
remote sensing  

Letter

Using the BFAST Algorithm and Multitemporal AIRS
Data to Investigate Variation of Atmospheric Methane
Concentration over Zoige Wetland of China

Yuanyuan Yang 1 and Yong Wang 2,*
1 School of Resources and Environment, University of Electronic Science and Technology of China (UESTC),

2006 Xiyuan Avenue, West Hi-tech Zone, Chengdu 611731, China; 201511180105@std.uestc.edu.cn
2 Department of Geography, Planning, and Environment, East Carolina University, Greenville, NC 27858, USA
* Correspondence: wangy@ecu.edu

Received: 11 September 2020; Accepted: 28 September 2020; Published: 30 September 2020 ����������
�������

Abstract: The monitoring of wetland methane (CH4) emission is essential in the context of global CH4

emission and climate change. The remotely sensed multitemporal Atmospheric Infrared Sounder
(AIRS) CH4 data and the Breaks for Additive Season and Trend (BFAST) algorithm were used to
detect atmospheric CH4 dynamics in the Zoige wetland, China between 2002 and 2018. The overall
atmospheric CH4 concentration increased steadily with a rate of 5.7± 0.3 ppb/year. After decomposing
the time-series of CH4 data using the BFAST algorithm, we found no anomalies in the seasonal
and error components. The trend component increased with time, and a total of seven breaks were
detected within four cells. Six were well-explained by the air temperature anomalies primarily,
but one break was not. The effect of parameter h on decomposition outcomes was studied because it
could influence the number of breaks in the trend component. As h increased, the number of breaks
decreased. The interplays of the observations of interest, break numbers, and statistical significance
should determine the h value.

Keywords: atmospheric infrared sounder (AIRS); breaks for additive season and Trend (BFAST)
algorithm; methane (CH4); multitemporal data; Zoige wetland; China

1. Introduction

Among all natural and anthropogenic sources, wetlands are the single largest methane (CH4)
source and contribute 20%~40% of the total global CH4 emission [1]. Wetland CH4 emissions result
from interactions between several biological, chemical, and physical processes that primarily include
CH4 production, transportation, and oxidation. Methanogenic bacteria carry out the production by
decomposing a limited number of relatively simple substrates under strictly anaerobic conditions.
Thus, the production rate is limited by the availability of substrate and regulated by climatic and
edaphic factors such as temperature, water table position, and pH [2–6]. CH4 can be transported to
the atmospheric through various pathways: molecular diffusion, ebullition, and via vascular plant
stems [7]. The produced CH4 is mostly oxidized by methanotrophs present at the oxic-anoxic boundary
in the soil before emitting into the atmosphere [8]. Thus, the difference between the production and
oxidation rates determines the rate of CH4 emission into the atmosphere.

Paleo records and recent studies suggest vital positive feedback of wetlands to global warming
through CH4 emissions [9,10]. Therefore, the long-term variation and abrupt changes in wetland CH4

emissions are essential elements to understand the present conditions of the global CH4 emissions
and climate changes [11,12]. An abrupt change or break usually denotes a rupture in the established
range of observations. In this study, a breakpoint occurs when the wetland CH4 emission is beyond a
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given threshold value, as observed in the remote-sensing time-series and delineated by an algorithm,
triggering a discontinuous transition where a new starting point and rate are initiated.

Within the context of climate change, continuous monitoring of wetland CH4 emissions is
essential. With available multitemporal remote-sensing observations and datasets, various long-term
change detection methods have been proposed. Temporal decomposition techniques have shown
the ability to account for seasonal, gradual, and abrupt changes or breaks in terrestrial ecosystems.
An early LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery) algorithm
divides long-term trends into piecewise-linear segments to characterize long-term changes in forest
properties [13,14]. The algorithm captures changes at an annual scale but not at an intra-annual one.
The Detecting Breakpoints and Estimating Segments in Trend (DBEST) can detect both abrupt and
non-abrupt changes [15]. All the above methods are generally used to detect changes in the trend
components, while seasonality is ignored.

The Seasonal-Trend decomposition based on a locally weighted regression smoother (STL) can
identify both the phenological cycle and gradual change [16]. The STL cannot detect abrupt changes, as it
assumed that the trend component varies smoothly [17]. Based on the STL algorithm, Verbesselt et al. [18]
developed the Breaks for Additive Season and Trend (BFAST) algorithm that detects seasonal, gradual,
and abrupt changes in a time-series simultaneously. The algorithm has been used and validated in
many studies. For instance, Verbesselt et al. [19] detected drought-related vegetation disturbances.
Saatchi et al. [20] examined the impact of the water deficit on the Amazon forest. Watts and Laffan [21]
assessed the effectiveness of the algorithm in semi-arid regions, where the vegetation response is
typically aseasonal. Hamunyela et al. [22] studied deforestation from the same data in dry and humid
tropical forest areas.

