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Abstract: Fog affects transportation due to low visibility and also aggravates air pollutants. Thus,
accurate detection and forecasting of fog are important for the safety of transportation. In this
study, we developed a decision tree type fog detection algorithm (hereinafter GK2A_FDA) using the
GK2A/AMI and auxiliary data. Because of the responses of the various channels depending on the
time of day and the underlying surface characteristics, several versions of the algorithm were created
to account for these differences according to the solar zenith angle (day/dawn/night) and location
(land/sea/coast). Numerical model data were used to distinguish the fog from low clouds. To test the
detection skill of GK2A_FDA, we selected 23 fog cases that occurred in South Korea and used them to
determine the threshold values (12 cases) and validate GK2A_FDA (11 cases). Fog detection results
were validated using the visibility data from 280 stations in South Korea. For quantitative validation,
statistical indices, such as the probability of detection (POD), false alarm ratio (FAR), bias ratio
(Bias), and equitable threat score (ETS), were used. The total average POD, FAR, Bias, and ETS for
training cases (validation cases) were 0.80 (0.82), 0.37 (0.29), 1.28 (1.16), and 0.52 (0.59), respectively.
In general, validation results showed that GK2A_FDA effectively detected the fog irrespective of time
and geographic location, in terms of accuracy and stability. However, its detection skill and stability
were slightly dependent on geographic location and time. In general, the detection skill and stability
of GK2A_FDA were found to be better on land than on coast at all times, and at night than day at
any location.
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1. Introduction

Fog is a meteorological phenomenon that occurs near the Earth’s surface and affects human
activities in various ways [1–3]. Fog affects transportation due to low visibility [1,2,4–6]. Moreover,
it often damages crops and aggravates air pollutants due to solar energy reduction and temperature
inversion [7,8]. Therefore, its accurate detection is important for not only reducing traffic problems but
also studying climate and air quality [1].

Many studies have analyzed the characteristics of fog and detected it using ground observation,
numerical model, and satellite data [3,5,9–13]. As the spatio-temporal variation of fog is strong,
fog detection, especially with satellite data, is significantly advantageous [1,14,15]. Geostationary
satellites have wide spatial coverage, unlike polar-orbit satellites and ground observation data [14,16–18],
with high temporal resolution being their biggest advantage because of the possibility of continuous
monitoring of fog and utilization of their data for short-term forecasts [1].

Remote Sens. 2020, 12, 3181; doi:10.3390/rs12193181 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3827-0044
http://dx.doi.org/10.3390/rs12193181
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/19/3181?type=check_update&version=2


Remote Sens. 2020, 12, 3181 2 of 24

The quality of satellite data, in terms of accuracy, number of channels, spatial resolution,
and temporal frequency, has significantly improved, which has led to the development of many fog
detection techniques using the satellite data. As satellites have different channels available for day
and night, fog detection algorithms have been separately developed in most studies for day or night
according to the solar zenith angle (SZA) [2]. Solar radiation is present during the day; thus, reflectance
is the main parameter used to detect fog during daytime [3,5,17]. Conversely, solar radiation is not
present at night; therefore, the dual channel difference (DCD: brightness temperature (BT) of 3.8 µm
− BT11.2) method, presented by Eyre et al. [19], is mainly used for nighttime. This method involves
measuring the difference in the brightness temperatures of two channels based on the difference
between the emissivities of short-wave infrared channel (3.8 µm) and infrared channel (IR) of 11.2 µm
in the water drop [16,20]. However, distinguishing fog from other objects only using two test elements
for day and night has certain limitations. Particularly, low clouds are difficult to distinguish because of
their physical properties being similar to those of fog [21]. To resolve this difficulty, some researchers
have used the roughness of the upper surface of clouds and difference between surface and cloud
top temperatures [2,3,13,16,20,22,23]. In addition, to eliminate cirrus clouds in the fog product,
the brightness temperature difference (BTD) between 10 and 12 µm has been utilized [13,17]. As the
reflectance of snow-covered areas is similar to that of fog, the normalized difference snow index (NDSI)
has been used to determine whether the pixel is snow or fog [24,25].

Despite these efforts, fog detection using satellite data remains a major issue because of the
limitations of the satellites (such as those of polar orbiting satellites), and the complexity of fog.
A polar orbiting satellite consists of many channels and can detect fog with significantly high spatial
resolution; however, detecting a rapidly changing fog by observing the same area only twice a
day is difficult. Conversely, fog can also be detected in real time using geostationary satellites,
such as Communication, Ocean and Meteorological (COMS) and Multifunction Transport Satellite
(MTSAT). However, these satellites have lower spatial resolutions compared to the polar orbit satellites.
This makes the detection of locally occurring fog with geostationary satellites difficult. In addition,
they only have five channels, with many researchers recommending the need for more channels
to separate the fog from clear ground, cirrus or middle-high clouds, and snow [16,17]. Recently,
GEO-KOMPSAT-2A (GK2A) and Himawari-8, launched by South Korea and Japan, respectively,
significantly addressed these limitations [2,3,20]. The Advanced Meteorological Imager (AMI) of GK2A
and Advanced Himawari Imager (AHI) of Himawari-8 contain 16 channels and high spatial resolutions
(0.5, 1, and 2 km at 0.64 µm, other visible (VIS), and infrared channels, respectively). GK2A is the
second geostationary satellite of South Korea, launched in December 2018. Remarkable improvement
in the observing capability of GK2A, compared to COMS, in terms of the number of channels (5 to 16),
spatial resolution (1–4 to 0.5–2 km), and observing frequency (15 to 10 min), provide an opportunity to
detect local and variable fog [26,27].

To develop an algorithm for real-time fog detection using GK2A/AMI data, we utilized a decision
tree method. As the availability of satellite data differed between day and nighttime, the fog
detection algorithm was developed separately, according to the SZA. In addition, as the geographic
background and characteristics of fog over the Korean Peninsula differed, according to geographic
location, the algorithms were developed differently based on land, sea, and coast. Additionally,
we used numerical model data as it was difficult to distinguish the fog from the low clouds using
only the satellite data. Details about the fog detection methods and data used are described in
Section 2. In Section 3, the qualitative and quantitative results of fog detection are presented. Finally,
discussions on the performance of fog detection algorithms and conclusions are presented in Sections 4
and 5, respectively.
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2. Materials and Methods

2.1. Materials

In this study, mainly GK2A/AMI and numerical weather model (NWP) data, obtained from the
National Meteorological Satellite Center (NMSC) of Korea Meteorological Administration (KMA),
were used for fog detection. As auxiliary data, land sea mask, land cover data, and snow cover were
used. Visibility data (unit: km) measured by a visibility meter obtained from KMA were used to
validate the fog detection results. The characteristics of the selected channels among the 16 channels of
GK2A/AMI are presented in Table 1.

