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Abstract: The Water Framework Directive in Europe requires extending metering and water abstraction
controls to accurately satisfy the necessary water resource requirements. However, in situ measurement
instruments are inappropriate for large irrigation surface areas, considering the high investment
and maintenance service costs. In this study, Remote Sensing-based Irrigation Water Accounting
(RS-IWA) (previously evaluated for commercial plots, water user associations, and groundwater
water management scales) was applied to over 11 Spanish river basin districts during the period of
2014–2018. Using the FAO56 methodology and incorporating remote sensing basal crop coefficient
time series to simulate the Remote Sensing-based Soil Water Balance (RS-SWB), we were able to
provide spatially and temporally distributed net irrigation requirements. The results were evaluated
against the irrigation water demands estimated by the Hydrological Planning Offices and published
in the River Basin Management Plans applying the same spatial (Agricultural Demand Units and
Exploitation Systems) and temporal (annual and monthly) water management scales used by these
public water managers, ultimately returning ranges of agreement (r2 and dr) (Willmott refined index)
of 0.79 and 0.99, respectively. Thus, this paper presents an operational tool for providing updated
spatio-temporal maps of RS-IWA over large and diverse irrigation surface areas, which is ready to
serve as a complementary irrigation water monitoring and management tool.

Keywords: irrigation; Landsat 8; Sentinel-2; FAO56; HidroMORE; Remote Sensing-based Irrigation
Water Accounting (RS-IWA); River Basin District; water resource management

1. Introduction

AQUASTAT, the global information system on water resources, quantifies and differentiates human
water abstractions based on three use categories: municipal (11%), industrial (19%), and agricultural
(70%) [1]. At the continental level, Africa and Asia have an agricultural proportion of 80%, while the
water used in Europe for agriculture makes up 21%. However, the same balance changes drastically
over Mediterranean regions, where 80% of freshwater is abstracted for agricultural purposes [2].

Considering “the need for action to protect Community waters in qualitative as well as in
quantitative terms” and the fact that “Waters in the Community are under increasing pressure from
the continuous growth in demand for sufficient quantities of good quality water for all purposes”,
the European Commission created DIRECTIVE 2000/60/EC [3], commonly known as the Water
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Framework Directive, in which a common framework for similar actions related to water is proposed.
Unlike the more common use of administrative or political boundaries, the Water Framework Directive
selects the River Basin District (RBD) as the common geographical and hydrological unit of interest,
for which the River Basin Management Plan (RBMP) is needed to provide a detailed account of how
the objectives set for the RBD will be reached within the timescale required [4]. With a lifecycle of six
years, the RBMPs are presently in their second cycle (the period of 2015–2021).

Recently, the fifth European Commission report about the implementation of the Water Framework
Directive by the RBMPs notified southern Europe that irrigation water is the principal pressure agent
in water abstraction and suggested that relevant actions are required to extend the relevant metering
and water abstraction controls [5]. By contrast, public water managers in charge of RBDs have already
expressed dissatisfaction about using a water metering network solely based on volumetric meters,
based on the high investment and maintenance costs implicated [6,7]. In the same vein, the Spanish
National Centre of Irrigation Technology stated that each volumetric meter must be correctly installed to
produce reliable results in successive years; later, correct maintenance must be implemented to prevent
water residues from producing incorrect water records [6,7]. Therefore, there is a conflict between the
legal framework, which expresses the necessity to establish and extend irrigation water accounting
over large and diverse areas, and the inappropriate long-term use of in situ measurement instruments.

In this context, an important remote sensing characteristic is a large capacity for data acquisition
over large areas. Presently, two of the satellites most commonly used for vegetation cover monitoring
are Landsat 8 and Sentinel-2 (twins A and B), which cover 185 and 290 km swaths, respectively,
as well as having spatial resolutions of 30–100 m (Landsat 8) and 10–60 m (Sentinel-2). Satellite images
provide real-time information about the vegetation cover state, which, together with the temporal
resolution (15 days in Landsat 8 and up to 5 days in Sentinel-2), allows the monitoring of vegetation
evolution through remote sensing time series. Moreover, both satellites are supported by strong
programmes that freely provide the satellite images to the public to return the related environmental
and economic benefits to society [8,9].

In parallel, the FAO56 Irrigation and Drainage Paper number 56 Crop Evapotranspiration (ETc)
provides guidelines for determining Crop Water Requirements [10] through globally homogenised
methodologies combining evaporative atmospheric demands accurately calculated over a reference
crop surface (also called reference evapotranspiration (ETo)) and a dimensionless crop coefficient
(Kc) that expresses the evapotranspiration difference between the crop surface and the reference
surface. Moreover, ETc estimation has two approaches: a single crop coefficient or a dual crop
coefficient [11]. The latter divides Kc into the evaporative component (Ke, the soil evaporation
coefficient) and its transpiration component (Kcb, the basal crop coefficient). Moreover, when crops
suffer water restrictions, the water stress coefficient (Ks) is incorporated into the method to estimate
the adjusted crop evapotranspiration (ETc adj).

The use of remote sensing techniques in the FAO56 methodology to estimate ETc follows different
approaches, that Calera et al. [12] classified as: remote sensing surface energy balance [13–15],
remote sensing-based Penman–Monteith direct approaches [16,17], and reflectance-based basal crop
coefficients [18–21]. The first technique uses the vegetation surface temperature to estimate the actual
ETc after accounting for the energy balance. This technique is able to monitor large areas while avoiding
Kc calculations and is thus appropriate for diverse vegetation cover monitoring but inappropriate
for use in large and diverse irrigation surface areas at a low temporal resolution and inappropriate
spatial resolution [22]. The second approach uses the optical spectral range to obtain crop parameters
(the leaf area index, albedo, and crop height) to include them into the Penman–Monteith equation
and directly estimate ETc. This approach allows one to monitor large areas at adequate spatial and
temporal resolutions for crop monitoring with operational applications used to monitor and determine
irrigation surface areas [17]. However, several limitations are still present in ETc estimations regarding
the crop-dependency relationships for the crop height or leaf area index, as well as high uncertainties
in determining water stress or soil evaporation effects [12]. The third approach also uses the optical
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spectral range to convert reflectance values into Vegetation Indexes (VI) that are empirically related
through linear relationships with Kc and Kcb [21,23]. Thus, in combination with local ETo records,
this approach estimates ETc over large areas. Moreover, this approach’s spatial resolution is adequate
for crop monitoring (operational applications are already being implemented) [24–26]. However,
several limitations must be considered for ETc estimation. Because this approach is supported by
agrometeorological stations that register ETo, soil evaporation is not included in the formulation,
and the linear relationships may vary by crop type [22].

However, for irrigation water accounting, Pereira and Alves [27] distinguished between Crop Water
Requirements and Irrigation Water Requirements. While the former is the sum of the depth of water
needed over the crop cycle and provided by the environment as precipitation (P) or soil water content,
to satisfy the water consumed through evapotranspiration (ETc) under optimal conditions or the
adjusted crop evapotranspiration when conditions deviate from optimal levels (commonly expressed
as ETc − P), the latter is the net depth of water provided by irrigation systems to satisfy crop water
requirements during crop development when precipitation, soil water content, or groundwater
contributions are not enough. Therefore, considering previous remote sensing approaches to ETc

estimation, the sum of such variable at the end of the crop cycle corresponds to the crop water
requirements; thus, it is necessary to determine the soil water balance at the root depth to derive
irrigation water requirements [10,27].