CH4 studies have been conducted in the Zoige wetland, mainly using in situ measurements [23,24].
However, the measurements are sparse and cannot be representative on a large scale. Systematic
observation of the vertical variation of CH4 is scarce. Therefore, space-borne measures become crucial
as they provide broad spatial and multitemporal coverage, helping to understand better variations
(e.g., abrupt changes or breaks) of the wetlands CH4 emission and its impact on global climate change.
Although the BFAST method has received much attention, no study has been conducted to use the
technique coupled with the multitemporal remote-sensing data to understand the variations of the
atmospheric CH4 concentrations over wetlands. Thus, our aims are (i) to capture the CH4 dynamic
in the Zoige wetland using the BFAST algorithm coupled with remote-sensing observations of a
time-series and (ii) to investigate the role of air temperature in altering a CH4 time-series. Like any
study using an algorithm, the algorithm parameterization is anticipated. The parameterization of h,
a key parameter in the BFAST algorithm, is evaluated as the third objective. Thus, the impact of h on
the outcome is studied.

2. Study Area, Datasets, and Methodology

2.1. Study Area

The Zoige Plateau (100◦34′–103◦45′ E, 31◦40′–34◦48′N) is at the eastern edge of the Qinghai-Tibetan
Plateau, China. Elevations of the plateau range from about 2400 to 5000 m above the mean sea level.
The mean is ~3500 m (Figure 1). The wetland in the Zoige Plateau, approximately 4600 km2, consists
mainly of peatland that is about 40% of the peat stock in China. The peatland is regarded as one of the
largest alpine peatlands in the world [25]. The area is within the high-altitude temperate humid climate
region. The annual precipitation ranges from 400 to 800 mm [26]. The temperature varies considerably,
with a yearly mean near 0 ◦C. The long cold-dry winters but short warm-humid summers generally
make the accumulation rate of organic matter in soil higher than the decomposition rate. Methanogens
use organic matter to generate CH4.
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Figure 1. Digital elevation model (DEM) of the Zoige wetland, China. Three meteorological stations
(red dots) and six wind measurement sites (black crosses) are identified.

2.2. Datasets

2.2.1. Meteorological and GLDAS Datasets

Three meteorological stations are located at Maqu, Zoige, and Hongyuan (Figure 1). The air
pressure and temperature, wind direction and speed, humidity, and precipitation are measured.
The data between September of 2002 and March of 2017 are available and downloadable at the China
Meteorological Data Service Center (http://data.cma.cn/site/index.html).

The wind speed and direction are also measured at 90 m above the ground surface at six sites
(Figure 1). After analyzing all the wind data from September of 2002 to March of 2018, we found that
the wind direction changes annually with an inter-annual cyclic variation. The wind speed varies
annually but may not have a clear high or low period intra-annually. The average wind speed between
2002 and 2018 was ~4 m/s. There was not a noticeable trend of increase or decrease. With the spatial
resolution of the rasterized CH4 data of 1◦ (longitude) × 1◦ (latitude) or ~100 km by ~100 km in the
study area, the CH4 diffusion and transport caused by winds were not considered.

The Global Land Data Assimilation System (GLDAS) (https://ldas.gsfc.nasa.gov/gldas/) is a global
land-data assimilation system established in recent years, aimed at using satellite- and ground-based
observation data products, advanced land surface models, and data assimilation technology to generate
optimal surface conditions and flux data. The GLDAS data are downloadable at the NASA Goddard
Earth Science Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/datasets). The soil
moisture (0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm) and soil temperature (0–10 cm, 10–40 cm,
40–100 cm, and 100–200 cm) data of GLDAS-Noah Version 2 between September of 2002 and March
of 2018 were downloaded. They are monthly datasets with a spatial resolution of 1◦ (longitude) ×
1◦ (latitude).

2.2.2. CH4 and Landcover Datasets

The Atmospheric Infrared Sounder (AIRS) instrument on-board the NASA Earth Observing
System Aqua satellite was launched into space in May of 2002. The AIRS is hyperspectral, having
2378 detectors in the infrared spectra from 3.7 to 15.4 µm [27]. The spatial resolution of AIRS is 13.5 km
at nadir. Within a 24-h period, AIRS usually observes the globe twice. AIRS methane retrievals
are broadly sensitive, ranging between 850 hPa (hectopascal) and the lower stratosphere, with peak
sensitivity around 300–400 hPa. The AIRS Standard Version 6 Level 3 monthly data (AIRS3STM) of

http://data.cma.cn/site/index.html
https://ldas.gsfc.nasa.gov/gldas/
http://disc.sci.gsfc.nasa.gov/datasets


Remote Sens. 2020, 12, 3199 4 of 17

the atmospheric CH4 concentration [28] were chosen. The data were divided into twenty-four layers
corresponding to different atmospheric pressures or heights above the mean sea level. Here, the CH4

concentration (parts per billion, ppb) at 600 hPa atmospheric pressure was extracted. The equivalent
elevation is ~3600 m, which is about 100 m higher than the mean elevation of the study area. The data
between September of 2002 and March of 2018 was downloaded from the NASA Goddard Data and
Information Services Center at https://disc.gsfc.nasa.gov/datasets. Since the data at a single pixel was
analyzed, a 3 × 3 AIRS sub-image covered the Zoige wetland spatially (Figure 1). The cells are named
as A1–A9 from left to right and then from top to bottom.

