations of MS
(MODIS–Sentinel) fusion image, MLS (MODIS–Landsat–Sentinel) fusion image, and the observed
image; (B) scatter plots of observed and fusion reflectance generated by MS fusion for green, blue and
NIR bands; and (C) scatter plots of observed and fusion reflectance generated by MLS fusion for green,
blue and NIR bands.
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Table 2. Quantitative assessments of STAIR 2.0 fusion. Three observed Sentinel-2 images on 29 June,
19 July and 8 August 2017 were held out as the ground truth image to assess the fusion results of
STAIR 2.0. For each image, two areas were randomly sampled as the test areas. Two fusion settings,
MODIS–Sentinel (MS) and MODIS–Landsat–Sentinel (MLS), were compared. Pearson correlation,
root-mean-square error (RMSE), and structural similarity (SSIM) were used as the evaluation metrics.
Results of red, NIR, and SWIR2 bands are shown. For each test band, the better performance (lower
RMSE, higher correlation, or higher SSIM) is in bold. See Table S1 for the results of other bands (green,
blue, and SWIR1).

Test Date Band RMSE Pearson
Correlation SSIM

MS
Fusion

MLS
Fusion

MS
Fusion

MLS
Fusion

MS
Fusion

MLS
Fusion

29 June
2017

(area 1)

Red 0.0354 0.0222 0.7409 0.9117 0.8667 0.9349
NIR 0.0656 0.0620 0.5570 0.7509 0.8767 0.9002

SWIR2 0.0558 0.0455 0.7863 0.9341 0.8836 0.9232

29 June
2017

(area 2)

Red 0.0334 0.0236 0.7023 0.9042 0.884 0.9342
NIR 0.0538 0.0467 0.6951 0.8345 0.898 0.9222

SWIR2 0.0563 0.0693 0.7669 0.8800 0.8903 0.9002

19 July
2017

(area 1)

Red 0.0195 0.0165 0.6770 0.7675 0.9328 0.9522
NIR 0.0529 0.0458 0.7656 0.8617 0.9108 0.9249

SWIR2 0.0315 0.0336 0.8123 0.8184 0.9513 0.9490

19 July
2017

(area 2)

Red 0.0216 0.0181 0.9035 0.9344 0.949 0.9595
NIR 0.0515 0.0380 0.9376 0.9669 0.9131 0.9142

SWIR2 0.0339 0.0248 0.9060 0.9494 0.9467 0.9539

8 August
2017

(area 1)

Red 0.0103 0.0100 0.8328 0.8508 0.9785 0.9813
NIR 0.0497 0.0432 0.9059 0.9300 0.9274 0.9344

SWIR2 0.0185 0.0180 0.8701 0.8762 0.9771 0.9782

8 August
2017

(area 2)

Red 0.0109 0.0096 0.8485 0.8877 0.9745 0.9797
NIR 0.0417 0.0347 0.9427 0.9564 0.9288 0.9361

SWIR2 0.0144 0.0134 0.9337 0.9422 0.9817 0.9818

3.3. Values of Integrating Three Satellite Sources

To demonstrate the advantages of integrating more types of satellite data for fusion, we performed
a case study in which we held out one Sentinel-2 image on June 29 (DOY 180) and applied STAIR 2.0 to
generate a fusion image for this target date. The removal of this image makes the data availability
around this date very sparse (Figure 3) and the temporarily closest Sentinel-2 images are 20 days
apart (on DOY 160 and DOY 200), creating a challenging setting for evaluating the fusion algorithm.
The sparsity of the Sentinel-2 time series in this timeframe makes the fusion a challenging task as
there is little accurate information about the target date available for the fusion algorithm. Moreover,
the surface reflectance typically changes rapidly in a nonlinear way in this timeframe, which further
exacerbates the data sparsity issue.