Table 1. Characteristics of the selected channels among the 16 channels of advanced meteorological
imager (AMI) of GK2A used in this study.

Channel AMI Band
Wavelength

Spatial Resolution [km]
(min) [µm] (max) [µm]

3 VIS0.6 0.63 0.66 0.5
6 NIR1.6 1.60 1.62 2
7 IR3.8 3.74 3.96 2

11 IR8.7 8.44 8.76 2
13 IR10.5 10.25 10.61 2
14 IR11.2 11.08 11.32 2
15 IR12.3 12.15 12.45 2
16 IR13.3 13.21 13.39 2

The brightness temperature at 11 µm (CSR_BT11) obtained from clear sky radiance (CSR) was
used as the surface temperature for clear sky to distinguish between fog and low clouds. The CSR data
were obtained through the simulation of the radiative transfer model, RTTOV version 12.1, using the
vertical profile data of temperature and moisture provided by the numerical weather prediction model
operated by KMA [20]. The spatial resolution and temporal frequency of CSR_BT11 were 10 km
and 1 h, respectively. As the spatio-temporal resolution differs between CSR_BT11 and satellite data,
spatio-temporal matching was necessary for the simultaneous use of both data. Therefore, CSR_BT11
was interpolated to fit the spatio-temporal resolution of the satellite data. The land sea mask data was
categorized into three types: land, sea, and coast. The coastal area was defined by 3 × 3 pixels from
the coastline, as shown in Figure 1 (white lines). In addition, a land cover map was used to reduce
the false-detected pixels in the desert area having spectral emissivity similar to that of the fog, with a
lower emissivity of channel 7 than that of channel 13. The snow cover data obtained from NMSC were
also used to minimize the false detection of fog in the snow-covered area. The spatial distribution
of the visibility meter is shown in Figure 1. The number of stations was approximately 280, with the
observing frequencies as 1 min. We used the recalculated 10 min average visibility data obtained from
KMA, as the temporal frequency of the satellite fog product was 10 min.

For qualitative analysis, the fog detection results of COMS Meteorological Data Processing System
(CMDPS) and fog product of red-green-blue (RGB) composite using GK2A were used. The NMSC has
been operationally detecting fog using CMDPS since April 2011. Here, CMDPS is a set of algorithms
that retrieve various weather elements, such as fog and sea surface temperature, from COMS data,
the first geostationary satellite of Korea. The fog product of RGB using GK2A uses BT12.3 − BT10.5,
BT10.5 − BT3.9, and BT10.5 in red, green, and blue, respectively, like the Night Microphysics RGB used
in EUMATSAT to derive a composite image [28].
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Figure 1. Spatial distribution of the visibility data with land sea mask. Yellow dots represent the
stations of the visibility meter data. The white, blue, and brown shaded pixels represent coast, sea,
and land, respectively.

We selected 23 fog cases (23 cases × 24 h/cases × 6 scenes/h = 3312 scenes) that occurred around the
Korean Peninsula, and 12 of these were used as training cases (T#) for determining the threshold values
and 11 were used for validating the fog detection algorithm, as shown in Table 2. The total number of
scenes for the training and validation cases (V#) were 1728 (=12 training cases × 24 h × 6 scenes/h)
and 1584 (=11 validation cases × 24 h × 6 scenes/h), respectively. These training and validation fog
cases were selected based on the order of fog occurrence time, from July to September, 2019 and from
October, 2019 to March, 2020, respectively. To assess the detection level of the fog detection algorithm
developed in this study, we included fog cases with very few fog stations for local fog cases (V8 and
V9 in Table 2).

Table 2. Summary of the fog cases used for training (T) and validation (V) of the fog detection algorithm.
The number of fogs and stations indicate the number of visibility meters, showing a visibility of less
than 1 km and the total number of visibility meters used for validation, respectively.

Training Cases Validation Cases
Code Date # of Fog # of Station Code Date # of Fog # of Station

T1 07.04.2019 1244 25,002 V1 10.01.2019 719 4473
T2 07.14.2019 774 23,339 V2 10.04.2019 2385 30,800
T3 07.24.2019 320 7604 V3 10.20.2019 3823 37,224
T4 07.26.2019 676 6523 V4 11.05.2019 2995 37,627
T5 08.25.2019 570 22,897 V5 11.06.2019 3360 25,912
T6 08.26.2019 815 20,239 V6 11.12.2019 1893 26,556
T7 08.30.2019 1464 33,869 V7 12.08.2019 696 34,425
T8 08.31.2019 227 25,412 V8 12.19.2019 76 23,189
T9 09.17.2019 525 29,818 V9 02.10.2020 72 21,291

T10 09.24.2019 2483 16,278 V10 02.11.2020 151 19,368
T11 09.29.2019 2286 33,642 V11 03.01.2020 1277 15,523
T12 09.30.2019 2011 30,075