We used the recently created China land cover products provided by the Resource and Environment
Science and Data Center. Multiyear products in 2000, 2005, 2010, 2015, and 2018 are available and
downloadable at http://www.resdc.cn/Default.aspx. The original land cover type is designed as a
hierarchical classification scheme that allows one to adjust the thematic detail that describes each land
cover class. Here, we first grouped the “level 2” classes into four categories: cropland, grassland, forest,
and water body. Peatland in “level 2” remained as a category. The rest land cover types were classified
as other. Thus, we had six land cover types. At such an aggregation level, the six land cover types did
not change much from 2000 to 2018. The land cover data in 2010, which was near the middle of the
studied time-series, was chosen. It should be noted that the peatland with high grassland coverage
(>20%) might be classified into grassland in the downloaded datasets. Thus, some grassland, when the
ground is wet, can be considered as wetland, per se.

Within the overlapped area of the study area and each cell, percentages of the six cover types
were calculated and are shown in Table 1. Grassland and forest are the primary land cover in A1,
whose ground area is only about 25% within the study area. A2 is the mixture of peatland, grassland,
and forest, with the grassland cover type being dominant. About 65% area of A2 is inside of the study
area. A3 is the grassland area having the lowest elevation in the study area (i.e., Figure 1). The majority
of A3 is outside of the study area. In A4, the grassland, forest, and peatland are the major land cover
types. More than one-half of the site is within the study area. A5, entirely within the study area,
is covered by the peatland, grassland, and forest, with a small part of the waterbody. A6 is the mixture
of peatland and grassland, with the grassland being dominant. About 70% of the area of A6 is inside
the study area. A7 is covered by the grassland and forest, with a percentage of the peatland. More
than one-half of the site is within the study area. The land cover types in A8 are like those in A7. More
than 50% area of A8 is located inside of the study area. A small northwestern corner of A9 is inside the
study area. Since A1, A3, or A9 is mostly outside of the study area, the atmospheric CH4 concentrations
over each cell were not studied. Thus, we focused on A2, A4, A5, A6, A7, and A8.

Table 1. Percent of each land cover type of the overlapped area within the study area and each cell.

A2 A4 A5 A6 A7 A8

Cropland 0.2 1.3 0.4 0.5 0.4 0.5
Grassland 77.3 78.4 74.1 70.4 48.8 77.4

Forest 11.0 12.4 4.7 13.0 45.9 18.6
Peatland 9.1 1.5 17.3 15.7 0.2 3.3

Water body 1.4 0.2 0.9 0.0 0.0 0.0
others 1.0 6.2 2.6 0.4 4.7 0.2

2.3. The BFAST Algorithm

The algorithm decomposes the multitemporal AIRS CH4 data, Y(t), into three components, as

Y(t) = S(t) + T(t) + E(t) (1)

where S(t) is the seasonal component, T(t) is the trend component, and E(t) the error one. All are
functions of time t. If there is no single abrupt change point or breakpoint, S(t) is continuous over the
entire period. If one breakpoint occurs, S(t) becomes two piecewise functions. If multiple breakpoints

https://disc.gsfc.nasa.gov/datasets
http://www.resdc.cn/Default.aspx
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exist, one piecewise function is developed between two adjacent breakpoints. With the anticipated
periodic characteristics of S(t), a harmonic function is used. Assume p breakpoints occur at times
τ#

1, . . . , andτ#
p, with τ#

0 being the start of the time-series and τ#
p+1 the end of the series. Then, between

τ#
j−1 and τ#

j (j = 1, 2, . . . , p), one can express S(t) as

S(t) =
K∑

k=1

[
γ j,k sin(

2πkt
f

) + θ j,k cos(
2πkt

f
)

]
(2)

where k is the kth number of the harmonic term. K is the highest-order harmonic term used in the
algorithm. f is the frequency. Since the period for S(t) is annual, f is one cycle per year. γ j,k = a j,k cos(δ j,k)

and θ j,k = a j,k sin(δ j,k). a j,k is amplitude and δ j,k phase, and both are segment-specific parameters.
In this study, we are interested in the S(t) on an annual basis. The highest order of harmonic terms
used in (2) cannot be greater than three [17,29,30], such that we can focus on changes using an entire
season as the smallest timespan and eliminate unnecessary high-frequency variations in the AIRS data.
Thus, K is set to 3.

T(t) is continuous over the entire period if a single breakpoint does not occur. If breaks happen,
T(t) is expressed as piecewise functions as well. Assume m breakpoints happen at times τ∗1, . . . , andτ∗m,
with τ∗0 being the start of the time-series and τ∗m+1 the end of the series. A piecewise linear function
within τ∗i−1< t ≤ τ∗i (i = 1, 2, . . . , m) is

T(t) = αi + βit (3)

where αi is the ith intercept and βi the ith slope. Breakpoints that occur in T(t) or S(t) can generally
differ in time or magnitude. Finally, the error term of E(t) is obtained in the decomposition.