We first applied STAIR 2.0 to generate the MODIS–Sentinel-2 fusion images (MS fusion) for the
target date. The fusion image does not fully capture the texture details or accurately recover the surface
reflectance (Figure 7A). The RGB visualization of the fusion image is also clearly different from the
observed image (Figure 7A). The reason is mainly the sparse frequency of Sentinel-2 data and the low
spatial resolution of MODIS data: the surface reflectance greatly changes in this timeframe and the
closest available Sentinel-2 images, which are 20 days apart, cannot offer accurate reference reflectance
values for the target date. The MODIS data, even though at a daily frequency, have a relatively
low spatial resolution and did not provide informative details or effective correction of reflectance
values in the fusion. We note that existing fusion algorithms that integrate two types of satellite data
(e.g., STARFM and ESTARFM) would also have the same issue here due to a similar reason.
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Figure 7. Advantages of fusing multiple satellite datasets. STAIR 2.0 under MS and MLS settings was
applied to produce a fusion image for an area in Saunders, NE, on June 29, 2017. The fusion image
produced by MS fusion and MLS fusion are compared to the observed image, respectively. (A) RGB
visualizations of MS fusion image, MLS fusion image, and the observed image; (B) scatter plots of
observed and fusion reflectance generated by MS fusion for green, blue, and NIR bands; and (C) scatter
plots of observed and fusion reflectance generated by MLS fusion for green, blue, and NIR bands.

Next, we applied STAIR 2.0 to further integrate Landsat (MLS fusion), in addition to MODIS and
Sentinel-2, to produce a fusion image for the target date. The Landsat dataset provides additional
information to the input time series. For example, there are four Landsat images (on DOYs 165, 181,
189, and 197) that are closer to the target date than the two temporarily closest Sentinel-2 images,
and one of them is only one day away from the target date. We observed that introducing the Landsat
effectively mitigated the data sparsity issue. The MLS fusion image is visually more consistent with the
observed image than the MS fusion image (Figure 7B). The quantitative evaluation also indicates that
the MLS fusion image has lower RMSE error and higher correlation than the MS fusion image across
three bands (Figure 7C). Although the MLS fusion image still does not fully recover texture details
and surface reflectance, we expect the fusion results can be improved qualitatively and quantitatively
providing more available Landsat and/or Sentinel-2 images in the input time series.

We further demonstrated the utility of MLS fusion by using the fusion data to derive the normalized
difference vegetation index (NDVI) for land covers. We selected a region (Figure S3) of Saunders, NE,
in 2017 and used the MS and MLS fusion data to compute the NDVI series. We observed that the
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fusion data captured the temporal dynamics of the NDVI time series (Figure S3). By integrating more
sources of data, the MLS fusion, as compared to the MS fusion, reflects more detailed temporal changes
in the time series.

Low coverage on the temporal dimension is a frequent issue in the spatial-temporal fusion
of optical satellites, due to various reasons including cloud contamination and the satellite revisit
frequency. The above results demonstrate that integrating multiple satellite sources can effectively
mitigate this issue. With its ability to fuse multiple sources of satellite data, we expect STAIR 2.0 to be
a practically useful fusion algorithm that can fully take advantage of each input dataset to generate
a high-quality product of surface reflectance time series.

4. Discussion

4.1. Advancements of STAIR 2.0

Compared to its predecessor STAIR, STAIR 2.0 achieves several improvements. It fuses more
satellite datasets, with higher computational efficiency, to generate a surface reflectance product
at a higher resolution. The synthetic product consists of daily, could-/gap-free, spectral-/spatial-
co-registered surface reflectance observations at 10-m resolution.

STAIR 2.0 offers the flexibility and convenience of usage for fusing multiple satellite sources. STAIR
2.0 is able to integrate the time series of input satellite data that consist of a large number of images,
fully taking advantage of complementary information available across different data. In contrast,
fusion methods such as STARFM and ESTARFM only support up to two matching Landsat–MODIS
image pairs as input and thus have limited integration ability. In addition, STAIR 2.0 does not require
the input to contain MODIS–Landsat–Sentinel triples that are nearly coincident: it first fuses MODIS
and Landsat data to generate daily fusion images so each Sentinel-2 image will have a matching
fusion image. This is a big relaxation of stringent requirements in previous fusion methods that
integrate three types of satellite data. For example, the CESTEM method must have near-coincident
MODIS–Landsat–PlanetScope images as input, which greatly limits its applicability when coincident
images are very scarce [22].

