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Abstract: Explicitly identifying the desertification changes and causes has been a hot issue of
eco-environment sustainable development in the China–Mongolia–Russia Economic Corridor
(CMREC) area. In this paper, the desertification change patterns between 2000 and 2015 were
identified by operating the classification and regression tree (CART) method with multisource
remote sensing datasets on Google Earth Engine (GEE), which has the higher overall accuracy
(85%) than three other methods, namely support vector machine (SVM), random forest (RF) and
Albedo-normalized difference vegetation index (NDVI) models. A contribution index of climate
change and human activities on desertification was introduced to quantitatively explicate the driving
mechanisms of desertification change based on the temporal datasets and net primary productivity
(NPP). The results show that the area of slight desertification land had increased from 719,700 km2 to
948,000 km2 between 2000 and 2015. The area of severe desertification land decreased from 82,400 km2

to 71,200 km2. The area of desertification increased by 9.68%, in which 69.68% was mainly caused by
human activities. Climate change and human activities accounted for 68.8% and 27.36%, respectively,
in the area of desertification restoration. In general, the degree of desertification showed a decreasing
trend, and climate change was the major driving factor in the CMREC area between 2000 and 2015.

Keywords: change pattern of desertification; spatial-temporal analysis; climate change; human
activities; Google Earth Engine

1. Introduction

Desertification, as a major type of land degradation around the world, has been a hot topic in
the field of global change and sustainable development, especially in arid areas [1–4]. Desertification
directly affects the subsistence of about three billion people living in desertified areas, which would
put at risk the livelihoods of about 135 million people around the world by 2045 [5,6]. The cropland is
being converted to barren land at a rate of 120,000 km2 per year, in which the degraded ecosystems
have the potential to store up to three billion tons of carbon annually [7].

The China–Mongolia–Russia Economic Corridor (CMREC) area, located in the eastern–central
part of Eurasia, is one of the six major economic corridors proposed by the Belt and Road Initiative
(BRI) [8,9]. The CMREC area is a typical arid zone with a poor environment that is sensitive to climate
change and human activities, particularly on the China–Mongolia border and in the Gobi Desert
area [3,10]. Thus, how to effectively monitor the desertification trend and understand the driving
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factors have become the two significant issues in the sustainable development of the CMREC area,
especially on the China–Mongolia border.

The current studies of desertification show that the vegetation indices can be used to
analyze the desertification processes [11,12], such as normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), and modified soil-regulated vegetation index (MSAVI) [13–16].
However, those indices just consider the relationship between vegetation changes and desertification,
and cannot address the needs of land degradation monitoring and eco-environment management [17–21].
Multiple parameters need to be combined for identifying the desertification change pattern [22,23],
such as NDVI, topsoil grain size index (TGSI), land surface albedo (Albedo), soil-regulated vegetation
index (MSAVI), and bare soil index (BSI) [23]. Multi-parameter integrated studies [17] show that the
dynamic changes in desertification can be assessed and monitored via the methods of classification and
regression tree (CART) [24], support vector machine (SVM) [25], random forest (RF) [26] and Albedo-NDVI
models [25,26], and by combining the parameters of NDVI, normalized difference water index (NDWI),
iron oxide index and surface temperature [27,28]. However, the current studies of desertification are
mainly based on the traditional modes rather than cloud platforms, which make it difficult to select an
optimal model and require a lot of time to collect the available multi-resource data [29].

Moreover, how to select a suitable assessment method is important to analyze the difference
between climate change and human activities [30]. Current studies primarily focus on statistical
methods such as correlation analysis [31], regression models [32], and principal components analysis [33].
Some driving factors are selected subjectively and it is difficult to distinguish human activities from
climate factors. In order to address this issue, some researchers tried to choose vegetation health status
as an indicator to reveal the impacts of climate change and human activities on desertification [34,35];
others adopt net primary productivity (NPP) to discriminate the role of climate change from human
activities on the ecosystem [36–38]. NPP can be formed by potential net primary productivity (PNPP),
actual NPP (ANPP), and human appropriation NPP (HANPP). HANPP presents the difference between
ANPP and PNPP, which can be used to measure the impact of human activities on the ecosystem [39,40].
However, it rarely integrates high-resolution multispectral remote data and other related environmental
data to improve the accuracy of desertification classification and monitoring on the Google Earth
Engine (GEE) cloud platform [41–43], especially in the CMREC area.