2.4. The Effect of the h Parameter on the Decomposition

The BFAST algorithm uses the ordinary least squares residuals-based moving sum (OLS-MOSUM)
to evaluate whether one or more breakpoints happen in the trend component or seasonal component [31].
The sum of a fixed number of residuals in a moving data window, whose size was determined by the
bandwidth parameter, h∈(0, 1), moving over the whole sample period, was analyzed. If the evaluation
indicated a significant change (with the significance level of p < 0.05), the break was estimated [32].
As implemented ([33]), the Bayesian information criterion determined the number of breakpoints.
The date and confidence interval (CI) of each breakpoint was estimated at 95%. Additionally, h
determined the minimal segment size between two potential breakpoints in the time-series and was
the ratio of the number of observations within a segment divided by the total length of a time-series.
The two-end points of the segment or the entire time-series were excluded before the division. Although
h∈(0, 1), the maximum h was ≤ 0.5 if one breakpoint was to occur [21]. Per recommendations in [21]
and [34], the minimum h was at least ≥ 5% of the observations within the time-series. Therefore, we
varied h between 0.05 and 0.5 to understand its impact on the outcome and determine an h value to
link the breaks with abnormal natural events (e.g., temperature).

3. Results

3.1. Increase of Atmospheric CH4 Concentration Derived From AIRS Data

The time-series of the atmospheric CH4 concentrations over A2, A4, A5, A6, A7, and A8 were
studied individually. Figure 2 demonstrates an annual cyclic pattern and a persistent increase in the
CH4 concentrations at the Zoige wetland during 2002–2018. In the figure, each dot is one observation
or one month. A linear fit line was added and is shown as a red, dashed line. The parameters of
the linear fit lines over the six cells are listed in Table 2. The slopes of the lines are between 0.015
and 0.017 ppb/day. With each fit line, the atmospheric CH4 concentrations in September of 2002
and March of 2018 were calculated. The concentration values ranged from 1811.357 to 1854.134
ppb in September of 2002 and from 1901.917 to 1944.989 ppb in March of 2018. The increases, after
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nearly 16 years, were 96.220, 90.560, 90.560, 84.900, 84.900, and 84.900 ppb in A2, A4, A5, A6, A7,
and A8, respectively. The average annual rate was 5.7 ± 0.3 ppb/year. The globally averaged annual
rate was 5.1 ± 0.6 ppb/year using the marine surface data between 2002 and 2017 (E. Dlugokencky,
National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory
(ESRL), https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). Regarding the global data, an increase in
the atmospheric CH4 concentration at the Zoige wetland is likely true quantitatively.
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A4 36.272 −32.849 69.121 −0.014 0.000 12.784 

A5 30.139 −37.296 67.435 −0.003 0.000 10.703 
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Figure 2. Atmospheric Infrared Sounder (AIRS) atmospheric CH4 concentration data between 2002
and 2018, shown as a black curve. Each dot is an observation or one month in the monthly AIRS data.
The red, dashed line is a linear fit line. (a) A2, (b) A4, (c) A5, (d) A6, (e) A7, and (f) A8.

Table 2. Intercept and slope values of linear fit lines for A2, A4, A5, A6, A7, and A8.

A2 A4 A5 A6 A7 A8

Slope (ppb/day) 0.017 0.016 0.016 0.015 0.015 0.015
Intercept (ppb) 1211.269 1211.357 1219.759 1289.315 1273.904 1291.634

3.2. Decomposition of the CH4 Time-Series

The decomposition for each of the six cells was conducted individually. No breaks in S(t) for each
cell were found. Values of the crest, trough, height, and mean are tabulated in Table 3. The seasonal
component of each cell has a mean value near zero, which suggests normality. As an example, Figure 3
shows an S(t) of A5 between 2002 and 2018. It is annually cyclic, which is anticipated. The parameters
of S(t) for A5 are given in Table 4. In short, no further analysis of S(t) in each cell was carried out.

Table 3. Descriptive summary of the seasonal and error components of A2, A4, A5, A6, A7, and A8.
The unit is ppb. S(t): seasonal component and E(t): trend component.

S(t) E(t)

Crest Trough Height Mean Mean St. Dev.

A2 26.857 −31.275 58.132 0.002 0.000 10.933
A4 36.272 −32.849 69.121 −0.014 0.000 12.784
A5 30.139 −37.296 67.435 −0.003 0.000 10.703
A6 17.652 −16.801 34.453 −0.010 0.000 9.344
A7 25.744 −23.094 48.838 −0.005 0.000 10.294
A8 25.745 −23.095 48.840 −0.008 0.000 11.971
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Figure 3. Decomposition of the atmospheric CH4 concentration data over A5. S(t), T(t), and E(t) are
the seasonal, trend, and error components, respectively. Two breakpoints were detected in the trend
component. The vertical dotted lines in T(t) indicate the beginnings of breakpoints (December of 2009
and May of 2012).

Table 4. Parameters of S(t) shown in Figure 3a and θi (i = 1, 2, 3) are the coefficients of the sine and
cosine terms, respectively. The unit for γi and θi is ppb. f is the frequency (once per year).

γ1 θ1 γ2 θ2 γ3 θ3 f

0.066 0.002 −0.070 0.042 17.540 −24.890 1

The mean and standard deviation of the error component of the six cells were also analyzed,
respectively. The annual mean value for each of the six cells is 0.000 ppb. The standard deviations
range from 9.344 to 12.784 ppb and are ~0.57% of the average atmospheric CH4 concentration within
the study period. Thus, E(t) is considered normal. The E(t) of A5 between 2002 and 2018 are shown in
Figure 3 as well. No particular patterns exist.

