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Abstract: Rainfall prediction is an important task due to the dependence of many people on it,
especially in the agriculture sector. Prediction is difficult and even more complex due to the dynamic
nature of rainfalls. In this study, we carry out monthly rainfall prediction over Simtokha a region in the
capital of Bhutan, Thimphu. The rainfall data were obtained from the National Center of Hydrology
and Meteorology Department (NCHM) of Bhutan. We study the predictive capability with Linear
Regression, Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short Term
Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional Long Short Term Memory (BLSTM)
based on the parameters recorded by the automatic weather station in the region. Furthermore,
this paper proposes a BLSTM-GRU based model which outperforms the existing machine and deep
learning models. From the six different existing models under study, LSTM recorded the best Mean
Square Error (MSE) score of 0.0128. The proposed BLSTM-GRU model outperformed LSTM by 41.1%
with a MSE score of 0.0075. Experimental results are encouraging and suggest that the proposed
model can achieve lower MSE in rainfall prediction systems.
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1. Introduction

Rainfall prediction has a widespread impact ranging from farmers in agriculture sectors to
tourists planning their vacation. Moreover, the accurate prediction of rainfall can be used in
early warning systems for floods [1] and an effective tool for water resource management [2].
Despite being of paramount use, the prediction of rainfall or any climatic conditions is extremely
complex. Rainfall depends on various dependent parameters like humidity, wind speed, temperate, etc.,
which vary from one geographic location to another; hence, one model developed for a location may not
fit for another region as effectively. Generally, rainfall can be predicted using two approaches. The first is
by studying all the physical processes of rainfall and modeling it to mimic a climatic condition. However,
the problem with this approach is that the rainfall depends on numerous complex atmospheric processes
which vary both in space and time. The second approach is using pattern recognition. These algorithms
are decision tree, k-nearest neighbor, and rule-based methods. For a large dataset, deep learning
techniques are used to find meaningful results, and these techniques are based on the neural network.
In this method, we ignore the physical laws governing the rainfall process and predict rainfall patterns
based on their features. This study aims to use pattern recognition to predict precipitation. The predictive
models developed in this study are based on deep learning techniques. We propose a Bidirectional Long
Short Term Memory (BLSTM) and Gated Recurrent Unit (GRU)-based approach for monthly prediction
and compare its results with the state-of-the-art models in deep learning.
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In this study, we predict rainfall over Simtokha, a region in the capital of Bhutan, Thimphu [3].
Although much work has been done on rainfall prediction using Artificial Neural Network (ANN) [4–8],
particularly Multi-Layer Perceptron (MLP) in different countries, there is no existing literature on the
application of ANN or Deep Neural Network (DNN) for the same purpose for any of the regions
in Bhutan. Weather parameters vary from region to region, and the parameters recorded also vary
according to the weather stations. A model developed for one country or region does not fit for another
location as effectively.

The particular area was chosen as it is located in the capital of the country and serves as the
primary station for the entire Thimphu. The region, although not prone to flooding, faces constant water
shortages due to ineffective water resource management. A more accurate beforehand knowledge
of precipitation for the coming month will help the region to identify and mitigate water shortage
problems. This work also studies the predictive capability of different DNNs for predicting rainfall
based on the parameters recorded by the weather stations in the country and will serve as a baseline
study. The dataset used in the study is the automatic weather station data collected from a station
located in Simtokha.

Atmospheric models [9] are predominantly used for forecasting rainfall in Bhutan. Atmospheric
models include atmospheric circulation models, climate models, and numerical models which simulate
atmospheric operation and predict rainfall. Currently, Numeric Weather Prediction (NWP) methods
are the principal mode of forecasting rainfall in Bhutan. Numerical models employ a set of partial
differential equations for the prediction of many atmospheric variables such as temperature, pressure,
wind, and rainfall. The forecaster based on his experience examines how the features predicted by the
computer will interact to produce the day’s weather.