In this paper, the accuracy of CART, SVM, RF, and Albedo-NDVI models for identifying the
desertification degree in the CMREC area are compared on the GEE cloud platform, and then the change
patterns of desertification are explicitly identified by operating the optimal model with multisource
remote sensing data from 2000 to 2015. The linear trend method is introduced to calculate the impacts
of climate change and human activities on desertification. In general, the aims of this study are to
identify the change patterns of desertification in the CMREC area between 2000 and 2015, explicate the
differences between climate change and human activities on the desertification change, and discuss the
driving mechanisms of desertification expansion and reversion.

2. Materials and Methods

2.1. Study Area

The CMREC is located in the northernmost part of the six major economic corridors
(37◦24′N–58◦34′N and 97◦7′E–135◦7′E) included in the Belt and Road Initiative (BRI) [9].
It approximately covers an area of 63.26 million km2 and administratively consists of four provinces
in northern China, 12 provinces in eastern Mongolia, and five provinces in eastern Russia (Figure 1).
The climate conditions, such as temperature and precipitation, vary widely across the study area,
ranging from an arid climate to a subpolar climate [44]. The altitude gradually increases from the
Northeast Plain to the Mongolian Plateau in its eastern part, and from the Central Siberian plateau
to the Yabronov Mountains in its western part. The types of land cover mainly include cropland,
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grassland, bare land, and forest, which account for 20.95%, 49.21%, 14.59%, and 13.94% of the total area,
respectively. The Gobi Desert on the China–Mongolia border is the sixth largest desert in the world.
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Figure 1. The vegetation distribution (a), location and digital elevation model (DEM) (b) of the
China–Mongolia–Russia Economic Corridor (CMREC) area.

2.2. Materials

The multisource remote sensing data used in the study (Table 1) were all collected from the GEE
cloud platform. The Surface Reflectance Tier 1 data of Landsat 5/7/8 imagery in 2000 and 2015 were used
to obtain the index products of vegetation and soil. The terrain data were derived from the Shuttle Radar
Topography Mission V3 (SRTM3) dataset of enhanced digital elevation models (DEMs) with a spatial
resolution of 30 m × 30 m. The Land Surface Temperature (LST) data of Moderate Resolution Imaging
Spectroradiometer (MODIS) with a spatial resolution of 1000 m × 1000 m were applied as climate
textures [45,46]. In addition, the classification criteria of desertification status were defined with the
multisource data, including Google historical imagery, Google photos, European Space Agency global
land cover products (ESALC), MODIS land cover products (MCD12Q1), Landsat Vegetation Continuous
Field tree cover layers (VCF), Open Land Map sand content products, global flux observation tower
sites data, and Sentinel-2 Level-1C satellite imagery (Table 2), which referred to the classification
criteria of desertification in China and Mongolia and the desertification assessment standards of Food
and Agriculture Organization (FAO) and United Nations Environment Programme (UNEP) [22,47,48].
The desertification types were divided into five degrees of non-desertification: slight, moderate,
high and severe desertification in the CMREC area (Table 2).

Moreover, in order to explicate the differences between climate change and human activities on the
desertification change, the NPP was formed by potential net primary productivity (PNPP), actual NPP
(ANPP), and human appropriation NPP (HANPP) which was defined as the difference between ANPP
and PNPP [39,40]. The ANPP was obtained from MODIS NPP data, and used to analyze the impacts
between climate change and human activities. The impact of PNPP affected by climate change was
measured on the basis of the Thornthwaite memorial model [49], and the difference between ANPP
and PNPP were used to calculate the impact of HANPP affected by human activities.

The driving mechanism of desertification change in the CMREC area was further explained
in terms of the annual total precipitation, average temperature, annual total evapotranspiration,
and the per capita Gross Domestic Product (GDP) dataset. The evapotranspiration came from
Penman–Monteith–Leuning evapotranspiration data every 8 days (PML), and GDP was derived from
the Gridded Population of the World (GPW) data. All kinds of datasets were interpolated to the same
spatial resolution of 30 m × 30 m by the bilinear interpolation method in the GEE cloud platform.
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Table 1. Basic datasets.