In the trend components, two breakpoints were detected at A2, A4, and A5. A7 had one. No breaks
were found at A6 and A8. The time and magnitude of the changes are shown in Table 5. Timewise, two
breakpoints occurred in December of 2009, one in January of 2010, one in October of 2010, and three in
May of 2012. Additionally, a negative magnitude value indicates a drop, whereas a positive value,
an increase. Thus, there are six decreases and one increase. Figure 3 shows the trend component of A5

between 2002 and 2018. There are two drops and three segments or piecewise functions.
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Table 5. Atmospheric CH4 changes in the trend components over A2, A4, A5, and A7 at each breakpoint.
At a breakpoint, an increase is positive, but a decrease negative.

YYYY/MM–YYYY/MM A2 (ppb) A4 (ppb) A5 (ppb) A7 (ppb)

2009/12–2010/01 –27.821 –23.861
2010/01–2010/02 –21.427
2010/10–2010/11 12.851
2012/05–2012/06 –25.544 –22.925 –20.843

Each piecewise linear function within each segment was derived for A2, A4, A5, A6, A7, and A8,
respectively. The intercept and slope of each function for each cell are tabulated in Table 6. Of A2, A4,
A5, and A7, there is at least one break in the trend components. The intercept values vary and are linked
to the breaks. The intercept value of A6, 1285.509, is similar to that in the fit line (1289.315, Table 2).
The similarity repeats for A8 (Table 6 confer, c.f., Table 2). All slope values are positive, showing
an increasing trend. The values range from 0.011 to 0.076 ppb/day. Moreover, the slope in the final
segment for A2, A4, A5, or A7 is always steeper than the counterpart in the first segment. The timing of
the acceleration is mostly in agreement with previous studies. The growth rate is plateaued in the
mid-2000s, and then, the rate accelerates onwards [35,36].

Table 6. Intercept and slope values of each segment of T(t) of A2, A4, A5, A6, A7, and A8.

YYYY/MM–YYYY/MM Intercept (ppb) Slope (ppb/Day)

A2

2002/09–2010/01 1217.768 0.016
2010/02–2012/05 –832.480 0.067
2012/06–2018/03 975.031 0.022

A4

2002/09–2009/12 1246.428 0.016
2010/01–2012/05 –1216.253 0.076
2012/06–2018/03 1122.718 0.019

A5

2002/09–2009/12 1221.172 0.016
2010/01–2012/05 –789.977 0.066
2012/06–2018/03 1089.205 0.019

A7
2002/09–2010/10 1441.086 0.011
2010/11–2018/03 1350.378 0.013

A6 2002/09–2018/03 1285.509 0.015

A8 2002/09–2018/03 1286.080 0.015

3.3. Parameterization of h and Its Impact on the Decomposition

As one knows that the number of breakpoints decreases when h increases, the negative and
monotonic relationship suggests two aspects. First, an h value cannot be too large. An excessively
large one can unnecessarily smoothen the trend component. Second, an h value or values exist
after considering the interplays of the observations of interest, break numbers, and statistical
significance. In this study, we were interested in CH4 variations in the trend components using
monthly remote-sensing time-series data. Factors such as an abnormal temperature event or events
very likely affecting the observed atmospheric CH4 concentrations were of interest.

As discussed previously, h was between 0.05 and 0.5. At h = 0.05, seven breakpoints over A2,
A4, A5, and A7 occurred from September of 2002 to March of 2018 (Table 7). The total number of
monthly observations within September of 2002 and March of 2018 was 185. Thus, at h = 0.05,
the corresponding number of observations within two breakpoints was 9.3. Statistically, the number is
too small. One needs to increase the h, boosting the number of observations while keeping the same
number of breakpoints, if possible. Then, an exploratory approach is taken at an increment step of
h = 0.01. As h changes from 0.05 to 0.13, the number of observations, no, and the seven breakpoints
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remain. Once h ≥ 0.14, the number of breakpoints decreases. All the breakpoints disappear when
h ≥ 0.17 (Table 7).

Table 7. Of an h value, number of observations (no), and number of breakpoints detected in the trend
components of A2, A4, A5, and A7 of the time-series. h is the ratio of the number of observations within
a segment divided by the total length of a time-series, excluding the beginning and end observations.

h no A2 A4 A5 A7

0.05 9.3 2 2 2 1
0.13 24.1 2 2 2 1
0.14 25.9 0 1 2 0
0.16 29.6 0 1 2 0
0.17 31.5 0 0 0 0

Using the times that breaks happened in Table 5, we calculated the number of observations
between two breakpoints in A2, A4, and A5. The numbers are 26, 27, and 27, respectively. For the
three cells, h at 0.13 is the maximum value if all six breaks are desired. Furthermore, h ≥ 0.17 should
not be considered if one breakpoint is wanted (Table 7). Therefore, h does influence decomposition.
To maintain the maximum number of breakpoints in the trend components at A2, A4, and A5, we
should set h ≤ 0.13. Unfortunately, the h value of 0.17 and a corresponding number of observations of
31.5 could not be used to explain the disappearance of the breakpoint at A7. The number of monthly
observations between September of 2002 (the starting month of the time-series) and October of 2010
was 96. The number of observations between November of 2010 and March of 2018 (the end of the
time-series) was 87.