Total 13,395 274,698 Total 15,175 162,592

2.2. Methods

The fog detection algorithm of GK2A (GK2A_FDA) consists of three parts, as shown in Figure 2.
The upper left part sets the initial threshold values of various test elements (e.g., DCD, BTD) through
histogram analysis and prepares the background data, such as the 30-day composite visible channel
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reflectance (Vis_Comp). The lower left part optimizes the threshold values of various test elements
through sensitivity tests based on Hanssen–Kuiper skill score (KSS) using the training cases and
visibility meter data. The right part shows the entire process of the fog detection algorithm from
reading the data to validating the fog detection results. As the availability of AMI channels depends on
the time of the day and the characteristics of the background differ based on the geographic location,
we developed nine types of fog detection algorithms based on SZA (day, dawn/twilight, and night) and
surface type (land, coast, and sea), as shown in Figure 3. The threshold values of SZA for separating
fog detection algorithms were determined based on the maximum total fog detection level obtained
through intensive sensitivity tests.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 24 
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As fog is a complex phenomenon and AMI has 16 channels, we used various test elements based
on the optical and textural properties of the fog to distinguish it from other objects (clear, low cloud,
middle-high cloud, snow, etc.), as shown in Table 3. In this study, an algorithm based on a decision tree
method was developed to remove the non-fog pixels after the first detection of the fog candidate pixels
among all pixels using following steps. In the first step, the fog candidate pixels were mainly detected
by the difference (∆VIS) of reflectance at daytime and the DCD at nighttime [5,6,16]. The difference
of reflectance means the difference between the reflectance of 0.64 µm and Vis_Comp as clear sky
reflectance. Vis_Comp of a pixel was obtained through the minimum value composition of the
reflectance of 0.64 µm during the past 30 days, including the fog detection day [5]. The Vis_Comp data
were obtained every 10 min considering different SZAs. We used 30 days for generating Vis_Comp as
the Korean Peninsula is affected by the monsoon system, with frequent occurrence of clouds for more
than 15 days, especially during summer.

It is difficult to distinguish between fog and clouds, such as low cloud or ice cloud, with only
∆VIS and DCD. Therefore, the difference (∆FTs) between the brightness temperatures of the top of the
fog and surface temperature, local standard deviation (LSD), and normalized LSD (NLSD) were used.
As the top height of the fog was lower than that of the clouds (low, middle, and high clouds), the ∆FTs
was used to distinguish the fog from low clouds. In general, the top of the fog is relatively smoother
than that of the cloud because fog mainly occurs when the boundary layer of the atmosphere is stable.
Thus, we used the LSD of the brightness temperature (LSD_BT11.2) and NLSD of the reflectance
(NLSD_vis). NLSD implies the division of standard deviation by the average of 3 × 3 pixels [2].
Clear pixels misclassified as fog in the first step were reclassified using CO2 channel (13.3 µm) and
8.6 µm [29,30]. BTD between 13.3 and 11.2 µm was only used during daytime. BTD between 8.6 and
10.5 µm was mainly used to distinguish between ice and water clouds [31,32]. To distinguish fog from
clear pixels or ice cloud (e.g., cirrus), a brightness temperature of 8.6 µm was used as it can be used
regardless of day and night. In addition, remaining pixels with optically thin middle-high clouds or
partly clouded were removed using BTD between 10.5 and 12.3 µm [13,17].
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Table 3. Summary of the threshold values of the test elements, according to time and geographic
location. The calculation method of each test element is described in Table A1 in Appendix A.

Time Step Test Elements Land Sea

Day

1 ∆VIS [%] 3.0 4.0
2 ∆FTs [K] −2.5 & 1.0 −4.0
3 NLSD_vis - 0.30
4 BTD_08_10 [K] −1.3 -
5 BTD_10_12 [K] 4.0 4.0

−19.06 BTD_13_11 [K] −19.0

7 Strict threshold test
(∆VIS [%], ∆FTs[K], NLSD_vis)

4.0, −4.0, 0.10
(used when SZA < 60◦) -

8 DCD [K] - −1.0–23.0
(SZA: 80.0–20.0◦)

Night

1 DCD [K] −1.25 −0.5
2 ∆FTs [K] −0.5 −4.0
3 LSD_BT11.2 2.0 1.0
4 BTD_08_10 [K] −1.3 -
5 BTD_10_12 [K] 4.0 4.0

Dawn
1 Strict threshold test

(DCD [K], ∆FTs [K], LSD_BT11.2 [K]) −1.9, −5.0, 0.8 -

2 BTD_08_10 [K] −1.3 -
3 BTD_10_12 [K] 4.0 4.0

In South Korea, various types of fog, such as radiation fog, occur, and although there are differences
depending on geographic location, about 26.5 days of fog occur on average. According to Lee and
Suh [33], radiation fog occurs frequently at a rate of 58.5% (especially, 71.3% in inland) for annual total
fog events occurring in South Korea from 2015 to 2017. Even for thick fog with visibility less than
100 m, 62.4% is radiation fog (especially, 86.2% in inland). Most radiation fog dissipates rapidly after
sunrise [34]. Thus, we applied a fog life cycle and strict threshold tests to remove the falsely detected
fog after sunrise (SZA < 60◦) assuming the non-occurrence of new radiation fog during the day. The life
cycle test reclassified the newly detected fog after sunrise into non-fog pixels as fog disappeared after
sunrise. NDSI was used to reclassify the fog pixels with vague properties into non-fog pixels. NDSI,
which is usually used to detect snow, can be used for separating clear pixels from falsely detected fog
pixels due to their different characteristics on the spectrum, compared to soil and fog [35].

As the algorithms were developed differently according to SZA and geographic location,
a spatio-temporal discontinuity in the fog detection results was inevitable. Therefore, we applied the
blending method to minimize the discontinuity at dawn and in the coastal area. Fog detection using
satellite data during dawn/twilight and in coastal areas has been significantly difficult because of the
unavailability of visible channel and DCD and complex background [36]. In order to mitigate the
temporal discontinuity that occurs during dawn, the night fog detection results and the dawn fog
detection results were blended under the assumption that the fog generated at night persists even
during the dawn period. Additionally, in order to mitigate the spatial discontinuity occurring at the
coast, the fog detection algorithm of land and sea was applied at the same time, and the two detection
results were blended. In this case, if the results of both algorithms were the same, the final result
remained the same as shown in Figure 4. Whereas, if the two detection results were different from
each other, they were adjusted using the results of the surrounding detection. If the majority of the
3 × 3 pixels around the given pixel were fog, then it was regarded as fog. During post-processing,
falsely detected pixels appearing in the snow and desert areas were removed using the snow and land
cover data, respectively.
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Finally, fog detection results were validated using the visibility meter as the ground observation
data. Due to the different spatial representativeness of the two data, particularly being relatively
lower for the visibility data and GK2A/AMI having a navigation error, validation was performed
using 3 × 3 pixels based on the satellite pixel closest to the visibility data for the same observation
time [1]. The performance levels of GK2A_FDA were validated using the following evaluation metrics
(probability of detection: POD, false alarm ratio: FAR, bias ratio: Bias, and equitable threat score: ETS)
based on a 2 × 2 contingency table (Table 4). Pixels detected as fog matched with a visibility of less
than 1 km (more than 1 km) were defined as hit (false alarm). POD, FAR, Bias, and ETS were calculated
using Equations (1)–(6). POD and FAR values were obtained between 0 and 1, and exhibited higher
detection levels as they approached 1 and 0, respectively. Bias was used as the indicator of over- or
under-detection of fog. ETS has from −1/3 to 1. Like POD, ETS indicates a higher detection level as it
approaches 1. KSS was the difference between POD and FAR, which ranged from −1 to 1; the closer
the KSS to 1, the higher the fog detection level:

POD = Hit/(Hit + Miss), (1)

FAR = False alarm/(Hit + False alarm), (2)

Bias = (Hit + False alarm)/(Hit + Miss), (3)

KSS = POD − FAR, (4)

Hit_ref = (Hit + Miss)(Hit + False alarm)/(Hit + Miss + False alarm + Correct Negative), (5)

ETS = (Hit − Hit_ref)/(Hit − Hit_ref + Miss + False alarm). (6)

Table 4. Contingency table for fog detection validation.

Satellite Detection Results

Visibility Meter

Fog No Fog

Fog Hit (H) Miss (M)

No Fog False (F) Correct Negative (C)

To evaluate the stability of the fog detection level of the GK2A_FDA, we used the standard
deviation (SD) of the evaluation matrix for the selected fog cases:

SD =

√
1
N

∑N

i=1
(xi − x)2, (7)
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where N is the total number of fog cases (training cases: 12 and validation cases: 11); xi is the evaluation
matrix, POD, FAR, Bias, and ETS of each fog case; and x is the average of xi. Like FAR, the closer the
standard deviation is to zero, the better the stability of the detection level.

3. Results

3.1. Frequency Analysis for Setting Threshold Values

To set the initial thresholds for each test element, the frequency analysis of the test elements over
the fog was performed using the 1728 scenes from the training cases. Fog pixels were selected using
the co-located visibility meter data and visual inspection. Figure 5 shows the frequency distribution of
the three test elements according to day and night on land. The average DCD was −2.7 K, and most
DCDs were less than 0 K (98%) during nighttime (Figure 5a). Pixels above 0 K were mainly found in
sub-pixel-sized fog. ∆FTs showed a non-negligible difference between day and night (Figure 5b,d).
Most ∆FTs during the nighttime were greater than 0 K (Figure 5b); however, most ∆FTs during daytime
were less than 1 K (Figure 5d). This could be due to diurnal variation in the temperature profile at
the boundary layer, strong inversion during nighttime, and the lapse rate profile during daytime.
Most ∆VISs were greater than 3%, with some reaching 25% (Figure 5a). Fog pixels with ∆VISs less
than 2–3% were the cases with sub-pixel-sized fog or weak fog or limitation of the visibility meter.
The distribution of the histogram in each test element appeared broad due to the complexity and
diversities in the fog and background. The initial threshold values determined from the frequency
analysis were statistically optimized using iterative sensitivity tests. The optimized threshold values
were selected when KSS was maximum.
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Since there is no visibility system in the ocean, the threshold was set by visual analysis of the
spatial distribution of the test elements along with the frequency analysis using the visibility meter
installed on the coast (including the islands) as shown in Figure 6. The final thresholds were set after
the sensitivity test from initial thresholds through the visibility meter on the coast and islands.
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3.2. Validation Results of Fog Detection Algorithm

3.2.1. Fog Detection Results

Fog detection results from the GK2A/AMI data set are shown in Figures 7–10 along with the fog
detection results of CMDPS, fog product of RGB composite using GK2A, image of the visible channel
(0.64 µm), and ground-observed visibility data. Qualitative analysis was conducted by selecting two
fog cases from the training cases (Figures 7 and 8) and validation cases (Figures 9 and 10), respectively.
To qualitatively evaluate the detection level based on fog intensity, the two fog cases (strong and
wide area, weak and local fogs) were used. As shown in the visibility meter and color composite
(Figure 7b,d), the fog was strong and widespread in most parts of South Korea. This was a typical
radiation fog that occurred in the inland areas of South Korea during fall. The visual comparison
of fog detection results with the visibility data and color composite indicated that both GK2A_FDA
and CMDPS effectively detected the fog in terms of spatial distribution in South Korea (Figure 7a,c).
Compared to the visibility and color composite map, GK2A _FDA appeared to slightly over-detect
the fog.
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fog product of GK2A RGB. Sky blue color in (a) indicates foggy pixels.
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Figure 10. Sample image of fog detection results at 04:00 KST on 01 October 2019. (a) Fog image of
GK2A_FDA, (b) ground-observed visibility, (c) fog image of CMDPS, and (d) fog product of GK2A
RGB. Sky blue color in (a) indicates foggy pixels.

Figure 8 shows a relatively weak and localized case of fog. The visibility meter showed that fog
occurred only at the very few stations located in the central to northern parts of South Korea; however,
the visibility in most inland areas in South Korea was less than 2 km. Moreover, the image of the visible
channel showed a wide distribution of fog/low cloud and middle cloud over the central and northern
parts of South Korea. GK2A_FDA and CMDPS were found to effectively detect the spatial pattern of
the fog over the central and northern parts of South Korea. However, compared to the visibility meter
(Figure 8b), both algorithms certainly over-detected the fog. This over-detection was attributed to the
dissipation pattern of radiation fog after sunrise. The solar heating of the land surface can increase
the land surface and surface boundary layer temperatures, thereby dissipating the lowest layer fog.
Thus, the visibility is increased to the level of mist, and fog is changed into low cloud, with no changes
taking place at the top of the fog. This could be a main cause of false detection of low cloud as fog
during daytime.

In the validation case (Figure 9), both GK2A_FDA and CMDPS effectively detected the fog similar
to the training case (Figure 7). In this case, GK2A_FDA slightly over-detected the fog and CMDPS
under-detected the fog compared to the visibility meter and image of the visible channel, in particular,
in the south-western part of South Korea.

Figure 10 shows the case of a localized fog with mid to high clouds. Fog was observed to occur in
most parts of South Korea, significantly scattered with a widespread low visibility over South Korea.
Both fog detection algorithms detected the fog in the north-western part of South Korea but could
not detect it in the central to southern parts of South Korea due to the presence of mid to high clouds.
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This is a typical case where any satellite equipped with optical sensors is unable to observe the lower
parts of the clouds. Therefore, in this study, when the clout top height was more than 2 km (∆FTs
greater than 10 K), it was regarded as a cloud and excluded from validation.