Data Data Sources Spatial
Resolution

Temporal
Resolution/Data

Acquisition Dates
Data ID 1

Landsat http://landsat.usgs.gov/ 30 m 16 days/2000, 2015
LANDSAT/LT05/C01/T1_SR;
LANDSAT/LE07/C01/T1_SR;
LANDSAT/LC08/C01/T1_SR

SRTM3 http://dwtkns.com/srtm30m/ 30 m —/— USGS/SRTMGL1_003

LST https://lpdaac.usgs.gov/products/
mod11a2v006/

1000 m 8 days/2000-2015 MODIS/006/MOD11A2

ESA LC http://maps.elie.ucl.ac.be/CCI/viewer/
download.php 300 m 1 year/2000, 2015 —

MCD12Q1 https://lpdaac.usgs.gov/products/
mcd12q1v006/

500 m 1 year/2000, 2015 MODIS/006/MCD12Q1

Sentinel-2
https://earth.esa.int/web/sentinel/

user-guides/sentinel-2-msi/product-
types/level-1c

10 m 5 days/2015 COPERNICUS/S2

VCF https://lpdaac.usgs.gov/products/
gfcc30tcv003/

30 m —/2000, 2005, 2010, 2015 GLCF/GLS_TCC

Sand Content https://www.openlandmap.org/ 250 m —/— OpenLandMap/SOL/SOL_SAND-
WFRACTION_USDA-3A1A1A_M/v02

Global Flux Tower https://daac.ornl.gov/ — —/2000, 2015 —

NPP https://lpdaac.usgs.gov/products/
mod17a3hv006/

500 m 1 year/2000-2015 MODIS/006/MOD17A3H;

WorldClim Rainfall http://www.climatologylab.org/
terraclimate.html 2.5 arc minutes 1 month/2000-2015 IDAHO_EPSCOR/TERRACLIMATE

PML — 500 m 8 days/2000-2015 projects/pml_evapotranspiration/PML/
OUTPUT/PML_V1_8day

GDP http://sedac.ciesin.columbia.edu/
data/collection/gpw-v4 30 arc-seconds —/2000, 2005, 2010, 2015 —

GLDAS http://ldas.gsfc.nasa.gov/gldas/ 0.25 arc degrees 3 h/2000–2015 ASA/GLDAS/V021/NOAH/G025/T3H

1 Note that the data ID represents data available id online (https://code.earthengine.google.com/).

Table 2. Criterion of desertification degrees.

Desertification Status Visual Interpretation Land Cover Characteristics Vegetation Coverage
(%)

Non-desertification
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2.3.1. Flowchart of Technical Process

The flowchart of the desertification assessment and mechanism analysis in the CMREC area
(Figure 2) can be divided into three steps.

Firstly, 3700 and 2813 data scenes of Landsat imagery in 2000 and 2015 were obtained by using
the quality screening and cloud mask functions on the GEE cloud platform, respectively. The surface
reflectance image with the best vegetation growth status was extracted by operating the NDVI
maximum synthesis method with the composite data without shadow and cloud coverage, which was
used to obtain the vegetation and soil indicators. The elevation, slope, aspect, and climate indices were
extracted from the terrain and LST datasets. The no-vegetation zones such as water bodies, permanent
snow and ice, and urban land were excluded.
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Secondly, with the support of multisource datasets, 70% of reference samples, as training samples,
were used to train the classifier of each classification method, while 30% of reference samples,
as verification samples, were applied to evaluate accuracy assessment. Then, the change patterns of
desertification were identified on the basis of the training sample dataset combined with the vegetation,
soil, terrain and climate indices in 2000 and 2015.

Finally, the linear trend method was introduced to quantitatively calculate the impacts of climate
change and human activities on desertification based on the temperature, rainfall, and NPP dataset.
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2.3.2. Indicators

The indicators (Table 3) for desertification assessment include four types parameters of vegetation,
soil, terrain, and climate, which were selected in terms of the principles of invertibility, reliability,
and practicability. The NDVI, Fractional Vegetation Cover (FVC), MSAVI, and NDWI are normally
used to represent the biophysical characteristics and coverage condition of the surface vegetation [50].
MSAVI is useful to increase the dynamic range of the vegetation signal and reduce the soil background
influences [51]. NDWI can be used to evaluate the canopy relative water content by combining
the leaf relative water content with measures of canopy structure [52]. The soil context indices of
TGSI, land Albedo, and BSI can be used to describe the physical properties of soil [22,23]. Moreover,
the algorithms of terrain function were applied to obtain elevation, slope, and aspect indicators.
The formulas of all multi-spectral indices are summarized in Table 3.
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Table 3. Spectral indices and their formulas.