This work focuses on the current state-of-the-art deep learning techniques to forecast rainfall over
Simtokha. The contribution of our work is as follows:

1. We proposed a hybrid framework of BLSTM and GRU for rainfall prediction.
2. No prior deep learning techniques have been used on the dataset. The results of this paper will

serve as the baseline for future researchers.
3. A detailed analysis of the proposed framework is presented through extensive experiments.
4. Finally, a comparison with different deep learning models is also discussed.

The rest of the paper is organized as follows. In Section 2, we discuss the existing research work
in the rainfall prediction system. In Section 3, the proposed system implemented on the dataset is
discussed. Section 4 describes the experimental results and analysis. Finally, in the last Section 5 the
work is concluded along with a discussion of some future possibilities.

2. Literature Review

Prediction methods have come a long way, from relying on an individual’s experience to simple
numeric methods to complex atmospheric models. Although machine learning algorithms like
Artificial Neural Network (ANN) have been utilized by researchers to forecast rainfall, studies on the
effectiveness of existing deep learning models are limited, especially on data recorded by the sensors
in a weather station. Forecasting of rainfall can be conducted over a short time, such as predicting an
hour or a day into the future, or over a long time such as monthly or a year ahead. A Neural Network
(NN) is a collection of neurons and multiple hidden layers, which work similar to a human brain.
NNs are used to classify things and are based on the data. Recent surveys [4,5,10] show MLP as the
most popular NN used for rainfall prediction.

Huang et al. [11] used 4 years of hourly data from 75 rain gauge stations in Bangkok and developed
a NN to forecast 1–6 h rainfall on this data. Luk et al. [12] performed short-term (15 min) prediction
using data collected from 16 gauges over the catchment area in western Sydney. Both research works
recommended MLP over k-nearest neighbor, multivariate adaptive regression splines, linear regression,
and support vector regression. The study also highlighted the drop in prediction capability with an
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increase in lag order. Kashiwao et al. [13] compared MLP with an algorithm composed of random
optimization, backpropagation, and Radial Bias Function Network (RBFN) to predict short-term
rainfall on the data collected by the Japan Meteorological Agency (JMA). The authors showed MLP
performed better than RBFN.

Hernandez et al. [14] used a combination of autoencoder and MLP to predict the amount of
rainfall for the next day using previous days’ records. The autoencoder was used to extract nonlinear
dependencies of the data. Their method outperformed other naive methods but had little improvement
over MLP. Khajure et al. [15] used an NN and a fuzzy inference system. The weather parameters
were predicted using an NN, and the predicted values were fed into the fuzzy inference system,
which then predicted the rainfall according to predefined fuzzy inference system rules. The authors
concluded that a fuzzy inference system can be used along with an NN to achieve good prediction
results. The effectiveness of a fuzzy inference system for rainfall prediction was also reported by
Wahyuni et al. [16].

Predicting monthly rainfall using MLP has shown more stable results compared to short-term
prediction. Mishra et al. [17] used a feed-forward neural network (FFNN) to predict monthly rainfall
over North India. Abhishek et al. [4] predicted monsoon precipitation for the Udupi district of Karnataka
using three different learning algorithms: Back Propagation Algorithm (BPA), Layer Recurrent Network
(LRN), and Cascaded Back Propagation (CBP). The BPA showed lower mean squared error (MSE)
compared to the other algorithms. Hardwinarto et al. [18] showed a promising result of BPNN for
monthly rainfall using data from Tenggarong Station in Indonesia. Kumar and Tyagi [19] found RBFN
outperformed BPNN while predicting rainfall for the Coonoor region of Tamil Nadu.