STAIR 2.0 also provides a high-performance gap-filling algorithm to impute missing-value pixels
due to cloud or sensor damage in input images. Fusion methods such as STARFM and ESTARFM
do not explicitly impute missing-value pixels in input pixels, e.g., cloud regions or strips in Landsat
7 SLC-off images. Instead, these methods rely on users to provide cloud-/gap-free input images.
To deal with this, users have to apply other cloud detection and gap-filling algorithms before applying
these fusion methods. STAIR 2.0 streamlines this process by developing a fusion framework with the
gap-filling function, which frees users from the tedious process of combining multiple independently
developed methods into a pipeline. Our gap-filling algorithm is an improved version of the one in
STAIR and is itself a novel method. It additionally uses temporal surface reflectance profiles to search
similar neighborhood pixels to better adjust a filled pixel, thus leading to higher-quality gap-filling
results. The gap-filling algorithm is also optimized to run on multiple CPU cores. When applied to the
test areas in this work, the multi-core version of STAIR 2.0 is 20× faster than its single-core version.
Different from existing gap-filling algorithms (e.g., NSPI [33] and its enhanced version GNSPI [34]),
which use a single reference image for imputing missing-value pixels, our gap-filling algorithm uses
a time series of reference images and thus is more effective in identifying similar pixels and producing
high-fidelity filling results. In addition to facilitating the downstream fusion process, the gap-filling
algorithm is also of independent interest and useful in other remote sensing-based analyses.

4.2. Spectral Correction and Spatial Alignments of Multiple Satellite Sources

Images from different satellite sensors have many differences in spatial resolution, bandwidth,
spectral response, solar geometry, and viewing angle. Therefore, for the best practice, cautions should
be given before fusing different satellite data sources. Major considerations include unifying
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spectral responses and cross geo-registration. Firstly, differences in bandwidth, spectral response,
and atmospheric conditions may lead to systematic bias across different types of satellite images.
Most existing fusion methods, such as STARFM, have already taken the systematic bias into account
in modeling the relationship between Landsat and MODIS surface reflectance. STAIR implicitly
considers the differences in spectral responses of Landsat and MODIS and thus has a limited impact
on fusion accuracy. In STAIR 2.0, we additionally performed pre-processing using calibrated models
from literature to unify the spectral responses across bands and sensors. Therefore, the spectral
difference does not have a significant impact on fusion accuracy in most spatiotemporal fusion
methods. On the other hand, cross-sensor geo-registration is a critical factor for the successful fusion
of multiple satellite sources. Virtually all spatiotemporal fusion methods, including STARFM and
STAIR 2.0, assume that a coarse-resolution pixel and all of its corresponding internal fine-resolution
pixels observe the same region of the land surface. However, satellite sensors have their own inherent
uncertainty of geolocations, and geolocation errors exist across different sensors, all of which will lead
to misalignment of geolocations in images from different satellite sensors. The issue becomes more
notable for the fusion of two high-resolution satellite data. For example, it has been reported that the
current Landsat and Sentinel-2 images are misaligned by more than several 10-m pixels [35]. In STAIR
2.0, we used a tie-point matching approach to perform the geo-registration of different satellite data
sources. Other approaches, for example, based on image texture/spectral matching algorithms [35],
are alternative solutions to our approach.