3.2.2. Quantitative Validation Results

Table 5 shows the results of quantitative validation using the visibility meter for the 12 training
cases. The total average POD, FAR, Bias, and ETS were 0.80, 0.37, 1.28, and 0.52, respectively. In general,
GK2A_FDA effectively detected the fog irrespective of the time and geographic location, in terms of
POD, FAR, Bias, and ETS. However, the detection skill of GK2A_FDA was clearly dependent on the
geographic location and time. In addition, the stability (SD: standard deviation) of GK2A_FDA was
slightly different based on the geographic location and time. As shown by the KSS, the temporally
averaged detection level on the land (KSS: 0.46) was better than that (KSS: 0.31) over the coastal area,
and the spatially averaged detection level during nighttime (POD: 0.80, FAR: 0.34, and ETS: 0.54) and
dawn (POD: 0.85, FAR: 0.36, and ETS: 0.53) was better than that (POD: 0.77, FAR: 0.47, and ETS: 0.44)
during daytime. The SDs of POD, FAR, Bias, and ETS (0.16, 0.10, 0.28, and 0.11) were the smallest at
night, which indicated that the fog detection algorithm for night was least sensitive to the fog cases.

Table 5. Summary of the validation results for the training cases according to time and
geographic location.

Location Land Coast Total

Time Mean SD Mean SD Mean SD

Day

POD 0.79 0.26 0.71 0.22 0.77 0.20
FAR 0.48 0.21 0.42 0.25 0.47 0.19
KSS 0.30 0.35 0.29 0.20 0.30 0.26
Bias 1.52 0.93 1.23 0.77 1.47 0.78
ETS 0.44 0.19 0.46 0.15 0.44 0.16

Night

POD 0.83 0.28 0.71 0.23 0.80 0.16
FAR 0.32 0.18 0.42 0.10 0.34 0.10
KSS 0.51 0.30 0.29 0.23 0.47 0.21
Bias 1.22 0.62 1.23 0.48 1.21 0.28
ETS 0.57 0.20 0.45 0.12 0.54 0.11

Dawn/Twilight

POD 0.88 0.23 0.67 0.36 0.85 0.19
FAR 0.36 0.23 0.37 0.32 0.36 0.20
KSS 0.52 0.26 0.30 0.51 0.50 0.25
Bias 1.37 0.67 1.06 1.32 1.33 0.61
ETS 0.54 0.17 0.49 0.18 0.53 0.16

Total

POD 0.82 0.28 0.72 0.22 0.80 0.15
FAR 0.37 0.20 0.40 0.10 0.37 0.13
KSS 0.46 0.30 0.31 0.18 0.43 0.18
Bias 1.30 0.69 1.20 0.51 1.28 0.38
ETS 0.54 0.20 0.46 0.10 0.52 0.11

As shown in Table 6 (validation cases), the fog detection level of GK2A_FDA was very good
and stable regardless of the region and time; the total POD, FAR, Bias, and ETS and their SDs were
significantly similar to that of the training cases. The total average POD, FAR, Bias, and ETS for the
11 validation cases were 0.82, 0.29, 1.16, and 0.59, respectively; however, the SDs of POD, FAR, Bias,
and ETS were 0.19, 0.28, 1.00, and 0.21, respectively, slightly higher than that of the training cases.
In general, the fog detection level was slightly higher on land and slightly lower in the coastal area,
irrespective of the time. In terms of fog detection time, the detection level was improved at all times,
especially during the day (POD: 0.77 to 0.78, FAR: 0.47 to 0.30). However, GK2A_FDA over-detected the
fog irrespective of the geographic location and time, similar to the training cases. Further, the detection
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skill and stability of GK2A_FDA were evidently dependent on the geographic location (better at land
than at the coast) and time (better during the night than day), similar to the training cases.

Table 6. Same as Table 5 except for validation cases.

Land Coast Total

Time Mean SD Mean SD Mean SD

Day

POD 0.78 0.11 0.82 0.16 0.78 0.12
FAR 0.31 0.25 0.12 0.10 0.30 0.24
KSS 0.48 0.26 0.70 0.22 0.49 0.27
Bias 1.13 0.62 0.93 0.17 1.12 0.58
ETS 0.56 0.18 0.73 0.15 0.57 0.26

Night

POD 0.84 0.25 0.69 0.18 0.83 0.20
FAR 0.26 0.28 0.49 0.31 0.28 0.27
KSS 0.58 0.44 0.20 0.39 0.55 0.38
Bias 1.14 0.95 1.34 1.29 1.16 0.99
ETS 0.62 0.23 0.41 0.25 0.60 0.22

Dawn/Twilight

POD 0.86 0.32 0.78 0.23 0.86 0.20
FAR 0.31 0.31 0.48 0.35 0.30 0.21
KSS 0.54 0.52 0.29 0.49 0.55 0.25
Bias 1.25 0.79 1.49 1.26 1.23 0.63
ETS 0.54 0.18 0.69 0.27 0.56 0.18

Total

POD 0.83 0.24 0.72 0.18 0.82 0.19
FAR 0.28 0.29 0.43 0.32 0.29 0.28
KSS 0.56 0.42 0.29 0.40 0.54 0.37
Bias 1.15 0.96 1.25 1.29 1.16 1.00
ETS 0.60 0.22 0.46 0.26 0.59 0.21