Spectral Indices Equation 1

NDVI NDVI = NIR−Red
NIR+Red

FVC FVC = NDVI−NDVIs
NDVIv−NDVIs

MSAVI MSAVI =
2NIR+1−

√
(2NIR+1)2

−8(NIR−Red)
2

NDWI NDWI = NIR−SWIR1
NIR+SWIR1

TGSI TGSI = Red−Blue
Red+Blue+Green

Albedo Albedo = 0.356Blue + 0.13Red + 0.373NIR+
0.085SWIR1 + 0.072SWIR2− 0.0018

BSI BSI = 100 (SWIR1+ Red)−(NIR + Blue)
(SWIR1+ Red)+(NIR + Blue) + 100

1 In Table 3, Red, NIR, SWIR1, SWIR2 and Bule present the red band, near-infrared, short-wave infrared 1, short-wave
infrared 2 and blue band, respectively. Normalized difference vegetation index (NDVI)s and NDVIv represent the
NDVI values of bare soil and vegetation, respectively. In order to exclude the noise phenomenon of NDVI in the
study area, 5% and 95% NDVI values of the frequency distribution histogram of NDVI are selected as NDVIs and
NDVIv values, respectively [53].

2.3.3. Classification and Accuracy Assessment Methods

The CART, SVM, RF, and Albedo-NDVI methods (Table 4) were selected to identify the degrees
of desertification. The CART algorithm, which consists of many decision trees, can be used for both
classification and continuous variable prediction [54]. The SVM algorithm, based on statistical learning
theory, can be used for dealing with the nonlinear fractionable data in high dimensional space to
complete linear separability [55]. The RF method is suitable for multi-category and multi-feature data
because they consist of many classification decision trees and can be used to process relatively complex
remote sensing images [56]. Those methods, being more like black box models, usually show superior
predictive performance due to their effectiveness in handling correlations and multicollinearity among
predictor variables [57,58]. Additionally, the Albedo-NDVI model can also be used to effectively identify
the degrees of desertification combined with the Albedo and NDVI index degree [25]. These algorithms
often show different advantages in different research areas with different explanatory mechanisms
(Table 4).

Table 4. Comparison of models’ mechanisms.

Model’s Name Model Mechanisms

Classification and regression tree (CART) The target variables (desertification degrees) and the test variables (desertification indicators) of the training
sample set can be divided into two groups to form a binary tree model.

Support vector machine (SVM)
In the feature space of the training dataset, SVM is based on the kernel function to find the support vector
with a large distinguishing function and construct the classifier, so as to maximize the distance of
desertification degrees in the sample.

Random forest (RF)
Based on the statistical theory, RF uses a bootstrap sampling method to extract multiple sample sets from the
original sample set and then adopts a decision tree for each sample set, which can combine multiple decision
trees for prediction, and finally obtains the prediction results through voting.

Albedo-NDVI
Utilizing the negative correlation between Albedo and NDVI, the normalized NDVI and Albedo values are
constructed into the Albedo-NDVI feature space scatter diagram, and then the linear relationship between
them is determined to attain the desertification difference index (DDI) 1.

1 Note that the desertification difference index (DDI) was calculated by the following equation: Albedo =
k×NDVI + b; α× k = −1; DDI = α×NDVI−Albedo.