4. Discussion

4.1. Interpretation of Breaks With Air Temperature Variations

With the occurrence of a breakpoint in the trend component, one is interested to know what the
possible causes are. In Table 5, there are six breakpoints linked to decreasing values but one increasing
value. As illustrated and stated previously, the topography and land cover types differ among A2, A4,
A5, and A7. Logically, one reason is whether a more or less uniform physical feature or event exists
and predominantly causes the change.

The soil temperature and water table level are two main factors that influence CH4 emissions
from the wetlands into the atmosphere [2,3]. The soil moisture at the surface is usually positively
related to the water table position [37]. Thus, the abnormal changes in soil temperature and moisture
content may be responsible for the abrupt changes in the trend components. With the available GLDAS
monthly soil moisture and soil temperature data, three data points (before the breakpoint, breakpoint,
and after the breakpoint) at each breakpoint seem normal. The data cannot be used to interpret the
delineated breaks. The aggregation of both types of GLDAS data at a monthly scale might overly
smooth the intra-month variations.

We have the daily air temperature data at Maqu (located in A2), Zoige (A5), and Hongyuan (A8)
meteorological stations and articulate the following to use variations of the air temperature to explain
the breaks. First, to establish the relationship between the air temperature data and soil temperature
data, we aggregated the available daily air temperature data into monthly data between 2002 and 2017.
Then, the correlation analyses between the monthly air temperature data at Maqu and soil temperature
at A2, between the monthly air temperature data at Zoige and soil temperature at A5, and between the
monthly air temperature data at Hongyuan and soil temperature at A8 were, respectively, conducted.
The correlation coefficients are summarized in Table 8. In the table, the soil temperature data at
0–100-cm depths are the average of the available temperature data at 0–10 cm, 10–40 cm, and 40–100 cm.
The correlation coefficients are ≥0.921. For the top layer (0–10 cm), the coefficients are 0.979 or higher.
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Thus, the air temperature can be a surrogate for the soil temperature. If the daily soil temperature data
are not available, one can use the daily air temperature alternatively.

Table 8. The correlations between the monthly air temperature at three stations and the monthly soil
temperature and moisture of the cell where the station is located. Data at two soil depths are analyzed.

Maqu and A2 Zoige and A5 Hongyuan and A8

Corr. Coef. Sig. Corr. Coef. Sig. Corr. Coef. Sig.

Soil
temperature

0–10 cm 0.979 0.000 0.983 0.000 0.989 0.000
0–100 cm 0.921 0.000 0.934 0.000 0.955 0.000

Soil
moisture

0–10 cm 0.837 0.000 0.812 0.000 0.713 0.000
0–100 cm 0.787 0.000 0.720 0.000 0.261 0.001

Similarly, we analyzed the correlation of the aggregated air temperature data and soil moisture
monthly data. The correlation coefficients are tabulated in Table 8. The coefficients between the air
temperature and soil moisture contents at the 0–10-cm soil depth were at least 0.713 or higher, although
the coefficients decreased as the depth increased (Table 8). Again, with the missing daily soil moisture
data, the daily air temperature is an alternative.

A cold front moved across the area in the middle of December 2009, causing a significant
temperature drop. The mean air temperature between the 16th and 31st of December was 5.5 ◦C lower
than that from the 1st to 15th of December (Table 9). The t-test using the 1–15 temperature data (n1 = 45,
the sample size) versus 16–31 temperature data (n2 = 48) at three meteorological stations resulted in a
p-value = 0.000. Thus, the temperature drop was significant.

Table 9. Descriptive statistics of daily temperatures (◦C) in December of 2009 after combining the daily
datasets at the Maqu, Zoige, and Hongyuan meteorological stations.

Mean St. Dev.

1–15 Dec (n1 = 45) –4.2 2.3
16–31 Dec (n2 = 48) –9.7 1.4
Temperature drop 5.5

To verify whether the temperature drop of 16–31 December 2009 was abnormal between 2002
and 2018, the daily temperature data of 16–31 December 2009, the averaged 16–31 December daily
temperature data between 2002 and 2018, and the averaged 16–31 December daily temperature data
without the 16–31 December 2009 temperature were plotted at the meteorological stations. As shown
in Figure 4, the temperature data of 16–31 December 2009 differs from the other two averaged daily
temperature datasets in December. The matched-pairs t-test of the former versus either of the latter
two results in a p-value = 0.000. Thus, the 16–31 December 2009 temperature drop was abnormal.

Most of the microorganisms of methanogens are thermophilic. The abnormally cold weather
in the second part of December 2009 could slow down their CH4 production generally. The CH4

emissions into the atmosphere decreased, and so did the atmospheric CH4 concentrations. Although
the drop in soil temperature is typically lagged compared with the air temperature decrease [38],
the below-0 ◦C air temperature in December of 2009, and mainly, the colder air temperature in the late
month (Table 9) further froze the soil column downward. Then, the chance that CH4 escaped from the
frozen soil column into the atmosphere decreased. With the cold temperature (mean = −6.3 ◦C and
standard deviation = 2.2 ◦C) in January of 2010, the frozen soil column remained, or even deepened
into the column, reducing the CH4 escape further. Consequently, the trend components of A4 and A5

dropped from December of 2009 to January of 2010. The drop of atmospheric CH4 concentrations from
January to February of 2010 over A2 could be attributed to the temperature drop in December of 2009,
coupled with the elevation difference. The average elevation of A2 is about 500 m lower than that of A4