Figure 11 shows the validation results based on the time for the 12 training and 11 validation
cases used in this study. In general, the fog detection level was found to be significantly dependent
on the characteristics (e.g., fog area) of the fog cases, irrespective of the detection time. In terms of
POD and FAR, higher POD and lower FAR was observed for the cases with a large number of fog
points and vice versa. The best and worst results were found in V3–V6 and T4, and V9–V10 cases,
respectively, which had the highest and lowest numbers of fog points, respectively. The larger SD in the
validation compared to the training cases was due to the larger variation in the number of fog points in
the validation cases. For July 26 (T4), POD was equal to FAR at all times. A detailed analysis of the
satellite images to find the causes of the low level of fog detection (not shown) revealed many fog pixels
being covered with low-mid clouds, with no removal of the cloud pixels during validation because
of the forecast error of CSR_BT11. This suggested that the quality of CSR_BT11 is very important in
separating low to mid clouds from the fog. For 10 February 2020 (V9), FAR was higher than POD,
regardless of the time. In this case, detecting the fog was significantly difficult because of the extremely
local occurrence of the fog, with a semi-transparent cirrus above it. In the cases of T9 and V2, detection
levels were found to be good at night and dawn, but POD was found to be a little higher than or similar
to FAR during the day (Figure 11a). Similar to the V9 case, these was extremely locally occurring fog.
Although GK2A_FDA was developed to remove partly and thin cirrus clouds, it still falsely detected
partly clouds as fog on 17 September 2019 (T9).
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Figure 11 shows the validation results based on the time for the 12 training and 11 validation 
cases used in this study. In general, the fog detection level was found to be significantly dependent 
on the characteristics (e.g., fog area) of the fog cases, irrespective of the detection time. In terms of 
POD and FAR, higher POD and lower FAR was observed for the cases with a large number of fog 
points and vice versa. The best and worst results were found in V3–V6 and T4, and V9–V10 cases, 
respectively, which had the highest and lowest numbers of fog points, respectively. The larger SD in 
the validation compared to the training cases was due to the larger variation in the number of fog 
points in the validation cases. For July 26 (T4), POD was equal to FAR at all times. A detailed analysis 
of the satellite images to find the causes of the low level of fog detection (not shown) revealed many 
fog pixels being covered with low-mid clouds, with no removal of the cloud pixels during validation 
because of the forecast error of CSR_BT11. This suggested that the quality of CSR_BT11 is very 
important in separating low to mid clouds from the fog. For 10 February 2020 (V9), FAR was higher 
than POD, regardless of the time. In this case, detecting the fog was significantly difficult because of 
the extremely local occurrence of the fog, with a semi-transparent cirrus above it. In the cases of T9 
and V2, detection levels were found to be good at night and dawn, but POD was found to be a little 
higher than or similar to FAR during the day (Figure 11a). Similar to the V9 case, these was extremely 
locally occurring fog. Although GK2A_FDA was developed to remove partly and thin cirrus clouds, 
it still falsely detected partly clouds as fog on 17 September 2019 (T9). 
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positively and negatively related to the number of fog stations, respectively. In particular, POD was 
significantly affected by the number of fog stations during dawn (Corr.: 0.65) and nighttime (Corr.: 
0.74). However, the positive relation of POD with the detection skill and number of fogs was not clear 
for daytime, contrary to the relation observed for the training (Corr.: 0.47) and validation (Corr.: 
−0.13) cases. Moreover, the negative relation (Corr.: −0.18–−0.33) between the detection skill and 
number of fogs was not only weak but also dependent on the time of the day, indicating that the 
detection skill of GK2A_FDA was clearly dependent on the characteristics of fog, such as fog area 
and intensity. 

Figure 11. Validation results for the training (T) and validation cases (V) with ground-observed visibility
data according to the time ((a) day, (b) night, (c) dawn/twilight, and (d) total). Red, blue, and green
lines with dots indicate POD, FAR, and ETS for each fog case, respectively. The bars represent the
total number of fog points used for validation. The gray and blue bar graphs are used to distinguish
between training and validation cases.

Figure 12 shows the relation between the number of fog stations and detection skill of GK2A_FDA
according to the time of the day. The detection level of GK2A_FDA was closely linked with the number
of fog stations, irrespective of the time of the day. In general, POD and FAR were positively and
negatively related to the number of fog stations, respectively. In particular, POD was significantly
affected by the number of fog stations during dawn (Corr.: 0.65) and nighttime (Corr.: 0.74). However,
the positive relation of POD with the detection skill and number of fogs was not clear for daytime,
contrary to the relation observed for the training (Corr.: 0.47) and validation (Corr.: −0.13) cases.
Moreover, the negative relation (Corr.: −0.18–−0.33) between the detection skill and number of fogs
was not only weak but also dependent on the time of the day, indicating that the detection skill of
GK2A_FDA was clearly dependent on the characteristics of fog, such as fog area and intensity.
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Figure 12. Scatter plots between the number of fogs and statistical skill scores (POD and FAR) based on
the time of the day ((a) day, (b) night, (c) dawn/twilight, and (d) total). Correlation coefficients (Corr.)
between the number of fogs and statistical skill scores are shown at the top of each figure according to
the training cases (T), validation cases (V), and all cases (A). Square and triangle points in each figure
indicate POD and FAR, respectively. The training and validation cases are shown separately, with or
without shading.

4. Discussion

In this study, we developed a decision tree type fog detection algorithm using GK2A/AMI
and different types of auxiliary data, including the output of numerical forecast mode. For this,
the most recent geostationary satellite data (GK2A/AMI, Himawari-8/AHI, Geostationary Operational
Environmental Satellite (GOES)-R/Advanced Baseline Imager (ABI)), along with numerical model
results, land/sea mask, land cover, snow cover data, etc. were required for fog detection using
GK2A_FDA. The main advantages of GK2A_FDA were the different availability of satellite data based
on the time of the day (day/dawn/night) and different backgrounds based on the geographic locations
(land/coast/sea) considered. In addition, we not only evaluated the detection skills (POD, FAR, Bias,
and ETS) but also the stability (their standard deviations) of GK2A_FDA using ground-observed
visibility data for the 23 fog cases.

The total average POD, FAR, Bias, and ETS for the 12 training (11 validation) cases were 0.80 (0.82),
0.37 (0.29), 1.28 (1.16), and 0.52 (0.59), respectively, with their standard deviations being 0.15 (0.19),
0.13 (0.28), 0.38 (1.00), and 0.11 (0.21), respectively. Table 7 shows the validation results of fog detection
using various satellite and auxiliary data using the ground observation data for the past five years
(2014–2019). Due to difference in the areas analyzed, analysis periods, and satellite and auxiliary data
used in this study, directly comparing them was difficult. However, when the number of fog cases
and visibility meter data were used for validation, the detection level of the fog detection algorithm
developed in this study was found to be similar or superior to that of the past algorithms. In previous
studies, all PODs and FARs were found to be less than 0.7 but greater than 0.31, respectively.
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Table 7. Summary of the validation results using ground observation data of previous studies during
the past five years (2014–2019).