One relevant case is irrigation agriculture at the national level in Spain. The last report from the
Ministry for the Ecological Transition and the Demographic Challenge regarding the actual state of
RBMPs [28] determined the different national sources of irrigation surface areas to be about 3.6 Mha on
average, which indicates annual gross irrigation water demands of about 25,800 hm3. The superficial
and groundwater origin resources are estimated to be 72% and 22%, respectively (this difference
is provided by non-conventional sources [28]). The latest report on irrigation by the agricultural
authorities [29] established that irrigation surfaces irrigated with drip systems comprised about 53% of
the total, while sprinklers and surface irrigation systems comprised about 23% each. Finally, the same
report stated that irrigated crop surfaces were distributed approximately as follows: cereal crops (25%),
olive trees (22%), vineyards (10%), fruit trees (10%), citrus trees (8%), forage crops (7%), horticultural
crops (7%), and industrial crops (6%).

In a legal context, the Water Framework Directive was transposed into three Spanish laws [30–32]
that configure the normative context for the RBMPs. Later, the different Hydrological Planning Offices
for each RBD estimated the irrigation water demands at different spatial and temporal irrigation water
management scales. Hence, annual and monthly irrigation water demands are published in the RBMPs
for different and spatial management scales according to increases in the surface area and area of
influence, including the Agricultural Demand Unit (ADU), the Exploitation System (ES), and the whole
RBD. The ADU is defined as agricultural surfaces with common characteristics such as geographic
locations, water user associations, and irrigation technologies that also share the same sources of
water. Their irrigation returns are incorporated into the same zone or sub-zone in the general system.
In parallel, ESs are water bodies or groups of water bodies that share surface water and groundwater,
hydraulic infrastructure installations, and water use and exploitation rules.

Bearing in mind the context described above, this paper presents research that aims to evaluate
Remote Sensing-based Irrigation Water Accounting (RS-IWA) over large and diverse irrigation surface
areas. This model was evaluated over 11 Spanish RBDs over the period of 2014–2018. The remote
sensing data, such as the VI time series, results, thematic cartography, and methodological reports are
freely available from SPIDERwebGIS® (http://maps.spiderwebgis.org/login/?custom=spider-siar).

Taking into consideration the large and diverse irrigation surface areas to be monitored, the capacity
for remote sensing data acquisition over such areas, the ETc estimation approaches previously described,
and the necessity to derive a soil water balance to estimate the irrigation water requirements for
comparison with the irrigation water demands published in the RBMPs, this project developed a
Remote Sensing-based Soil Water Balance (RS-SWB) technique that follows the FAO56 methodology
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under the assumed criteria of homogeneity, simplicity, replicability, and reliability to estimate the
irrigation water demands over large and diverse irrigation surface areas. Hence, the Landsat 8 and
Sentinel-2 satellites were selected, as they offer adequate spectral, temporal, and spatial resolutions for
crop monitoring and ETc estimations. Particularly, we used the reflectance-based basal crop coefficient
approach, which is linearly related with the VI, as the Kcb is later incorporated into a dual crop
coefficient approach to derive the ETc adj under a soil water balance scenario, which ultimately provides
spatially and temporally distributed maps of the net irrigation requirements (NIR). The RS-SWB
was previously evaluated against different ground truths at different spatial and temporal scales,
such as for commercial plots with volumetric meters and water user associations using irrigation
water management data [33]. Evaluations using the national piezometric network after determining
the groundwater withdrawals from the irrigation surface area greatly depend on these groundwater
resources [34], as does using the annual irrigation water demands provided by the RBMPs at an RBD
spatial scale in mainland Spain [35]. The next RS-IWA evaluation was performed using the same
irrigation water management scales that the Hydrological Planning Offices take into consideration,
including temporal (monthly and annual time scale) and ADU and ES spatial scales.

2. Materials and Methods

2.1. Study Area

The irrigated surface areas of 11 of the 15 RBDs in mainland Spain were monitored (Figure 1a)
over the 5 study years of 2014–2018: Duero (DUE), Ebro (EBR), Internas de Cataluña (CIC), Júcar (JUC),
Tajo (TAJ), Guadiana (GDN), Guadalquivir (GDQ), Segura (SEG), Mediterráneas de Andalucía (CMA),
Guadalete and Barbate (GyB), and Tinto, Odiel, and Piedras (TOP). With a total surface area of
about 440,000 km2 (87% of the total national surface), these 11 RBDs contain most Spanish irrigated
surface areas. Hence, this extension includes great diversity and complexity in addressing diverse
types of crops, irrigation systems, and agronomic management practices. The different scales of
work represented in Figure 1 align with the irrigation water demands estimated by the Hydrological
Planning Offices and published in the corresponding RBMPs, according to different temporal (annual
and monthly) and spatial (ADU, ES, and (in the Duero RBD) Elemental Demand Unit, EDU) irrigation
water management scales.

The most detailed analyses at both management scales were conducted in the Duero and Júcar
RBDs and correspond to the ADU spatial management scale at a monthly and annual temporal frequency.
We justify their choice over other RBDs by the diverse types of irrigated crops developed therein
(herbaceous versus citrus and vineyards). In the Duero RBD, grain cereals stand out, with maize grown
in about 19% of the irrigable area, alongside barley (≈17%) and wheat (≈16%), followed by forage crops
such as alfalfa (≈6%) and industrial crops such as sunflower (≈5%). In the Júcar RBD, citrus occupies
almost the half of the irrigated area (≈43%), followed by maize and rice (≈20%) and, finally, vineyards
and horticultural crops, with about 9%. Moreover, both RBDs present different geographical conditions
(eastern peninsular and Atlantic slopes versus western and Mediterranean slopes, respectively) and,
consequently, different climatic characteristics according to the Köppen–Geiger characterization [36]
(a temperate climate with a dry and temperate summer, Csb, in the Duero RBD, unlike the cold steppe
climates, Bsk, and a temperate climate with a dry and warm summer, Csa, in the Júcar RBD). Finally,
we also added transparency and accessibility to the published data (databases and shapefiles) using
their webGIS viewers. In parallel, a second analysis including a larger surface area and an annual
temporal scale was conducted in 69 ES spatial scales contained in the 11 RBDs mentioned above.
Finally, the EDU spatial division already accounted for in the Duero RBD was also analysed at an
annual temporal scale.
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2.2. HidroMORE for Large Irrigation Areas

The RS-SWB (described in the following Section 2.3) was run using the latest version of the
HidroMORE operational application to implement parallel processing with multithreading for running
simulations over large areas [37]. Previously applied in different areas such as research [33–35,38–40],
doctoral theses [41–43], and several research projects (SIRIUS EU project GA nº 262902, http://sirius-
gmes.es/; DIANA EU project GA nº 703109, https://diana-h2020.eu/en/; CAPRA national Chilean project
http://www.inia.cl/proyecto/502145/), HidroMORE spatially and temporally distributes the FAO56
model and integrates multispectral remote sensing data to provide the crop parameter evolution of the
linear relationships between VI and both Kcb and the fraction of soil surface covered by vegetation
(fc) [41]. Hence, using a pixel-by-pixel spatial scale and a daily temporal step (extended to the desired
time range, such as x weeks, x months, x years, etc.), maps of the soil water balance variables are
obtained as outputs from the model (i.e., ETo, P, ETc adj, and NIR), thereby producing an irrigation
thematic cartography time series (Scheme 1). The set of satellite images used determines the total
surface simulated, while the smallest spatial unit of work is the pixel size from the input satellite
images. To implement the RS-SWB, HidroMORE uses the following input data: (a) VI time series,
(b) a map of irrigated crops, (c) a map of soil types according to their hydrological properties, and (d)
agroclimatic databases (daily P and ETo records).
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Scheme 1. Overview framework for Remote Sensing-based Irrigation Water Accounting (RS-IWA).