With the advancement in deep learning techniques, research work has been done to implement it
in time series prediction. Recurrent neural networks (RNNs), in particular LSTM [20] and GRU [21],
have found their niche in time series prediction. Zaytar et al. [22] used multi-stacked LSTM to forecast
24 h and 72 h of weather data, i.e., temperature, wind speed, and humidity. They used 15 years of
hourly meteorological data from 2000–2015 of nine cities of Morocco. The authors deduced deep LSTM
networks could forecast the weather parameters effectively and suggested it for other weather-related
problems. Salan et al. [23] used weather datasets from 1973 to 2009 provided by the Indonesian Agency
for Meteorology, Climatology, and Geophysics to predict rainfall. The authors used a recurrent neural
network for prediction and obtained an accuracy score of 84.8%. Qie et al. [24] used multi-task CNN
to predict short-term precipitation using weather parameters collected from multiple rain gauges
in China. The authors concluded that the multi-site [25] features gave better results than single-site
features. A summary of the literature review is shown in Table 1.

Table 1. Related work using Multi-Layer Perceptron.

Author & Year Region
(Global or Local)

Daily-
Monthly- Yearly Types of NN

Rainfall
Predicting
Variables

Accuracy
Measure

Luk et al. [12]
Western
Sydney

15 min
rainfall prediction

MLFN, PRNN,
TDNN NA NMSE

Huang et al. [11] Bangkok
4 years of

hourly data
from 1997–2003

MLP and FFNN NA
Efficiency
index (EI)

Abhishek et al. [4]
Karnataka,

India
8 months of data
from 1960 to 2010

BPFNN, BPA,
LRN and CBP

Average humidity and
average wind speed MSE

Nayak et al. [10] Survey Paper NA ANN NA NA

Darjee et al. [5] Survey Paper
Monthly,

Yearly
ANN, (FFNN,
RNN, TDNN)

Maximum and minimum
temperatures NA

Hardwinarto et al. [18]
East

Kalimantan-
Indonesia

Data used
from 1986–2008 BPNN NA MSE

Khajure et al. [15] NA
Daily records

for 5 years
NN and a fuzzy
inference system

Temperature, humidity,
dew point, visibility,

pressure and windspeed.
MSE
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Table 1. Cont.

Author & Year Region
(Global or Local)

Daily-
Monthly-Yearly Types of NN

Rainfall
Predicting
Variables

Accuracy
Measure

Kumar and Tyagi [19]
Nilgiri district

Tamil Nadu, India

Monthly rain-
fall prediction

(Data from
1972–2002)

BPNN, RBFNN NA MSE

Wahyuni et al. [16]
Tengger
East Java

Data used
from 2005 to 2014 BPNN

Changes caused by
climate change RMSE

Kashiwao et al. [13] Japan

Rainfall data
from the in-

ternet as \“big
data” was used.

ANN
MLP and RBFN

Atm. pressure,
precipitation,

humidity, temp.,
vapor pressure,
wind, velocity.

Validation
using JMA.

Mishra et al. [17] North India
North India

for the period
1871–2012.

FFNN

Rainfall records
of previous

2 months and
current month

Regression
analysis,

MRE and MSE

3. Proposed System

In this section, we describe the different steps and components of the proposed system.
The proposed deep learning model consists of a BLSTM, GRU, and Dense layer as shown in Figure 1.

Figure 1. The proposed model is composed of 7 layers including the input and output layers.
The embedding is generated by the Bidirectional Long Short Term Memory (BLSTM) and Gated
Recurrent Unit (GRU) layer. The batch normalization is used for normalizing the data, and the dense
layer performs the prediction.