Previous Study Satellite Data Data Set Data for Validation Average Results

Lefran [37] GOES-13 For 2012 71 ASOS 1/AWOS 2 POD = 0.41
FAR = 0.75

Suh et al. [2] COMS 5 fog cases in 2015 235 visibility meters POD = 0.83
FAR = 0.54

Nilo et al. [38] SEVIRI 3
51 scenes for training

and 4439 pixels for
validation (2016.10–2017.04)

18 METAR 4

in Italy
POD = 0.69
FAR = 0.31

Egli et al. [18] SEVIRI 342,328 scenes (2006–2015)
11,993 scenes for training 273 METAR and 11 SYNOP 5 POD = 0.61

FAR = 0.41

Leppelt et al. [39] AHI, ABI, and IASI 6 400 scenes for validation
(2010–2015) SYNOP POD = 0.71

FAR = 0.34

Han et al. [3] Himawari-8 54 scenes for both training
and validation in 2015 Visibility meter POD = 0.75

FAR = 0.44

Kim et al. [20] Himawari-8 8 fog cases for both training
and validation Visibility meter POD = 0.64

FAR = 0.56
1 ASOS: Automated Surface Observing System. 2 AWOS: Automated Weather Observing System. 3 SEVIRI:
Spinning Enhanced Visible and Infrared Imager. 4 METAR: Meteorological Terminal Aviation Routine Weather
Report. 5 SYNOP: surface synoptic observations. 6 IASI: Infrared Atmospheric Sounding Interferometer.

Although we tried to minimize the spatio-temporal discontinuities in the fog detection results,
non-negligible spatio-temporal discontinuities existed in the fog detection results, as shown in Figure 13.
Temporal and spatial discontinuities were found at the temporal boundary between dawn and daytime
(Figure 13a,b), spatial boundary, and coastal lines (Figure 13c,d). Compared to the fog detection
result at dawn (Figure 13a), a new fog was abruptly detected during daytime at the right side of
the boundary line (Figure 13b). The coastal line contains many non-fog areas surrounded by the
fog areas (Figure 13c,d). When considering the strong spatial continuity of the sea fog, we obtained
blank areas, which can be considered as a type of spatial discontinuity. We optimized the threshold of
SZA for separating dawn and daytime using various sensitivity tests; however, the discontinuities
continued in many cases. A complete elimination of spatio-temporal discontinuities was impossible
because the channels used were fundamentally different. Despite these fundamental limitations,
more studies should be carried out for continuously detecting the fog, without considering time and
geographic location.
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Satellite Observation (CALIPSO) data have been used for fog detection validation over sea [15–
17,20,40]. Figure 14 shows a validation result for the sea fog detection of GK2A_FDA using Vertical 
Feature Mask (VFM) data produced from CALIPSO. The VFM data has an issue of incorrectly 
defining the sea fog layer as the surface (e.g., 37°N–40°N). As suggested by Wu et al. [40], if the 
backscattering of the layer defined as the surface is greater than 0.03 km sr , it is redefined as the 
sea fog layer. As the duration of sea fog is long, unlike land fog, the GK2A data were validated ± 20 
min based on the passing time of CALIPSO. The VFM data showed that GK2A_FDA effectively 
detected the sea fog (POD: 0.80, FAR: 0.20, KSS: 0.60, and Bias: 1.00). When considering advection 
fogs that frequently occur in the western and southern seas to the Korean Peninsula, quantitative 
validation of the fog detection algorithm in the sea should be performed using the CALIPSO data 
and others [15,32,41]. 

 

Figure 13. Sample images of spatio-temporal discontinuities obtained from (a) 06:10 KST to (b) 06:20
KST on 14 July 2019 and at (c) 07:10 KST on 30 September 2019). Bright sky blue lines indicate the SZA.
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The detection skills of GK2A_FDA over the sea were not quantitatively evaluated in this study
because of the limited validation data. In many studies, Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) data have been used for fog detection validation over sea [15–17,20,40].
Figure 14 shows a validation result for the sea fog detection of GK2A_FDA using Vertical Feature Mask
(VFM) data produced from CALIPSO. The VFM data has an issue of incorrectly defining the sea fog
layer as the surface (e.g., 37◦N–40◦N). As suggested by Wu et al. [40], if the backscattering of the layer
defined as the surface is greater than 0.03 km−1sr−1, it is redefined as the sea fog layer. As the duration
of sea fog is long, unlike land fog, the GK2A data were validated ± 20 min based on the passing time
of CALIPSO. The VFM data showed that GK2A_FDA effectively detected the sea fog (POD: 0.80, FAR:
0.20, KSS: 0.60, and Bias: 1.00). When considering advection fogs that frequently occur in the western
and southern seas to the Korean Peninsula, quantitative validation of the fog detection algorithm in
the sea should be performed using the CALIPSO data and others [15,32,41].

In addition, for stable fog detection in the long term, it is necessary to improve the level of fog
detection on daytime land and for weak or local fog. In particular, the quality of numerical models and
background data should be improved for the accurate separation of fog from low to mid clouds.
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5. Conclusions

Fog affects transportation due to low visibility and impacts aggravates air pollutants. Thus,
accurate detection and forecasting of fog are important for the safety of transportation and air quality
management. We developed a decision tree type fog detection algorithm (GK2A_FDA) using the
second geostationary satellite of South Korea, GK2A/AMI, and auxiliary data, such as numerical model
output and land cover data. The ultimate goal of this study was to reduce the damage caused by fog
through real-time fog detection using GK2A/AMI as a high-resolution geostationary satellite. In fact,
the fog detection algorithm developed in this study has been temporarily in operation since July 2019.
The GK2A/AMI has 16 channels, with a 2 (0.5–1) km spatial resolution in infrared (visible) channels.
It observes the full disk and East Asian region every 10 and 2 min, respectively. The spatial resolution
and temporal frequency of the surface temperature predicted by the numerical model operated by the
KMA were 10 km and 1 h, respectively. The results of GK2A_FDA were validated using the visibility
data from 280 stations in South Korea. We selected 23 fog cases (3312 scenes) that occurred across South
Korea and used 1728 scenes to determine the threshold values and 1584 scenes to validate GK2A_FDA.
As the spatio-temporal resolution of the satellite data, model output, and visibility data were different,
the spatio-temporal co-location process was applied to simultaneously use both data.