2.2.1. VI Temporal Series

The normalized difference vegetation index (NDVI) was the VI selected to monitor crop evolution
(see the justification in Section 2.3). While for the years of 2014 and 2015, the Landsat 8 satellite was
used to process 938 scenes, during 2016–2018, the Sentinel-2 A and B satellites were selected to process
13,694 granules. Images were atmospherically corrected using an absolute normalization process [44],
according to the selection of two different invariant surfaces to determine the NDVI linear regression
values [45]. In addition, the inter-calibration of both satellites was achieved using coincident days
to ensure the compatibility of the satellites with the NDVI time series over all the years. Moreover,
as the selection of VI images is critical for correct irrigated crop monitoring, two criteria were followed:
(i) selecting initial and final dates that covered the entire vegetative crop period and (ii) selecting
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images with the absence of clouds/shadows or images in which the presence of clouds/shadows could
be correctly eliminated through masks and classification algorithms.

For the large and diverse irrigated surfaces monitored, the entire year was selected as the temporal
date range. The final NDVI image selection after automatic cloud/shadow mask application was
carried out through human supervision using the evolution of the VI time charts combined with colour
RGB images loaded onto the SPIDERwebGIS® platform, which is specialized in handling such time
series. The cloud/shadow classification algorithms varied according to the reference satellite used:
(a) the Quality Assessment band for Landsat 8 (CFmask algorithm) and (b) the Sen2Cor algorithm for
Sentinel-2 (http://step.esa.int/main/third-party-plugins-2/sen2cor/). The reliability of these algorithms
was determined from different validation tests. The accuracy of CFmask in detecting clouds and
shadows was around 90% [46], while for Sen2Cor, the precision results were around 80%, both for
the high probability cloud classes and their shadows [47]. Despite these high values of cloud/shadow
identification, difficulties remained in the correct classification of fine and high clouds [47], so time
series monitoring was used to identify discontinuities and thus remove useless images.

2.2.2. Map of Irrigated Crops

The RS-SWB model applied by HidroMORE requires an annual map with the spatial distribution
of the different irrigated crop classes to apply the methodology. Supported by official cartographic
sources that facilitate the spatial delimitation assessment of irrigated areas (Common Agricultural
Policy and ADU official cartography), these maps were constructed using a supervised multitemporal
classification based on the VI thresholds, which require phenological cycle knowledge of the crops to
be classified [48,49]. The final irrigated crop classes produced were spring, summer, spring–summer
(double harvests), autumn–winter, and woody crops such as vineyards, olives, citrus, and fruit trees.
Moreover, since crops with similar phenological and ground cover patterns have similar VI evolution
and crop water requirements [48], the collected cycle was then used for the selection of threshold values
for each type of irrigated crop class by VI time series at different phenological phases; these values
are freely available on the project description website (see the Introduction section) and in the final
report [50]. Hence, using these crop group classes and their VI profiles, we used the decision-tree
approach on certain dates for crop class discrimination. The adopted classification facilitated the
discrimination of the wide range of cultivated crops, as the crops were grouped according to the period
within the year in which their phenological development takes place. Finally, the national irrigated
surface area accounts according to previously described remote sensing approaches were proven and
included by the Ministry for the Ecological Transition in an official report about the actual state of
RBMPs at the national level [28].

HidroMORE uses specific information about each crop class to determine the soil water
balance. The information collected in tables refers to the following parameters collected in FAO 56:
the evapotranspiration depletion factor (p), the linear relationships of VI-Kcb and IV-fc, the maximum
and minimum Kc values, the maximum and minimum root depth, the maximum and minimum VI,
the water stress coefficient (Ks), and the irrigation period and irrigation dose per irrigation event.

2.2.3. Soil Hydrological Maps

The RS-SWB model applied by HidroMORE requires an annual spatially distributed map of soil
hydrological properties. There are two sources for this map at the national scale [51,52]. However,
none of these maps are digital. Hence, we used the map and database provided by the “European Soil
Database Derived data” [53], which is mainly based on the “European Soil Database v2.0” [54] (E 1/1,000,000).
This resource distributes open-source maps, including the total available water (TAW) and the maximum
soil depth for root development, among other edaphological parameters.

These inputs are the most important for the necessary soil parameters to determine the cumulative
net water depletion by roots in combination with the wilting point (θWP) and field capacity (θFC).
The latter parameters are related with the provided TAW, so they are obtained from such information
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regarding the soil type knowing the TAW values. In addition, the soil evaporation from the exposed soil
was modelled by applying the description of Torres and Calera [55] for the soil evaporation reduction
coefficient and its correction factor under high evaporative rates, considering a depth of the surface
soil layer of 0.1 m, as FAO56 recommends when the depth of the surface soil layer is unknown [10].
All this information is collected in tables that HidroMORE uses to run the RS-SWB.

2.2.4. Agrometeorological Databases

The RS-SWB model used with HidroMORE requires daily P and ETo data recorded by
agrometeorological stations to spatially distribute the local information using the spatial interpolation
(inverse distance weighting) of this local data. SIAR (the agrometeorological stations of the
national network from the Agroclimatic Information System for Irrigation (http://www.siar.es/)
of the Spanish Ministry of Agriculture, Food, and Fisheries) was used in combination with
two regional agrometeorological networks (https://ruralcat.gencat.cat/web/guest/agrometeo.estacions
and https://www.larioja.org/agricultura/es/informacion-agroclimatica/red-estaciones-agroclimaticas-
siar). The annual average number of agrometeorological stations used was 536 (Figure 1a).

2.3. Remote Sensing-Based Irrigation Water Accounting for Large Areas

Remote Sensing-based Irrigation Water Accounting is the approach used to obtain the daily net
irrigation requirements per pixel unit after applying a Remote Sensing-based Soil Water Balance to then
spatially and temporarily aggregate these requirements to the desired work scale. The RS-SWB uses
the well-known FAO56 methodology [10]. As expressed in Equation (1), this approach estimates the
daily cumulative depth of evapotranspiration (depletion) from the root zone (Dr) that the crop extracts
through adjusted crop evapotranspiration (ETc adj) in irrigation areas to subsequently apply a net
irrigation depth (I) for the scenarios in which the precipitation (P) does not fully satisfy the crop water
requirements. In parallel, as expressed in Equation (2) by the dual crop coefficient methodology [11],
the ETc adj is estimated for the scenarios in which crops do not completely cover the ground surface
(woody crops, horticultural crops, or herbaceous ones in the first stages) or require high irrigation
frequency events (e.g., horticultural crops). Hence, the described crop development scenarios are
common for large and diverse irrigation surface areas such as the present study area.

Dr i = Dr,i-1 − (P − RO)i − Ii − CRi + ETc adj,i + DPi (1)

ETc adj,i = ETo · (Kcb · Ks + Ke)i (2)

Avoiding the use of tabulated values for the basal crop coefficient (Kcb) or the fraction of soil
surface covered by vegetation (fc) in large and diverse irrigation surface areas, the RS-SWB uses remote
sensing capabilities to monitor crop evolution and obtain these crop parameters through dense VI time
series [56,57] empirically derived from linear relationships (VI-Kcb act and VI-fc act). Besides focusing on
operational applications, independent crop linear relationships are recommended [12,57–59]. For these
reasons, and considering the ongoing debate on the use of independent VI linear relationships to
estimate biophysical parameters, we selected the NDVI as the operative VI.