Remote Sens. 2020, 12, 3174 5 of 13

3.1. Dataset Description

Bhutan is a small Himalayan country landlocked between India to the south and China to the
north, as shown in Figure 2. The sensor data used in this work were collected from a weather station
located in Simtokha [3], Thimphu, which is the 4th highest capital in the world by altitude, and the
range varies from 2248 to 2648 m. The station at Simtokha is the sole station to record class A data for
the capital. The station is located at 89.7 longitude and 27.4 latitude at an elevation of 2310 m. The data
for this study were obtained from NCHM (http://www.hydromet.gov.bt), which provides two classes
of data to researchers: class A and class C datasets. Class A datasets are recorded by automatic
weather stations, and class C datasets are recorded manually by designated employees at different
stations. Class A datasets are, hence, more reliable and were used in this work. The selected dataset
contains daily records of weather parameters from 1997 to 2017, as shown in Figure 3. The records
from 1997–2015 were used to train the different models, and 2016–2017 data were used for testing.
Six weather parameters described in Table 2 were used for this study. These parameters had either
zero or very few missing values that were handled during data preprocessing. The monthly weather
parameters were extracted from daily records by taking the mean of tmax, tmin, relative_humidity,
wind_speed, and wind_direction. The number of sunshine hours and rainfall amount in a month were
deduced by taking the sum of daily sunshine hours and daily rainfall values, respectively.

Figure 2. Map of Bhutan showing major river basins and the annual precipitation (mm). The study
area is indicated in the legend.

Table 2. The parameters used in our study and their corresponding units.

Rainfall Parameters Units

Maximum Temperature (tmax) ◦C
Minimum Temperature (tmin) ◦C

Rainfall Millimeters (mm)
Relative Humidity Percentage (%)

Sunshine Hours (h)
Wind Speed Meters per second (m/s)

http://www.hydromet.gov.bt
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Figure 3. The subplot of weather parameters used in the study from 1998 to 2018.

3.2. Data Preprocessing

The daily records of weather parameters from 1997 to 2017 were collected from NCHM. The raw
data originally contained eight parameters, but some of the parameters contained a lot of missing
and noisy values. The weather parameters that contained a lot of empty records were dropped from
the dataset. The dataset also had different random representations for the null value, which was
standardized during preprocessing. The preprocessing step is as shown in Figure 4. The missing
values in the selected parameters were resolved by taking the mean of all the values occurring for that
particular day and month. For example, if the sunshine_hours record for 1 January 2000 was missing,
it was filled by the mean of other sunshine_hours records on 1 January for other years. Outliers
are records that significantly differ from other observed values. The outliers were detected using a
box-and-whisker plot as well as the k-means clustering algorithm [26] and were resolved using the
mean technique. Weather parameters were normalized using a min-max scaler to get the new scaled
value z.

z =
x−min(x)

max(x)−min(x)

where min(x) and max(x) are the minimum and maximum value, respectively. x is the value to be
scaled. After preprocessing, the data are reshaped into a tensor format for DNN models. The input
for the LSTM layer must have a 3D shape. The three dimensions of the input are samples, time steps,
and sample dimension. One sequence is considered as one sample, one point of observation in the
sample is one time step, and one feature is a single point of observation at the time step. In our
experiment one sample is made up of 12 time steps (12 months), and in each time step (month) there
are parameters like average maximum temperature, average sunshine hours, etc.

Figure 4. Data preprocessing. The data are preprocessed in 6 stages with the arrowheads showing the
flow of data.
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3.3. Evaluation Metrics

The study used both qualitative and quantitative metrics to calculate the performance of different
models. The formulae for RMSE, MSE, Pearson Correlation Coefficient, and R2 were used as a scoring
function, as in Table 3.

Table 3. Evaluation metrics for monthly rainfall prediction.

Name Formula

MSE 1
n ∑n

t=1(xi − yi)
2

RMSE
√

1
n ∑n

t=1(xi − yi)2

R2 1− ∑
nsamples−1

i=0 (xi−yi)
2

∑
nsamples−1

i=0 (xi−ȳ)2

Correlation ∑n
i=1(xi−x̄)(yi−ȳ)√

∑n
i=1(xi−x̄)2 ∑n

i=1(yi−ȳ)2

From the above, xi is the model simulated monthly rainfall, yi is the observed monthly rainfall,
x and y are their arithmetic mean, and n is the number of data points.