Remote Sens. 2020, 12, 3199 12 of 17

or A5. The air temperature at A2 is typically about 3 ◦C warmer than that at A4 or A5. The warmer
temperature postponed the above-discussed processes, including the CH4 production reductions in
the soil column and the CH4 emissions decrease from the soil into the atmosphere. Therefore, the drop
was delayed for one month.
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Figure 4. The daily temperature data of 16–31 December 2009 (red line), average 16–31 December
temperature data between 2002 and 2018 (green line), and average 16–31 December temperature data
without the 16–31 December 2009 temperature data (blue line) at the three meteorological stations at
Maqu, Zoige, and Hongyuan.

Similarly, the abnormal temperature variation was used to interpret the drop between May and
June of 2012 at A2, A4, and A5. Descriptive statistics of the air temperatures in April of 2011, 2012,
and 2013 and in May of 2012 are given in Table 10. The mean values in April of 2012 were lower than
those in April of 2011 or April of 2013. Then, due to the lower air temperature, CH4 in the soil column
of the subsurface that was frozen in early spring might not have easily escaped into the air in April of
2012, as compared to CH4 in April of 2011 or 2013 did. Additionally, the mean value of the daily air
temperature in May of 2012 was 7.4 ◦C. The temperature in May 2012 was almost 5 ◦C higher than that
in April 2012. The colder temperature in April of 2012 dampened the CH4 emissions from the soil into
the atmosphere, but the subsequent warmer temperatures in May sped up the escape processes of
CH4 [39]. An elevated atmospheric CH4 concentration in May of 2012 occurred. Therefore, relative
to the spike of the trend components in May of 2012, the atmospheric CH4 concentration in June of
2012 dropped.

Table 10. Descriptive statistics of the daily temperature (◦C) in April of 2011, 2012, and 2013 and in
May of 2012. Daily air temperature data at the three stations were combined.

Mean St. Dev.

Apr. 2011 (n = 90) 3.2 2.9
Apr. 2012 (n = 90) 2.6 2.0
May 2012 (n = 93) 7.4 2.5
Apr. 2013 (n = 90) 2.9 2.6
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An increase in the atmospheric CH4 concentration over A7 was detected (Table 5). No anomaly
was identified in September, October, and November of 2010. The change in atmospheric CH4

concentrations for A2, A4, A5, A6, or A8 between September of 2002 and March of 2018 did not show
any apparent anomaly. Therefore, the cause of the increase is not clear.

4.2. Atmospheric CH4 Concentration Differences of Western Cells Versus Eastern Cells

One or two breakpoints occurred in trend components of A2, A4, A5, and A7 but no breakpoints
in A6 and A8. Concerning Figure 1, A6 and A8 were east of A2, A4, A5, and A7. Then, component-by-
component, average values of A6 and A8 and average values of A2, A4, and A7 were calculated.
The matched-pairs t-test of the average values of A6 and A8 versus the average ones of A2, A4, and A7

was conducted. As shown in Table 11, the trend components differed significantly, but the seasonal
and error components did not. The matched-pairs t-test for the average AIRS data was significantly
different as well. Further studies will be pursued to understand not only the difference but also the
possible causes.

Table 11. The p-values of the matched-pairs t-test for the western and eastern cells. AIRS: Atmospheric
Infrared Sounder.

Average Value of A6 and A8

T(t) S(t) E(t) AIRS

Average values
of A2, A4, and A7

T(t) 0.000
S(t) 0.856
E(t) 1.000

AIRS 0.000

4.3. Possible Impact on the Decomposition if Random Noisy Observations Exist in the Time-Series

The time-series of the observed monthly atmospheric CH4 concentration may consist of random
noise that can affect the decomposition results. One feasible way to evaluate the impact of the noisy
observations is to remove some observations randomly first and then replace them through the
imputation [40] of the time-series. The imputation is not only widely used statistically in handling
missing data but also is needed before running the BFAST algorithm. Without imputing a missing
observation, the algorithm would move to the next observation in the time-series to fill in the missing
one. The moving and filling continue until reaching the end of the time-series. Then, mixed matches of
CH4 observations and months occur and can eventually invalidate the time-series analysis. Therefore,
two types of removal and imputation were considered, with A5 as an example.

At h = 0.13, two breakpoints were identified (Table 5). The number of observations was 24.1
(Table 7). As 24 was the nearest integer for 24.1, we chronologically split the 24 observations with the
1st–12th observations and the breakpoint and the 13th–24th observations after the breakpoint. Using
the Statistical Package for the Social Sciences (SPSS) software (https://www.ibm.com/analytics/spss-
statistics-software), one observation in the 1st–12th observations and one in the 13th–24th observations
were randomly selected and removed. The selection and then removal were performed twice, one for
each breakpoint. The observation months and corresponding CH4 values are given in Table 12. Then,
we used the multiple imputation algorithm of the SPSS software to impute the four missing values.
In the imputation, m was set to 5, and the Markov Chain Monte Carlo (MCMC) method was chosen.
The imputed values are tabulated in Table 12. The original value and imputed value differed in each of
the four cases. After replacing the original value with the related imputed one, the BFAST algorithm
was applied to the new time-series, A5_r, again. No breakpoint was found in the seasonal component,
whereas two breakpoints were delineated (Table 13). Then, the piecewise functions were derived
within each segment. The intercepts and slopes are shown in Table 14. The drop at the 2009/12–2010/01
breakpoint was comparable, and so was the drop at the 2012/05–2012/06 breakpoint (Table 13 c.f.
Table 5). The piecewise linear equations were similar as well (Table 14 c.f. Table 6). Therefore, although

https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
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the removal and imputation of four observations altered the time-series values of A5, the changes
might not significantly affect the outcomes from the BFAST algorithm decomposition.