In this sense, Equation (3) expresses the linear relationship of the NDVI-Kcb selected [60].
Initially developed for vineyards, the NDVI-Kcb does not strongly differ from other published and
evaluated linear relationships for maize [61,62] or sorghum [63] and was positively evaluated at different
locations, such as vineyards in Chile [26] and Australia [64]; for different vegetation covers, such as
savahan dehesa [65]; and in comparison with different VIs, such as the soil-adjusted vegetation index
(SAVI) [66], in apple orchards [25]. In parallel, Equation (4) express the NDVI-fc linear relationship [67].
Originally developed for herbaceous crops such as maize and wheat, the NDVI-fc was applied to dry
herbaceous and vineyards crops and as part of the RS-SWB to evaluate its reliability in soil water
content estimations against ground truth data provided by ground sensors [40]. Moreover, the NDVI-fc

was used in combination with other linear relationships to determine the spectral response evolution of
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maize and wheat, including the critical green-up step [68], and was evaluated to have good behaviour
in comparison to ground measurements in vineyards [69].

Kcb act,i = 1.44 · (NDVI) − 0.1 (3)

fc act,i = 1.19 · (NDVI) − 0.16 (4)

Finally, at a daily frequency and pixel-based spatial unit scale, the RS-SWB inverts Equation (1)
to obtain Equation (5). In this way, the NIR (mm/day) is estimated, producing thematic cartography
for the temporally and spatially distributed balance applied. In this equation, the capillary rise (CRi)
and superficial runoff (RO) were discarded. On the one hand, FAO56 does not recommend the use
of CR when the water table is below 1 m from the soil surface [10] (a minority situation at the scale
of the Iberian Peninsula) [70,71]. On the other hand, the RO was not computed by the HidroMORE
software, as it was originally conceived for flat irrigation areas and works only with vertical fluxes,
not lateral ones.

NIRi = (Dr,i-1 − Dr)i − P i + ETc adj, i + DP i (5)

The methodological approach described above was positively evaluated at different irrigation
management scales. At an annual temporal scale, along with three consecutive campaigns, the RS-IWA
was compared with the ground truth data from commercial plots cultivated with wheat, barley,
and maize and at the water user association management scale with a wide range of herbaceous
crops and woody crops (mainly vineyards) [33]. Furthermore, the same approach was evaluated
at a monthly temporal scale over four consecutive years and over a large irrigation surface area
(about 100,000 ha, including herbaceous and woody crops) that is largely dependent on groundwater
resources. The monthly groundwater withdrawal time series estimated by the RS-IWA were positively
compared with strategically selected piezometric measurements from a piezometric network managed
by the public authorities [34].

2.4. RBMP Irrigation Water Accounting Estimation (RBMP-IWA)

RBMPs are focused (among other objectives) on satisfying water demands, thereby rationalizing
their use in harmony with the environment and other natural resources [31]. Thus, the knowledge of
irrigation water demands is crucial for water demand management. However, due to the large extent
of the territory that needs to be monitored and the high costs of the installation and maintenance of
volumetric counters [72–74], the river basin authorities in Spain commonly determine water demands
through spatially based indirect measurement approaches at the ADU, which is required by the national
legal framework [30–32] as the minimum common spatial unit for irrigation water management in all
Spanish RBMPs. The Hydrological Planning Offices are the public authorities in charge of this task,
and large-scale efforts are made to combine different data sources to obtain the best estimations under
the available resources. The 11 RBMPs consulted [75–85] followed similar approaches to irrigation
water demand accounting, consisting of several sequential steps.

Firstly, the public water managers estimate the irrigable surface areas using sources such as the
late national agricultural census (which dates from 2009), the surface related to water rights registration
in the national private water registry (the variable dates for private water manager acquisitions),
the information provided by the Common Agricultural Policy GIS (usually for the period 2010–2014),
or, in some cases that do not cover the whole territory, RBD internal reports (based on field visits,
regional surveys, or remote sensing techniques). In the second step, the proportion of crops or crop
groups and their spatial distribution that covers the estimated irrigable surface areas are estimated
by the public water managers. Again, the national agricultural census, the Common Agricultural
Policy GIS, and regional surveys are the most common sources consulted. Thirdly, once the irrigable
surface area and the proportion and distribution of crops or crop groups are estimated, the public
water managers estimate the net irrigation water demand by multiplying the irrigable surface area
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proportion of each crop or crop group by their crop water requirements. The latter parameter relies
on different data sources, such as the national recommendations provided in the ministerial law [30],
which offer data ranges for parameters related to RBD spatial segmentation and crop or crop group
division (i.e., 2900–7000 m3/ha·year in the Ebro RBD or 3400–6400 m3/ha·year in the Duero RBD for
maize and sorghum, or 500–3350 and 1000–2900 m3/ha·year for the previous RBD in the case of winter
cereals). However, previous recommendations are commonly complemented by and locally adapted
with RBD internal reports based on local Irrigation Advisory Services that estimate the crop water
demands in pilot areas. The fourth and final step consists of converting the estimated net irrigation
water demands into gross irrigation water demands to account for the water that should be diverted to
different irrigable surface areas. In this step, which is primarily based on national recommendations [30]
and internal RBD reports, the Hydrological Planning Offices determine the irrigation efficiencies for
the three irrigation water supply levels of application, distribution, and transport (i.e., 0.85–0.90 for
open channel efficiency in the case of transport and distribution levels or 0.75–0.80 for the sprinkler
application level) or a global efficiency coefficient that groups all levels.

For the previous approach, each Hydrological Planning Office fixes a base year for the irrigable
surface areas and its probabilistic spatial crop distribution estimation over each ADU and then applies
the crop water requirements and the irrigation efficiencies, thereby obtaining the irrigation water
demand over large and diverse areas for this particular base year (in Spain, for the second hydrological
planning cycle, the year of 2012 is commonly used). These values are then extrapolated to the next
hydrological planning periods (2015–2021, 2021–2027, and so on) such that a unique yearly irrigation
water demand value per ADU (or twelve values in the case of a monthly time scale) is used to cover all
the years (or months) during the whole hydrological planning period (i.e., 2015–2021). The Hydrological
Planning Offices extrapolate these values from the base year by considering future increments or
decrements in the irrigable surface areas’ growth and/or planned investments for improving the
irrigation efficiency of water user associations or irrigation water supply networks. As these changes
do not quickly occur over such large and diverse areas, the differences between the estimated values
for the base year and the following hydrological planning period are insignificant and only relevant
for a few ADUs.

Note that the RBMPs group ADUs with similar characteristics into greater spatial scales called ESs,
thereby allowing irrigation water management over greater scales. Besides the Duero RBD, a spatial
unit smaller than the ADU is taken into consideration. Named the EDU, this unit is a subdivision of
the ADU with common characteristics, such as the same water supply source.

Hence, considering the data available for the 11 RBMPs [75–85] at an annual temporal scale,
the RBMPs publish the irrigation water demands of the ADU and ES and even, in some cases, at a
monthly temporal scale for the ADUs. This public information was used at two spatial scales (ES and
ADU) and, consequently, at two temporal scales (annual and monthly) in this research to compare the
estimated RBMP-IWA with the results produced by RS-IWA.