3.4. BLSTM

LSTM is the most popular model in time series analysis, and there are many variants such as
unidirectional LSTM and BLSTM. For our study, the Many-to-One (multiple input and one output)
variation of LSTM [27,28] was used to take the last 12 months’ weather parameters and predict the
rainfall for the next month, as shown in Figure 5. Unidirectional LSTM process data are based on
only past information. Bidirectional LSTM [29–33] utilizes the most out of the data by going through
time-steps in both forward and backward directions. It duplicates the first recurrent network in the
architecture to get two layers side by side. It passes the input, as it is to the first layer and provides a
reversed copy to the second layer. Although it was traditionally developed for speech recognition,
its use has been extended to achieve better performance from LSTM in multiple domains [34,35].
An architecture consisting of two hidden layers with 64 neurons in the first layer and 32 neurons in the
second layer recorded the best result on the test dataset, with MSE value of 0.01, a coefficient value of
0.87, and R2 value of 0.75.

Figure 5. Many (12) to One LSTM utilized in the experiment. Each sample of data contains 12 time-steps
of previous data. We used 12 months of previous data to predict the rainfall of the next month (n + 1).

3.5. GRU

The Gated Recurrent Unit was developed by Cho et al. [21] in 2014. GRU performances on certain
tasks of natural language processing, speech signal modeling, and music modeling are similar to the
LSTM model. The GRU model has fewer gates compared to LSTM and has been found to outperform
LSTM when dealing with smaller datasets. To solve the vanishing gradient problem of a standard
RNN, GRU consists of an update and reset gate, but unlike the LSTM it lacks a dedicated output gate.
The update gate decides how much of the previous memory to keep, and the reset gate determines how
to combine the previous memory with the new input. Due to fewer gates, they are computationally less
demanding compared to LSTM and are ideal when there are limited computational resources. GRU with
two hidden layers consisting of 12 neurons in the first layer and 6 neurons in the second outperformed
other architectures, with an MSE score of 0.02, a correlation value of 0.83, and R2 value of 0.66.
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3.6. BLSTM-GRU Model

In this model, preprocessed weather parameters are fed into the BLSTM layer with 14 neurons.
This layer reads data in both forward and backward directions and creates an appropriate embedding.
Batch normalization is performed on the output of the BLSTM layer to normalize the hidden embedding
before passing it to the next GRU layer. The GRU layer contains half the number of neurons as the
BLSTM layer. The GRU layer has fewer cells and is able to generalize the embedding with relatively
lower computation cost. The data are again batch normalized before sending to the final dense layer.
The final layer has just one neuron with a linear activation function, and it outputs the predicted value
of monthly rainfall for T + 1 (next month), where T is the current month.

For our study, the Many-to-One (multiple input and one output) variation of LSTM [27,28] was
used to take the last 12 months’ weather parameters and predict the rainfall for the next month,
as shown in Figure 5. The activation function used in both BLSTM and GRU is the default tanh
function, and the optimizer used was Adam. The architecture was fixed after thoroughly hyper-tuning
the parameters. Hyperparameter tuning was performed through a randomized grid search and
heuristic knowledge of the programmer.

4. Experiment and Results

The models were created in python on the Jupyter notebook using Keras (https://github.com/
fchollet/keras) deep learning API with Tensorflow [36] back-end. All the experiments were run
for 10,000 epochs, but by using callbacks in Keras only the best weight for each test run was saved.
Although 10,000 epochs were not needed most of the time, smaller architectures with few neurons
took considerably more time to learn as compared to neuron-rich networks. Multiple experiments
were conducted with varying architecture for each model under study. Early stopping [37] with a large
patience value was used to prevent unnecessary overfitting.

4.1. Result Summary

The best MSE and RMSE scores of each model are highlighted in Figure 6. The NNs outperformed
linear regression by a huge margin. LSTM and GRU outperformed MLP by a huge margin, as they
were able to utilize the 12 time-steps of input properly. The plots between predicted and the actual
values for 24 months from January 2016 to December 2017 are shown in Figure 7.