Table 12. Four randomly removed observations, and the observed and imputed atmospheric CH4

concentration values (ppb) of A5.

Breakpoint Removed obs. Original Value Imputed Value

2009/12–2010/01 (1) Sept. 2009 1886.510 1862.952
(2) Aug. 2010 1902.343 1844.674

2012/05–2012/06 (3) Oct. 2011 1896.755 1869.282
(4) Dec. 2012 1881.970 1894.124

Table 13. Atmospheric CH4 concentration changes at each breakpoint in the trend component of A5_r.

YYYY/MM–YYYY/MM A5_r (ppb)

2009/12–2010/01 −27.335
2012/05–2012/06 −18.510

Table 14. Intercept and slope of each segment of T(t) in A5_r.

YYYY/MM–YYYY/MM Intercept (ppb) Slope (ppb)

2002/09–2009/12 1241.015 0.016
2010/01–2012/05 −926.188 0.069
2012/06–2018/03 1110.085 0.019

To further explore the removal and imputation influences on the decomposition outcomes,
we randomly removed and imputed observations at 5%, 6%, . . . , of the entire time-series of A5.
The increment was 1%. At h = 0.13, two breakpoints were still obtained until 7% or the removal and
imputation of 13 observations. The drop values at the breakpoints and piecewise linear functions
in the three segments varied. At 8% or above, the decomposition outcomes fluctuated with the
disappearance of one or both breaks. Thus, caution should be exercised if numerous erroneous
observations exist. In this study, without a significant impact on the outcomes, the ceiling number of
erroneous observations for A5 was 14.96 (15 as an integer). It should be noted that Watts et al. [41]
reported the BFAST algorithm was sensitive to the time-series datasets of vegetation indices collected
by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra remote sensors,
although the time-series datasets themselves were highly correlated. Thus, one should consider the
impact of erroneous data points on outcomes, and one possible way to conduct the sensitivity study to
reveal and quantify the effect was suggested.

5. Conclusions

The multitemporal remotely sensed methane (CH4) data from the Atmospheric Infrared Sounder
(AIRS) instrument, on-board the NASA Earth Observing System Aqua satellite, were studied to
understand the variations of atmospheric CH4 over the Zoige wetland, China. The time spanned from
September of 2002 to March of 2018. The Breaks for Additive Season and Trend (BFAST) algorithm
was used to decompose the remotely sensed CH4 data into the seasonal, trend, and error components.
The meteorological and GLDAS datasets were auxiliary. They were used to interpret multitemporal
CH4 data and decomposition outcomes.

The overall pattern of the atmospheric CH4 concentrations was derived from the AIRS data first.
The concentrations increased steadily during 2002 and 2018. The average annual rate was on par with
the globally average yearly rate. Thus, the annual rate at the Zoige wetland is likely valid.

Cell-by-cell, the seasonal, trend, and error components were next delineated by the BFAST
algorithm. We analyzed the seasonal component, considering the crest, trough, height, and mean
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values. The components showed annual cycles with a mean value of 0. No anomaly was found.
The error components varied from 2002 to 2018, but no particular intra- or inter-annual patterns were
found. The mean and standard deviations were calculated. With the mean value of 0 and one standard
deviation of ~0.5% or less of the average AIRS data, no anomaly was detected in the error components.
The trend components increased gradually, with no breakpoints delineated in A6 and A8 but seven
breakpoints collectively in A2, A4, A5, and A7. The timing and magnitude of each breakpoint were
analyzed. After establishing significant correlations between the air temperature and soil temperature,
and between the air temperature and soil moisture, we concluded that the temperature anomalies were
primarily responsible for six breakpoints decomposing. However, the temperature anomaly could not
explain the occurrence of one breakpoint.

The parameterization of the h parameter in the BFAST algorithm can be the most critical because
it considerably influences the detection of breaks and the number of breakpoints. The minimum h
is ≥0.05 statistically, but it cannot be >0.5 if one wants to identify one breakpoint. As h increases,
the number of breakpoints decreases. Thus, a large h value can adversely smoothen the decomposed
component. One may miss the critical and explainable breakpoints in the time-series. An optimized
h value may be found after studying the interplays of the observation of interest, break numbers,
and statistical significance. In this study, h = 0.13 was found.

Finally, erroneous observations can exist in time-series data, impacting the outcomes using the
BFAST algorithm. The removal of one observation or observations and then the imputation of the
removed observation or observations, can be one possible approach to conduct a sensitivity study.
Thus, one can delineate and quantify the potential impact of the erroneous data point or points.
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