In order to compare the accuracy of classifications simulated by the CART, SVM, RF,
and Albedo-NDVI methods, the accuracy index of overall accuracy (OA), Kappa, the producer’s
accuracy, (PA), and the user’ s accuracy (UA) were introduced and the confusion matrix was built based
on verification sample degrees [59,60]. OA is usually expressed as a percentage where reference samples
are classified correctly. The Kappa coefficient is a statistical measure to assess the overall reliability
between classification and the multisource data product reference. PA represents the probability
that the known desertification degree samples are correctly classified into degrees. UA indicates the
percentage of the verification samples that are correctly classified as a known desertification degree.
In this study, 120 sample points were selected to assess the accuracy of the desertification degree,
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which included 24 global flux observation tower sites in the CMREC area, and 96 samples randomly
generated on the GEE platform. The equations can be expressed, respectively, as follows:

OA =
∑i=5

i=1
Xii/N, (1)

PAi = Xii/Xi+, (2)

UAi = Xii/X+i, (3)

Kappa =
N

∑i=5
i=1 Xii −

∑i=5
i=1(X+i + Xi+)

N2 −
∑i=5

i=1(X+i + Xi+)
, (4)

where N represents the sum of sample number; Xii represents the sample number in row i and column
i; Xi+, and X+i, respectively, represent the totals of row i and column i.

2.3.4. Quantitative Assessment of the Driving Mechanisms

The ANPP data product, simulated by the Biome-BioGeochemical Cycles(Biome BGC) model
and Carnegie–Ames–Stanford Approach (CASA) model, was normally derived from MODIS annual
NPP datasets [61]. The simulated PNPP using the Thornthwaite memorial model refers to the NPP
of no human disturbance [62]. The change trends of PNPP and HANPP between 2000 and 2015
were, respectively, used to present the relative contributions of climate change and human activities
on desertification, and the slopes of the PNPP trend (SP) and HANPP trend (SH) were, respectively,
calculated by ordinary least squares regressions in the GEE cloud platform, which can be formulated,
respectively, as follows:

PNPP = 3000
(
1− e−0.0009695(v−20)

)
, (5)

v =
1.05r√

1 +
(
1 + 1.05r

L

) , (6)

L = 3000 + 25t + 0.05t3, (7)

HANPP = PNPP−ANPP, (8)

Slope =
n
∑

xy−
∑

x
∑

y

n
∑

x2 − (
∑

x)2 , (9)

where r represents annual precipitation (mm), t represents annual average temperature (◦C); if y is
PNPP, the slope will be the slope of the PNPP trend (SP), and if y is HANPP, the slope will be the
slope of the HANPP trend (SH), and n represents the time interval from 2000 to 2015; the positive SP or
negative SH, respectively, indicate that climate change or human activities benefited desertification
reversion, and negative SP or positive SH, respectively, represent that climate change or human activities
promoted desertification expansion [38,62]. Moreover, a series of possible scenarios between SP and SH

can be mapped on the pixel scale, which are reliable enough to extinguish the relative roles of climate
change and human activities (Table 5).
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Table 5. Eight scenarios of the impact of climate change and human activities on desertification.

Desertification
Status Scenarios Sp SH Definition

reversion

Scenario 1 >0 >0 The driving force of climate change is 100%
Scenario 2 <0 <0 The driving force of human activities is 100%

Scenario 3 >0 <0
The driving force of desertification reversion partly results from climate change
(i.e., 100%× |SP|/(|SP|+ |SH|)), while the driving force of human activities is the

remaining part of the total.

Scenario 4 <0 >0
The scenario is defined as an “Error” area where the actual vegetation growth is

getting better, but the impact of climate change and human activities are causing more
land degradation.

Expansion

Scenario 1 <0 <0 The driving force of climate change is 100%
Scenario 2 >0 >0 The driving force of human activities is 100%

Scenario 3 <0 >0
The driving force of desertification expansion partly results from climate change
(i.e., 100%× |SP|/(|SP|+ |SH|)), while the driving force of human activities is the

remaining part of the total.

Scenario 4 >0 <0
The scenario is defined as an “Error” area where the actual vegetation status is

degrading, but the impact of climate change and human activities benefited better
vegetation growth.

3. Results

3.1. Quality Assessment

Based on the Landsat 8 data, and the products obtained by CART, RF, SVM, and Albedo-NDVI
methods in this study, we selected severe desertification, high desertification, moderate desertification,
slight desertification, and non-desertification to conduct an intuitive comparison (Figure 3). In general,
the desertification pattern products obtained by the CART model efficiently reflected the true
desertification type in the Landsat 8 satellite image. The desertification classification quality was
better than those of the RF and SVM product. Moreover, the accuracy of the CART product was
roughly equivalent to the Albedo-NDVI product in the severe desertification type, and superior to the
accuracy of the Albedo-NDVI product for classifying the high desertification, moderate desertification,
slight desertification, and non-desertification areas.