Fog is a complicated phenomenon in terms of size and intensity. Additionally, AMI contains
16 channels and the quality of auxiliary data (e.g., numerical model output) has significantly improved;
thus, we used its various combination of test elements for improving fog detection. We developed
GK2A_FDA (nine types of fog detection algorithms) differently, according to the SZA (day, dawn,
and night) and surface type (land, sea, and coast) considering the availability of satellite data during
day and nighttime, and different background characteristics based on the geographic location. Thus,
the test steps were 6 (6) and 5 (4) for day and nighttime on land (sea), respectively. The main test
elements used for the day and night were the reflectance differences at 0.63 µm and DCD between the
fog and other objects, respectively. The temperature difference between the top of the fog and surface
has been commonly used for separating fog from low-to-mid clouds. The threshold values were
optimized through the sensitivity tests for every test element using the 12 training cases after the initial
setting of threshold values in the histogram analysis for the selected fog pixels. The fog detection results
had a spatio-temporal discontinuity because of the different development of GK2A_FDA according to
SZA and geographic location. Therefore, we included the fog detected at nighttime to minimize the
discontinuity at dawn and calculated the weight sum of the land and sea algorithms in the coastal area.
In addition, we eliminated the falsely detected fog pixels appearing in the snow or desert area using
the snow cover map and land cover data.

The validation results of the 12 training and 11 validation cases showed that GK2A_FDA
effectively detected the fog, irrespective of time and geographic location in terms of accuracy and
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stability. The total average POD, FAR, Bias, and ETS for the training (validation) cases were 0.80 (0.82),
0.37 (0.29), 1.28 (1.16), and 0.52 (0.59), respectively. The SDs of the total averages of POD, FAR, Bias,
and ETS for the training (validation) cases were 0.15 (0.19), 0.13 (0.28), 0.38 (1.00), and 0.11 (0.21),
respectively. In general, the detection skills and stability of GK2A_FDA were observed to be slightly
increased and decreased in the validation cases, respectively, which were mainly related to the fog area
(variations in the number of fog pixels), as shown in Figure 11, and were found to be slightly dependent
on geographic location and time. In the training cases, the detection skill of GK2A_FDA was observed
to be better on land (POD: 0.82, FAR: 0.37, and ETS: 0.54) than (POD: 0.72, FAR: 0.40, and ETS: 0.46)
over the coastal area. The detection levels during nighttime (POD: 0.80, FAR: 0.34, and ETS: 0.54) and
dawn (POD: 0.85, FAR: 0.36, and ETS: 0.53) were better than that (POD: 0.77, FAR: 0.47, and ETS: 0.44)
during daytime. In addition, the detection skill of GK2A_FDA was found to be the most stable at
night in terms of the standard deviation of POD (0.16), FAR (0.10), Bias (0.28), and ETS (0.11). Further,
the detection skill of GK2A_FDA for the validation cases was found to be better at land (POD: 0.83,
FAR: 0.28, Bias: 1.15, and ETS: 0.60) than at the coastal area (POD: 0.72, FAR: 0.43, Bias: 1.25, and ETS:
0.46), and better at night (POD: 0.83, FAR: 0.28, Bias: 1.16, and ETS: 0.60) than during the day (POD:
0.78, FAR: 0.30, Bias: 1.12, and ETS: 0.57), similar to the training cases. In order for the fog detection
algorithm developed in this study to be used in a forecast office (e.g., NMSC/KMA), it is necessary to
evaluate not only fog cases but also non fog cases (e.g., precipitation cases, clear cases). So, we will
continue to evaluate the level of this fog detection algorithm using various fog and non-fog cases.
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Appendix A. Test Elements and Acronyms

Table A1. Definition of each test elements.

Test Elements Unit Definition

DCD K BT3.8 − BT11.2
∆VIS % VIS0.6 − Vis_Comp.

Vis_Comp % minimum value composite of visible channel reflectance during 30 days
∆FTs K BT11.2 − CSR_BT11
LSD K Standard deviation of 3 × 3 pixels

NLSD LSD/Average of 3 × 3 pixels
BTD_08_10 K BT8.7 − BT10.5
BTD_10_12 K BT10.5 − BT12.3
BTD_13_11 K BT13.3 − BT11.2
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Table A2. List of acronyms.

Acronyms Description

ABI Advanced Baseline Imager
AHI Advanced Himawari Imager
AMI Advanced Meteorological Imager

ASOS Automated Surface Observing System
AWOS Automated Weather Observing System

Bias Bias Ratio
BT Brightness Temperature

BTD Brightness Temperature Difference
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

COMS Communication, Ocean and Meteorological Satellite
Corr. Correlation coefficients

CMDPS COMS Meteorological Data Processing System
CSR Clear Sky Radiance

CSR_BT11 Clear sky radiance for brightness temperature at 11 µm
DCD Dual Channel Difference
ETS Equitable Threat Score
FAR False Alarm Ratio
∆FTs Difference between the BT of the fog top and surface temperature

GK2A GEO-KOMPSAT-2A
GK2A_FDA Fog detection algorithm of GK2A

GOES Geostationary Operational Environmental Satellite
ISAI Infrared Atmospheric Sounding Interferometer
IR Infrared

KMA Korea Meteorological Administration
KSS Hanssen-Kuiper skill score
LSD Local Standard Deviation

LSD_BT11.2 LSD of Brightness Temperature at 11.2 µm
METAR Meteorological Terminal Aviation Routine Weather Report
MTSAT Multifunction Transport Satellite
NDSI Normalized Difference Snow Index
NIR Near Infrared

NLSD Normalized LSD
NLSD_vis NLSD of reflectance

NMSC National Meteorological Satellite Center
NWP Numerical Weather Model
POD Probability Of Detection
RGB Red-Green-Blue

RTTOV Radiative Transfer of TOVS
SD Standard Deviation

SEVIRI Spinning Enhanced Visible and Infrared Imager
SYNOP Surface Synoptic Observations

SZA Solar Zenith Angle
UM Unified Model

VFM Vertical Feature Mask
VIS Visible

∆VIS Difference between the reflectance of 0.64 µm (VIS0.6) and Vis_Comp
Vis_Comp minimum value composite of visible channel reflectance during 30 days
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