2.5. RS-IWA Evaluation Approach in Comparison with RBMP-IWA at River Basin Spatial Scales

The daily NIR values estimated by RS-SWB at the pixel spatial scale were then spatially
and temporally aggregated (RS-IWA) into the required water management scales that the RBMPs
publish: monthly and annual temporal scales and EDU, ADU, and ES spatial scales (Section 2.4).
Thus, by employing GIS spatial statistics (using Quantum GIS version 3.10 La Coruña), we obtained
spatially and temporally distributed spatial statistics of the RS-IWA that were compared with
RBMP-IWA (Scheme 1). The official cartography was directly downloaded from the RBD GIS
viewers or RBD websites.

For the annual temporal scale, two irrigation water accounting comparisons are provided for the
official period of 2015–2021 (named Annual estimated RBMP-IWA): (a) the annual sum for each study
year to account for annual variability (named Annual RS-IWA) and (b) the annual average for the whole
year dataset (named 5 year scale annual average RS-IWA) to bring the comparison closer to the published
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RBMP data (official value for the official period). For the monthly temporal scale, two irrigation
water accounting comparisons are provided for the official period of 2015–2021 (named Monthly
estimated RBMP-IWA): (a) the monthly sum for each study year to account for monthly variability
(named Monthly RS-IWA) and (b) the monthly average over the whole year dataset (named 5 year scale
monthly average RS-IWA) to bring the comparison closer to the published RBMP data (official value for
the official period).

The statistical values used for the irrigation water accounting comparisons are the minimum
(Min), maximum (Max), average (Av), standard deviation (σ), regression coefficient (r2), and Willmott
refined index (dr) [86], which are commonly used in hydrological model evaluations. Both the absolute
and relative values of the Root Mean Square Error (RMSE and RERMSE) and the Mean Absolute Error
(MAE and REMAE) are also presented. However, although the RMSE is commonly used by researchers,
the distribution and range of the comparison values in the present research work suggested the MAE
to be the more representative of the two indexes [87].

3. Results

3.1. Annual RS-IWA Evaluation for Exploitation Systems in the Duero and Júcar RBDs

The daily NIR values obtained by the RS-SWB at a pixel-based spatial scale were then annually
aggregated by their summation to compute the spatial statistics (described in Section 2.5) against the
different ES irrigation water management spatial scales for the whole RBD in Júcar (9) and Duero (13)
(Figure 1). Table 1 and Figure 2 show the irrigation water accounting comparison. While the Júcar
RBD provides the net annual irrigation water demands in the RBMP, the Duero RBD provides the
annual gross irrigation water demands; thus, to provide a coherent comparison between the published
data and the model results, the global irrigation efficiency coefficient of 0.62, published by Duero
RBMP, was used to convert the gross irrigation water demands into the net irrigation water demands.
Furthermore, the irrigable surface areas estimated by the RBMP were compared with the irrigated
surface areas estimated by the RS-SWB.

Table 1. Comparison between the estimated annual River Basin Management Plan Irrigation Water
Accounting (RBMP-IWA), the annual Remote Sensing Irrigation Water Accounting (RS-IWA), and the
5 year scale annual average RS-IWA for the ES spatial scales in the Júcar and Duero RBDs.

Av Min Max σ RMSE RERMSE MAE REMAE r2 dr
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2014 155 2.4 407 135 41 26 32 21 0.92 0.86
2015 173 2.7 482 158 38 22 29 17 0.94 0.88
2016 127 0.4 359 115 58 46 42 33 0.94 0.82
2017 143 0.4 424 137 38 26 29 20 0.95 0.87
2018 120 0.5 365 117 56 47 45 37 0.98 0.81

5y RS-IWA 143 1.3 408 132 39 27 29 20 0.95 0.88

Estimated
RBMP 164 6.5 500 147
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A
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A

2014 148 13 759 236 28 19 17 11 0.99 0.94
2015 134 12 667 206 42 32 24 18 0.99 0.92
2016 148 10 709 220 36 24 25 17 0.98 0.91
2017 141 11 700 216 38 27 23 16 0.98 0.92
2018 133 14 618 190 58 44 29 22 0.98 0.90

5y RS-IWA 141 12 691 213 38 27 21 15 0.99 0.93

Estimated
RBMP 157 18 777 239

Units: Av, Min, Max, σ, RMSE, and MAE are in hm3/year; relative errors are in %; and dr and r2 are dimensionless.
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Figure 2. Comparison between the irrigable and irrigated surface areas (left column) and annual
estimated RBMP-IWA and RS-IWA over different ESs from the Duero and Júcar RBDs (right column).

The 5 year scale annual average RS-IWA comparison with the official values for the 2015–2021
period showed a strong regression coefficient r2 for both the Duero and Júcar RBDs (0.95 and 0.99,
respectively), as well as a strong Willmott refined index dr (0.88 and 0.93, respectively). In that sense,
the REMAE provided values of 20% and 15% for the Duero and Júcar RBD, respectively. Case by case,
the majority of the comparison values for the ESs in the Duero RBD showed a slight underestimation.
However, this was not the case for the Júcar RBD, except for the Vinalopó–Alacantí ES. The latter
case showed a larger underestimation, which, under our criteria, was based on the following: (a) the
comparison between the irrigable surface area (RBMP) and irrigated surface area (RS-SWB) presented
a larger negative relative error (−56%) compared to the other Júcar ESs, revealing many surface areas
not considered by remote sensing techniques in this ES, and (b) the Júcar RBMP estimated a large
irrigable surface area for successive annual crops (double harvest groups) with consequently high
irrigation water demand estimations by the Hydrological Planning Offices. However, in this study,
the crop classification for this area did not reveal an important surface for double harvest crop classes
but did reveal an important surface for spring and summer classes (i.e., there was less irrigation water
demand than that for the double harvest group). Even so, this underestimation does not invalidate the
good r2 and dr agreement reached in this RS-IWA evaluation due to its low statistical weight compared
to the other ESs.
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For the Annual RS-IWA, the results show that the model captures annual variability based on the
average, minimum, and maximum values in different years for each RBD. For example, the years of
2015 and 2017 in the Duero RBD present the highest values, indicating the years with higher irrigation
water demands according to remote sensing, while the same phenomena are present in the Júcar RBD
for the years of 2014 and 2016.

3.2. Annual RS-IWA Evaluation Regarding Agricultural Demand Units in Duero and Júcar RBDs

The daily NIR obtained by the RS-SWB at a pixel-based spatial scale were then annually aggregated
by their summation to compute the spatial statistics (described in Section 2.5) against the different
ADUs’ irrigation water management spatial scales for the whole RBD in Júcar (98) and Duero (290)
(Figure 1b,c). Table 2 and Figure 3a,b show the irrigation water accounting comparisons. While the
Júcar RBD provides the net annual irrigation water demand in the RBMP, the Duero RBD provides the
annual gross irrigation water demand. Thus, one irrigation efficiency coefficient for each ADU in the
Duero RBD (provided by the RBMP) was compared against the RS-IWA values.

Table 2. Comparison between the estimated annual RBMP-IWA, the annual RS-IWA, and the 5 year
scale annual average RS-IWA for the ADU spatial scale in the Júcar and Duero RBDs.