The classification accuracy (Table 6) of desertification in the CMREC area by operating the
four methods of CART, RF, SVM, and Albedo-NDVI shows that the accuracy of the CART model
(OA = 85%, Kappa = 0.754) is higher than other methods. The SVM model has the lowest accuracy
(OA = 58.75%, Kappa = 0.396). The overall accuracy of the Albedo-NDVI model is equal to the CART
model, but it has a lower Kappa coefficient (Kappa = 0.722). Moreover, the CART model has a higher
producer’s accuracy (PA) at all degrees of desertification, indicating that the desertification degree
samples are efficiently classified into these degrees. The Albedo-NDVI model displays higher PA
values for moderate desertification, high desertification, and severe desertification, but its PA value
for slight desertification is the lowest. According to the user’s accuracy (UA) values, the accuracy
of the CART model for various desertification degrees also maintains a high level, especially for the
non-desertification area, which shows that the verification samples can correctly classify the known
desertification degree better. The Albedo-NDVI model displays low UA and PA value for slight
desertification recognition and cannot be efficiently used to assess slight desertification. The SVM and
RF models with lower UA and PA values are also not suitable for identifying desertification degrees in
the CMREC area.

Table 6. Accuracy comparison of the four methods (OA, PA, and UA: %).

Algorithms
Non-Desertification Slight Moderate High Severe

OA Kappa
PA UA PA UA PA UA PA UA PA UA

CART 95.7 95.5 58.6 77.5 70 77.5 75 37.5 83.4 85.7 85 0.754
SVM 82.2 86.3 17.1 21.2 40 75 75 18.1 10 75 58.75 0.396
RF 88.5 92 34.2 39.3 50 62.5 100 41.4 90 100 75 0.602

Albedo-NDVI 87.5 91.9 0 0 100 50 100 100 100 100 85 0.722
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Figure 3. Comparison of different desertification pattern products in 2015. Landsat 8 is false color
composition in 2015 (RGB: B5, B4, B3). CART, RF, SVM and Albedo-NDVI are products of four kinds of
methods, respectively.

3.2. Change Patterns of Desertification

The identified results of desertification change in the CMREC area between 2000 and 2015
(Figure 4) show that the severe desertification region was mainly distributed in the southwest of the
CMREC area, especially in the Inner Mongolia region of China, and Omnogovi aimag, Dundgovi
aimag, and Dornogovi aimag of Mongolia. High desertification areas were mainly distributed in the
Omnogovi aimag in 2000, and the central China–Mongolia border in 2015. The moderate desertification
region was mainly distributed in Inner Mongolia, which had been converted into a slightly desertified
area between 2000 and 2015. Slight desertification areas were mainly distributed in the transition
zones between moderate desertification and non-desertification areas in the northeast of the CMREC
area. The total area of various desertification degrees covered more than 30% of the whole area
(Table 7). Slight desertification was the major desertification type, accounting for 11.01%. The areas
of severe, high, and moderate desertification were 501,814 km2, 420,091 km2, and 161,111 km2,
and accounted for 7.68%, 6.43% and 2.47%, respectively. From 2000 to 2015, the non-desertification area
declined by 2.63% from 4,557,600 km2 to 4,431,900 km2, and the slight desertification area increased by
228,314 km2. The total areas of severe, high, and moderate desertification decreased from 1,148,100 km2

to 1,017,900 km2, while their areas, respectively, fell by 13.58%, 9.79%, and 8.27%. On a national level
(Table 7), the total area of various desertification degrees, including severe, high, moderate, and slight
desertification, decreased by 3.27% from 995,100 km2 to 962,600 km2 in China, especially in the severe
desertification area, decreasing by 24.99% (90,680 km2). Conversely, most areas in Mongolia were
non-desertified in 2000 and slightly desertified in 2015, accounting for 32.78% and 36.14% of the study
area in Mongolia, respectively. Slight desertification areas increased by 32.76% from 301,878 km2 to
400,772 km2, while non-desertification areas were reduced by 25.81% from 363,434 km2 to 269,648 km2.
Furthermore, the severe and moderate desertification areas expanded, respectively, by 19,008 km2 and
12,031 km2. The study area of Russia was dominated by the non-desertification type, accounting for
more than 90% of the total area from 2000 to 2015.
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Table 7. The changes in desertification degrees from 2000 to 2015 (area: km2; percentage: %).