Figure 6. RMSE and MSE values of 6 existing models including linear regression and the proposed
model. It is clear from the figure that our model outperformed the existing models for the same task.

https://github.com/fchollet/keras
https://github.com/fchollet/keras
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(a) CNN (b) GRU

(c) LSTM (d) BLSTM

(e) MLP (f) Proposed Model

Figure 7. The plots of actual monthly rainfall values over Simtokha collected from NCHM and
predicted rainfall values for the years 2016 and 2017, where the x-axis and y-axis represent months
and monthly rainfall values (scaled) respectively. The blue line shows the actual values and the orange
line shows the predicted values. Subfigure ‘a’ shows that CNN is not able to predict the peak monthly
rainfall values correctly. Results of recurrent neural networks shown by subfigure ‘b’, ‘c’ and ‘d’ are
better than that of MLP (subfigure ‘e’). Subfigure ‘f’ shows that the proposed model is able to generalize
better and gives the best output.

The proposed model performed uniformly better than vanilla versions of all the deep learning
techniques under study. The MSE score of 0.01 achieved by our model was 41.1% better compared to
the next best score of 0.13 provided by LSTM.

4.2. Comparative Analysis

We have also compared our system with MLP, LSTM, CNN [38–40], and other methods on the
NCHM dataset as shown in Figures 8 and 9. The dataset did not have a baseline score to overcome.
The linear regression RMSE score of 0.217 and MSE score of 0.047 were used as the baseline score.
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Figure 8. R2 values of 5 deep learning models and the proposed model.

Figure 9. Pearson Correlation Coefficient values of 5 existing deep learning models and our proposed
model. The score of the proposed model was the highest among the models.

Each input sample has 12 time-steps, and the output is the total amount of rainfall for the next
month (t + 1). Each timestep contains the weather features of a particular month. For example,
the timestep T(n) contains all the weather parameters for the nth month. From Figures 8 and 9 it is
evident that, among the vanilla models, LSTM with 1024 neurons performed the best with a MSE
score of 0.013, a correlation value of 0.90, and R2 value of 0.78. The proposed BLSTM-GRU model
outperformed LSTM on all four performance matrices, with MSE, RMSE, R2, and correlation coefficient
values of 0.0075 , 0.087, 0.870, and 0.938 respectively.
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5. Conclusions and Future Work

The study of deep learning methods for rainfall prediction is presented in this paper, and a
BLSTM-GRU based model is proposed for rainfall prediction over the Simtokha region in Thimphu,
Bhutan. The sensor data are collected from the meteorology department of Bhutan, which contain daily
records of weather parameters from 1997 to 2017. The records from 1997–2015 are used for training
machine learning and deep learning models, and for testing we used 2016–2017 data. According
to sensor data, the traditional MLP (the results on the Simtokha region dataset, i.e., 0.029 MSE,
0.71 correlation, and R2 value of 0.50), which is widely used for rainfall prediction, did not perform
well in comparison to the recent deep learning models on weather station data. Vanilla versions of
LSTM, GRU, BLSTM, and 1-D CNN performed similarly, with a single-layered LSTM consisting of
1024 neurons performing better than the others, with MSE score of 0.013, a correlation value of 0.90,
and R2 value of 0.78. Finally the combination of BLSTM and GRU layers performed much better than
all the other models under study for this dataset. Its MSE score of 0.007 was 41.1% better than LSTM.
Furthermore, the proposed model presented an improved correlation value of 0.93 and R2 score of 0.87.
Predicting actual rainfall values has become more challenging due to the changing weather patterns
caused by climate change.

In the future, we aim to improve the performance of our prediction model by incorporating
patterns of global and regional weather such as sea surface temperature, global wind circulation, etc.
We also intend to explore the predictive use of climate indices and study the effects of climate change
on rainfall patterns.
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