Av Min Max σ RMSE RERMSE MAE REMAE r2 dr

D
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nn
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A

2014 6.2 0.0 161 14.4 3.6 58 1.7 27 0.95 0.89
2015 6.9 0.0 186 16.4 3.5 50 1.7 24 0.96 0.89
2016 5.0 0.0 102 11.0 5.6 111 2.2 43 0.94 0.86
2017 5.7 0.0 160 15.2 3.4 59 1.5 27 0.95 0.90
2018 4.7 0.0 118 12.3 4.3 92 1.8 39 0.96 0.88

5y RS-IWA 5.7 0.0 146 13.8 3.3 57 1.5 26 0.96 0.90

Estimated
RBMP 6.3 0.0 160 15.4

Jú
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r
R
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D
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nn

ua
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A

2014 13.0 0.1 331 35.3 8.6 66 3.9 30 0.96 0.86
2015 11.6 0.2 295 31.2 7.1 62 3.8 33 0.96 0.86
2016 12.8 0.1 287 31.5 6.2 49 3.5 27 0.96 0.87
2017 12.0 0.1 298 31.8 7.1 59 3.8 31 0.96 0.87
2018 11.2 0.1 217 24.4 8.2 73 3.9 35 0.97 0.86

5y RS-IWA 12.1 0.1 285 30.8 6.3 52 3.4 28 0.96 0.88

Estimated
RBMP 14.4 0.2 268 30.3

Units: Av, Min, Max, σ, RMSE, and MAE are in hm3/year; relative errors are in %; and dr and r2 are dimensionless.

The 5 year scale annual average RS-IWA comparison with the official values for the 2015-2021 period
again shows a strong regression coefficient r2 of 0.96 for both the Duero and Júcar RBDs, as well as a
strong Willmott refined index dr (0.90 and 0.88, respectively). The REMAE shows values of 26% and
28% for the Duero and Júcar RBDs, respectively. At this spatial scale, a common underestimation
was observed for both RBDs. Hence, we highlight several ADUs in the Júcar RBD comparison in
Figure 3a. The first group (black squares in Figure 3a) is represented by four ADUs, all located
in the Vinalopó–Alacantí ES (082073A, 082075A, 082076A, and 092001A), that demand 84% of the
irrigation water resources in this ES and were underestimated by the RS-IWA according to previous
observations (commented in Section 3.1). The second group (red circles in Figure 3a) contains six
ADUs (082034C, 082034D, 082054B, 082054C, 082054D, and 082054E) in which rice is the majority crop
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cultivated. In these ADUs, the RS-IWA underestimated the irrigation water demands by about 50% for
the RBMP-IWA, except for the ADU 082054B, for which a 25% lower irrigation water demand was
estimated by the RS-IWA. The difference between these two subgroups relies on their rice surface
irrigation areas because, for the latter ADU, the proportion of rice is just 20%, compared to the other
five ADUs, where the rice proportion is between 50 and 100%.
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Figure 3. (a) and (b): Irrigation water accounting evaluations of RBMP-IWA and RS-IWA for all ADUs
located in the Duero and Júcar RBDs respectively (In Figure 3a, the black squares represent the ADUs
located in the Vinalopó–Alacantí ES, while the red circles represent the ADUs with the presence of rice;
(c): The annual RS-IWA* evaluation against the volumetric measurements of 49 EDUs (Duero RBD).

For the annual RS-IWA comparison, the model collects annual variability as observed previously
in the ES spatial scale. However, in this case, we highlight the minimum values—i.e., the years with
less irrigation water demands determined by the RS-IWA for both RBDs in 2016 and 2018.

Besides the annual irrigation water demands estimated by the Duero RBMP, annual monitoring
measurement reports are available along three consecutive hydrological year (October to September for
2015–2016, 2016–2017, and 2017–2018) for the water consumed at the EDU spatial scale. Choosing the
EDUs with a maximum bias of 20% between the irrigable and irrigated surface areas to use comparable
data, we ultimately selected 49 EDUs. Figure 3c shows the irrigation water accounting comparison
between the recorded measurements and the annual RS-IWA* (recomputed at annual temporal scales
considering the hydrological year). The statistical analysis reveals results similar to previous findings,
with a regression coefficient of r2 = 0.94, a Willmott refined index of dr = 0.81, and an REMAE of 24%
(MAE = 2 hm3).

3.3. Monthly RS-IWA Evaluation of Agricultural Demand Units in the Júcar and Duero RBDs

The daily NIR obtained for the RS-SWB at a pixel-based spatial scale were then aggregated monthly
by their summations to compute the spatial statistics (described in Section 2.5) for the different ADU
irrigation water management spatial scales for the whole RBDs in Júcar (98) and Duero (290) (Figure 4).
While the Júcar RBD provides the annual net irrigation water demand in the RBMP, the Duero RBD
provides the annual gross irrigation water demand; thus, the irrigation efficiency coefficient for each
ADU in the Duero RBD was compared against the RS-IWA values. The r2 and dr monthly time series
are also represented in the figure.

Both time series for the 5 year scale monthly average RS-IWA and the Monthly RS-IWA follow similar
monthly temporal patterns in their monthly estimated RBMP-IWA. In that sense, the maximum values
are observed in spring or summer, while the minimum values occur in autumn and winter. However,
for both RS-IWA time series, underestimations are common for all the years, especially in summer,
while for some spring and autumn months, higher values were estimated. These values reflect time
series decoupling for autumn in both RBDs, which is clearer in the Duero RBD, where higher monthly
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RS-IWA values are constant over the 5 years; therefore, the 5 year scale monthly average RS-IWA reflects
this overestimation. Conversely, in the Júcar RBD, slight overestimations occur in spring.
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Figure 4. Monthly time series evaluation of RS-IWA for RBMP-IWA considering all ADUs in the Duero
and Júcar RBDs. The monthly r2 and dr values are also represented.

For the monthly evolution of the statistical index, we observed strong results for the r2 and dr

(about 0.9 and 0.8, respectively) in months where more irrigation water resources are consumed—i.e.,
during the central months of irrigation campaigns in both RBDs, mainly April to September. However,
these values strongly decrease in the winter months, when the minimum water resources are consumed
for the monthly estimated RBMP-IWA, yielding r2 values close to 0.0, especially in the Duero RBD,
which also has dr monthly values close to−1.0. In the Júcar RBD, during the winter months, the statistical
values are slightly higher than those in the Duero RBD. These results are related to the minimum
(or absence, as in the Duero RBD) of irrigation water demand estimations from the RBMP. Hence,
the comparison shows a remarkably similar numerical data range, albeit with a very low dispersion.
Thus, while statistically speaking, r2 values close to zero show no correlation, mathematically speaking
(and according to the r2 formulation), an output of values close to zero makes sense.

In addition to Figure 4, which shows the global situation in the RBDs according to the monthly
irrigation water accounting and considering all the ADUs, Figure 5 shows the same irrigation water
accounting time series but for the specific ADUs demanding the highest irrigation water volumes
and belonging to different ESs. We included three ADUs per RBD: one of them principally depends
on groundwater resources (Mancha Oriental and Bombeo Medina del Campo), while the other two
depend greatly on surface water resources. Moreover, the monthly P and ETo values from the closest
agrometeorological stations using the SIAR network were plotted. Including these climatic variables
helps to explain the monthly variability of the RS-IWA.
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Again, the maximum and minimum tendency values agree for both RS-IWA estimations in the
monthly estimated RBMP-IWA. However, on a smaller scale and in response to climatic conditions,
the RS-SWB shows variations in the estimation of the irrigation water demands when comparing the
same months in different years (for example, May). Seasonal decoupling that does not manifest in other
years is also observable for specific years (particularly in spring and autumn). In that sense, decoupling
is also observable in the spring and autumn months. The highest decoupling was found every year
for both of the ADUs with groundwater resource dependency, Mancha Oriental (Júcar RBD) and
Bombeo Medina del Campo (Duero RBD). While the former ADU always reaches its monthly RS-IWA
maximum values in spring, like the monthly estimated RBMP-IWA, in the latter case, these values are
distributed in the spring and autumn seasons. Moreover, the RS-IWA distributes its maximum values
over the summer months, while the RBMP-IWA estimates its maximum values in June.