4.3. Fusion Strategy of Multiple Satellite Sources

To date, there are very few efforts on the spatiotemporal fusion of more than three satellite data
sources, and there is no consensus strategy for fusing multiple sources, i.e., in which order and in what
manner should multiple (more than three) datasets be integrated. For example, in CESTEM, PlanetScope
images are compared to MODIS and Landsat images separately for calibration purposes, the PlanetScope
images are integrated with Landsat images to produce high-frequency Landsat-consistent PlanetScope
images. In STAIR 2.0, we used a simple yet effective stepwise approach to integrate MODIS, Landsat,
and Sentinel-2 images. MODIS (500 m) and Landsat (30 m) images are first fused to generate daily
synthetic images (30 m), which are then further fused with Sentinel-2 images (10 m) to produce a final
fusion product with daily frequency and 30-m resolution. There are other different fusion strategies
to integrate the three datasets. For example, one can first down-scale the Sentinel-2 images to the
resolution of Landsat and generate a Landsat–Sentinel time series, then apply the fusion on MODIS
and this hybrid time series. Since the information is denser in the hybrid time series, this fusion
strategy potentially will improve fusion accuracy. It should be noted that spectral correction and spatial
alignment are critical in constructing the hybrid time series from two- or multiple-source satellite data.
Moreover, benchmarking different fusion strategies for the data from the three satellites could be a
valuable future direction of the development of spatiotemporal fusion methods.

4.4. Computational Efficiency and Scalability

Spatiotemporal fusion methods with high computational efficiency are extremely needed in
high-resolution monitoring and modeling of land surface dynamics, especially for continental-scale
applications. The major bottleneck of efficiency in STAIR 2.0 is the extensive computation of pairwise
similarity of pixels within a sliding window. Pixel-wise computation and moving window strategy
are also identified as the major factors that limit the wide application of existing spatiotemporal
fusion methods such as STARFM [19]. To boost the fusion process, we implemented a multi-process
version of STAIR 2.0 that performs the pairwise similarity calculation for multiple sliding windows
in parallel on multiple CPU cores. We found this optimization brings a 20× speedup for the fusion
of Champaign, IL, USA, 2017, using 20 CPU cores. There is still room for efficiency improvement of
STAIR 2.0. For example, the current framework is implemented in Python and utilizes CPUs only.
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Orders of magnitude of acceleration for the whole fusion pipeline can be achieved by translating the
implementation from Python to C/C++ and parallelizing it on GPUs.

5. Conclusions

In this paper, we present STAIR 2.0, a generic and automatic fusion method to integrate multiple
satellite data sources, including MODIS, Landsat, and Sentinel-2, to generate daily, 10-m resolution,
cloud- and gap-free time series of surface reflectance. STAIR 2.0 is an improved and extended version
of STAIR, a fusion method we developed to integrate MODIS and Landsat data to produce a daily, 30 m
surface reflectance product. STAIR 2.0 consists of an effective gap-filling algorithm and a flexible fusion
method. Compared to its predecessor, STAIR 2.0 provides an improved gap-filling algorithm that
more effectively imputes the missing-value pixels in the input image due to cloud or sensor damage,
as well as a flexible fusion framework that uses a stepwise strategy to integrate MODIS, Landsat,
and Sentinel-2 data. The gap-filling algorithm, equipped with a multiprocessing implementation,
efficiently utilizes time series similarity to impute missing-value pixels due to cloud or sensor damage
in the input image. The fusion method integrates the three satellite sources using a stepwise strategy,
from coarse resolution (MODIS) to fine resolution (Sentinel-2). This work is a demonstration of the
STAIR algorithm’s nature of genericness and flexibility to fuse all sorts of optical satellite data after the
proper pre-processing. Through quantitative assessments, we show that STAIR 2.0 is able to produce
accurate fusion products, with a low RMSE and a high correlation as compared to the ground truth
images. We also demonstrate that the fusion of three satellite sources, by leveraging the information
from more frequently dynamics and finer spatial scales, provides independent and additive values
that cannot be offered by the integration of only two satellite sources. We expect STAIR 2.0 to be a
practical tool for various remote sensing applications based on time series modeling.
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