For the statistical indices, we found strong r2 agreements for ADUs with a superficial origin of
water resources (between 0.89 and 0.94), which are much lower for ADUs with groundwater resource
origins (0.66 in Medina del Campo and 0.49 for Mancha Oriental). In the same way, we observed
stronger dr agreements for ADUs with superficial water resources (between 0.86 and 0.91) and the
weakest ones for ADUs with groundwater resources (0.72 and 0.63, respectively).

3.4. Annual RS-IWA Evaluation for the ES Spatial Scale for the 11 RBDs in Mainland Spain

The daily NIR obtained by the RS-SWB at a pixel-based spatial scale were then annually aggregated
by their summation to compute the spatial statistics (described in Section 2.5) for the different ES
irrigation water management spatial scales of the 11 RBDs under study (four in GDN, one in SEG,
two in GyB, one in TOP, five in CMA, four in CIC, five in TAJ, 13 in DUE, eight in GDQ, 17 in EBR,
and nine in JCR). Table 3 and Figure 6 show the irrigation water accounting comparison. In the eight
RBDs (TAJ, GDN, SEG, CMA, GyB, DUE, GDQ, and JCR), the global RBD efficiency coefficient was
available, so the annual net irrigation water demands were computed. However, for the other RBDs,
we did not find this coefficient, so we used the average value of these eight RBDs (a range of values
between 0.41 and 0.81, with an average of 0.68) to convert the annual gross irrigation water demand
estimations into their net values.

Table 3. Comparison between the estimated annual RBMP-IWA, the annual RS-IWA, and the 5 year
scale annual average RS-IWA for the ES spatial scale of the 11 studied RBDs.

Av Min Max σ RMSE RERMSE MAE REMAE r2 dr

A
nn

ua
lR

S-
IW

A 2014 182 2.4 1748 277 129 71 70 39 0.90 0.84

2015 204 2.7 2187 325 117 57 61 30 0.89 0.86

2016 169 0.4 1418 247 146 86 77 45 0.91 0.83

2017 181 0.4 1635 269 135 74 70 38 0.90 0.84

2018 149 0.5 1226 212 178 119 93 62 0.91 0.79

5y RS-IWA 177 1.3 1643 265 134 76 72 41 0.91 0.84

Estimated
RBMP 233 0.3 2105 346

Units: Av, Min, Max, σ, RMSE, and MAE are in hm3/year; relative errors are in %; and dr and r2 are dimensionless.
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Figure 6. For the 69 ESs that belong to the 11 RBDs studied: (a) the 5 year scale annual average
RS-IWA evaluation against the RBMP-IWA, (b) the irrigable and irrigated surface area comparison,
and (c) a magnification of Figure 6a according to the RBD for the 5 year scale annual average RS-IWA
evaluation against the annual estimated RBMP-IWA for each ES (except for the Júcar and Duero RBDs,
as presented in Figure 2).

Figure 6a shows strong agreements for r2 = 0.91 and dr = 0.84 in the comparison between the
5 year scale annual average RS-IWA and the annual estimated RBMP-IWA. However, the REMAE returns
41% (Table 3), which is clearly influenced by the annual REMAE of 62% returned for 2018 in comparison
with the four preceding years, where the REMAE ranged from 30 to 45%. For the annual variability
returned by the annual RS-IWA, the year of 2015 has the highest irrigation water demands, even larger
than the annual estimated RBMP-IWA, while 2018 has the lowest. In terms of irrigation and irrigated
surface area comparisons (Figure 6b), the statistical indices for each year separately, as well as the
5 year average, show good agreement, with an r2 in the range of 0.95 to 0.98 and a dr of 0.86 to 0.88.
In that sense, the REMAE ranges from 27 to 34%, so any year could be highlighted as the best one.

Figure 6 shows five ESs highlighted with red circles showing high under- or overestimations of the
5 year scale annual average RS-IWA, in contrast with published data on the annual estimated RBMP-IWA.
Hence, in the four ESs (the Segura ES in SEG RBD, Regulación General ES in GDQ RBD, Sierra Nevada
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ES in CMA RBD, and Bajo Ebro ES in EBR RBD), the RS-SWB strongly underestimates the annual
RS-IWA, with one high overestimation (Oriental ES in TAJ RBD). These four ESs also underestimate
the irrigated surface area. These findings support the idea that the irrigated surface area determines
good agreement for irrigation water accounting. However, a deeper analysis reveals important ES
characteristics that deserve analysis.

Underestimation of 620 and 460 hm3/year was detected in the two ESs selected (Bajo Ebro
(EBR RBD) and Regulación General (GDQ RBD), respectively), where the rice crop surfaces are
presented as about 30,000 and 40,000 ha. As mentioned previously for the six ADUs from the Júcar RBD
with rice crop surfaces (Section 3.2), a new and highlighted underestimation was revealed for such crops.
A different situation was revealed in the Sierra Nevada ES (CMA RBD), where horticultural crops under
greenhouse conditions were the predominant crops (the El Ejido zone, Almería). Hence, with a surface
of about 27,000 ha (60% of the irrigable surface area estimated by the RBMP), an underestimation of
230 hm3/year was obtained. However, the NIR of this crop group cannot be simulated by the RS-SWB,
as the spectral response from the satellite for greenhouses is linked to the plastic cover, not to crop
development. Moreover, the other three ESs that comprise the CMA RBD also feature greenhouses,
although not as densely, so underestimation is not as great as that for the aforementioned ES. The last
selected underestimation is linked with horticultural crops in successive harvesting during the year,
as is the case for the Segura ES (SEG RBD). The RBMP estimated around 50% of the irrigable surface area
dedicated to this goal, while the supervised classification did not reveal such a figure, instead indicating
mainly spring and summer crops. Therefore, the underestimation of about 450 hm3 was related to
an incorrect classification and, consequently, poor crop RS-SWB parametrization, while the RBMP
estimates irrigation water demands considering several successive crop harvests in the same year.

On the other hand, we observed an overestimation (about 280 hm3) for the Oriental ES (GDN RBD).
Although the irrigated surface area returned by the RS-SWB was slightly higher than the irrigable
surface area estimated by the RBMP, we believe that the annual estimated RBMP-IWA is restricted
because in the ES, the irrigated agriculture is groundwater-dependent, and the aquifer is classified
as overexploited.

4. Discussion

The present research evaluated the RS-IWA’s reliability over large and diverse irrigation surface
areas. Using the FAO56 approach and remote sensing images, an RS-SWB was applied to estimate
the NIR at a daily temporal scale and a pixel-based spatial scale. The spatially distributed thematic
cartography generated was then aggregated into the same spatial and temporal irrigation water
management scales that public managers use for water management expressed in the RBMPs.
Therefore, the RS-IWA was evaluated over three spatial scales (EDU, ADU, and ES) and two temporal
scales (annual and monthly) using the official irrigation water demands published in the RBMPs.

The spatial adaptability of the NIR thematic cartography to a desired spatial management
scale depends on the original satellite images’ spatial resolutions. In that sense, for 2014 and
2015, the present research used 30 m-scale satellite Landsat 8 data, while for 2016–2018, we used
10 m-scale data from the twin satellites of Sentinel-2 (A and B). In parallel, the temporal adaptability
to the desired temporal management scale depends on the product’s temporal frequency generation.
Thus, the RS-SWB operates with a daily time step using dense satellite VI time series to allow
adequate crop evolution monitoring. Both irrigation management working scales are appropriate for
irrigation water monitoring with different plot shapes and sizes [88], including Sentinel-2 products for
precision agriculture [89]. Moreover, the temporal and spatial scales produced agree with different
and actual remote sensing operative applications, such as ALEXI/DisALEXI, which generates daily
evapotranspiration products up to a 30 m spatial scale [14]; MINARET, which annually estimates
daily unstressed crop evapotranspiration at a 30 m spatial scale along the Guadalquivir RBD for water
management purposes; and the daily TOP-SIMS maps in California on basal crop evapotranspiration,
among other products, at a 30 m spatial scale.
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To date, ETc has been commonly used to evaluate models over irrigation surface areas [90–94],
as has the Crop Water Requirements approach [17,24,95]. However, increasingly, studies use the
irrigation water volume, both the estimation and value recorded at the field plot level, to evaluate
models over irrigation surface areas [26,96,97]. In this vein, the present research used NIR as a variable
to evaluate the RS-IWA based on different criteria. On the one hand, there is no distributed instrument
network for in situ ETc measurements [72] that can supply the required ground truths for the different
irrigation management spatial scales used by water authorities. On the other hand, we can use the
same magnitudes and products that water authorities publish in their RBMPs after their estimation
by the Hydrological Planning Offices based on the best resources and tools available to these water
managers. Thus, published data (without being strictly ground truths, since many data are estimations)
play a legal role, whose numerical values are used as a reference for irrigation water management
during each hydrological planning cycle. Therefore, the presented approach provides irrigation water
accounting assisted by remote sensing, and the variables used to validate them represent a form of
novelty. Recent work shows that similar procedures have already used data from water authorities and
remote sensing to assess irrigation water requirements over large areas and provide recommendations
such as for several River Basins located in Jordan [98] or the Tarim River Basin in China [99].

The RS-IWA evaluation was satisfactory at different temporal and spatial scales. The agreement
indexes r2 and dr returned positive values within the range of 0.79–0.99, except for the winter season,
when the agreement indexes were closer to zero when evaluated at the monthly time scale (nevertheless,
these findings are not statistically representative, as already explained in Section 3.3). Furthermore,
the REMAE maintained ranges of 11–40% in 28 of the 31 conducted evaluations, which is in line
with the similar range of about 15–40% for typical errors when ETc is computed through the VI [22].
We used these ranges like qualitative indicators because their variables are not the same. Finally,
we also highlighted the EDU spatial scale for the Duero RBD because the annual RS-IWA* evaluation
compared to the ground truth volumetric measurements returned good results (r2 = 0.94, dr = 0.81,
and REMAE = 24%), which were in line with similar findings produced (good agreements and RMSE of
about 15%) by the same model over three consecutive years at the plot and water management user
scales in a different location [33].

The presented operational approach incorporates annual and monthly climatic dynamics, mainly,
the annual/monthly RS-IWA product, which corresponds to the precipitation recorded at different
spatial scales and is in line with other research’s crop water requirement estimations [100,101].
Conversely, the 5 year scale annual/monthly average RS-IWA product was used to aggregate these
climatic dynamics to incorporate successive study years. Thus, according to the seasonal and annual
climatological reports (http://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/resumenes) by the
Spanish Meteorological Agency along with the present research work, two years were considered
wet (2014 and 2016, with 680 and 682 mm, respectively, of annual precipitation), one year was very
wet (2018, with 808 mm), and two more years were classified as dry years (2015 and 2017, with 500
and 474 mm, respectively). This annual variability was incorporated into the RS-SWB (Table 3),
returning lower annual RS-IWA values for wet years and higher ones for dry years, which suggests
that the annual RS-IWA is more accurate for the RBMP-IWA when a dry year occurs. In parallel,
the behaviour of the monthly RS-IWA is similar, as expected based on previous findings. Therefore,
the RS-SWB model incorporates monthly variability, as shown in Figure 5, from particular ADUs in
the Duero and Júcar RBDs, where the lower irrigation water demand estimations respond to higher
precipitation (i.e., June 2018) and vice versa, including the decoupling of the monthly RS-IWA time
series for the RBMP-IWA. Such monthly temporal mismatching between remote sensing and official
water managers’ approaches have been observed in similar studies in the case of the Doukkala region
in Morocco [100] or the Haihe Plain in China [102].

For the RS-IWA spatial scale aggregation following the deep evaluation conducted over the Júcar
and Duero RBDs, the results did not show strong evidence for which spatial scale provides better
results. The REMAE at the EDU and ADU spatial scales varied from 24 to 43%, providing slightly better

http://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/resumenes
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results in the ES spatial scale (with a range of 11–37%). However, when increasing the study area
to 69 ESs over the 11 RBDs, good agreement indexes were found, but the REMAE for the product of
the 5 year scale annual average RS-IWA was about 41% (because the year 2018 returned a 61% REMAE

value, in contrast with the average value of 38%, considering the previous four study years, which is in
agreement with the worst RS-IWA results being found for wet years). At this spatial scale, as noted in
Section 3.4, the underestimations that trigger a higher REMAE are linked with ESs containing a high
proportion of rice crops, greenhouses, or successive horticultural crops each year.

Moreover, such improvements are already available. The spatial locations of rice crops are
correctly defined by the Common Agricultural Policy GIS, so actual public water methodologies from
the RBMP methodology can be used to estimate the irrigation water demands. However, considering
the remote sensing benefits of monitoring crop developments in near real time, we could use the
operational approach of González-Dugo et al. [103] (applied using MINARET) to obtain rice crop
extensions followed by the application of other vegetation indices, such as the SAVI, to estimate
unstressed crop evapotranspiration (using certain adapted crop parameters), among other approaches.

In parallel, the horticultural crops under successive harvesting located in the Segura ES from the
SEG RBD can be correctly monitored by remote sensing using the high temporal resolution provided
by the twin satellites of Sentinel-2 (A and B). In this sense, recent research applying Random Forest
classification approaches returned good results for carrot, pumpkin, and onion classifications [104].
However, we must bear in mind the diverse crop types under this crop group and the different
strategies of farming using different water management approaches [105]. Consequently, aggregating
all these elements into one group class will require further research to maintain an easy and operational
methodology. Finally, the classification of greenhouses could be achieved using many recent advances
by applying Sentinel-2 [106,107]. However, the RS-IWA under greenhouses remains a limitation for
the methodology presented here because optical satellites are not able to monitor such crops.

5. Conclusions

Presently, operational applications in irrigated areas based on remote sensing techniques are
available. Thus, enlarged remote sensing applications over large and diverse irrigation surface areas
would offer public and private water managers a complementary tool for obtaining information and
satisfy the European requirements at the Water Framework Directive level. In this sense, the good
agreement reached between the RS-IWA evaluation and the RBMP-IWA data estimated by the
Hydrological Planning Offices and published in the RBMP satisfies the initial objective of presenting a
simple, homogeneous, and reproducible operational tool for large and diverse irrigation surface areas.
Moreover, the thematic cartography is characterized by having great adaptability to the spatial and
temporal irrigation water management scales used by water managers, so NIR maps are applicable at
any management level.

Consequently, several RS-IWA products were introduced. First, the 5 year scale annual/monthly
average RS-IWA, which aggregates the temporal behaviour of agroclimatic and agricultural strategies
over five study years, is suggested for use when medium-/long-term accounting is required, such as
for the six-hydrological-year cycle. Secondly, the annual/monthly RS-IWA, which incorporates variable
climatological conditions and allows one to monitor the actual values of NIR, can be used to improve
annual or monthly irrigation water resource monitoring.
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