Severe High Moderate Slight Non-Desertification

Total

2000
Area 538,358 441,703 168,064 719,685 4,557,603

Percentage 8.24 6.76 2.57 11.01 69.73

2015
Area 465,269 398,478 154,157 947,999 4,431,883

Percentage 7.12 6.10 2.36 14.50 67.81

2000–2015
Area −73,089 −43,225 −13,907 228,314 −125,720

Percentage −13.58% −9.79% −8.27% 31.72% −2.76%

China

2000
Area 362,888 196,807 124,393 310,998 170,692

Percentage 13.29 7.21 4.56 11.39 62.53

2015
Area 272,208 193,098 95,898 401,396 172,054

Percentage 9.93 7.04 3.50 14.64 62.75

2000–2015
Area −90,680 −3709 −28,495 90,398 1362

Percentage −24.99% −1.88% −22.91% 29.07% 0.80%

Mongolia

2000
Area 171,887 226,925 42,866 301,878 363,434

Percentage 15.50 20.46 3.87 27.22 32.78

2015
Area 190,895 190,513 54,897 400,772 269,648

Percentage 17.22 17.18 4.95 36.14 24.32

2000–2015
Area 19,008 −36,412 12,031 98,894 −93,786

Percentage 11.06% −16.05% 28.07% 32.76% −25.81%

Russia

2000
Area 3583 17,971 804 106,810 248.73

Percentage 0.13 0.67 0.03 3.96 92.20

2015
Area 2167 14,867 3363 145,831 244.17

Percentage 0.08 0.55 0.13 5.43 90.93

2000–2015
Area −1416 −3104 2559 39,021 −5

Percentage −39.52% −17.27% 318.28% 36.53% −1.83%

The change patterns of desertification in the CMREC area between 2000 and 2015 were divided into
significant expansion, expansion, no conversion, reversion and significant reversion. The significant
expansion presents the desertification degree in a certain pixel as intensified by two levels or more and
thus slight desertification was transformed into high or severe desertification. Expansion presents
the desertification degree in a certain pixel as intensified by one level. No conversion presents
the desertification degree in a certain pixel with no change. Reversion presents the desertification
degree in a certain pixel as decreased by a level. Significant reversion presents the desertification
degree in a certain pixel as decreased by two or more levels (Figure 5). Between 2000 and 2015,
the significant expansion and expansion zones were mainly distributed in the central and southwest
of the CMREC area, involving the northwestern and central regions of Inner Mongolia in China,
and the Omnogovi aimag, and eastern aimags of Mongolia. However, the significant reversion and
reversion zones were mainly located in the southern part of the CMREC area, especially in China.
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The total area of the significant expansion and expansion zones accounted for 9.68% of the entire
area measurements (Table 8) of the significant expansion and expansion areas were 82,143 km2 and
550,516 km2, respectively. The desertification reversion area, including the significant reversion and
reversion region, accounted for 9.4% of the total, which was 17,764 km2 less than the desertification
aggravation area. The desertification reversion area was 386,725 km2, which was 151,908 km2 larger
than the desertification aggravation area in China. However, the desertification reversion areas
were, respectively, 132,003 km2 and 37,615 km2 in Mongolia and Russia, which were smaller than
the desertification aggravation area. In general, the desertification degrees showed changing trends
between 2000 and 2015 (Table 8). In total, 147,545 km2 of severe desertification was converted into the
high desertification, 88,306 km2 of severe desertification was transformed into slight desertification,
and 22,950 km2 of severe desertification was converted into moderate desertification. Moreover,
178,268 km2 of the high desertification area degraded into severe desertification. In total, 121,532 km2

of high desertification was converted into light desertification, in which the areas of moderate, slight,
and non-desertification were 33,143 km2, 84,278 km2, and 4111 km2, respectively. Moreover, 60,573 km2

of the moderate desertification deteriorated into severe and high desertification, accounting for 1.58%,
and 34.6%, respectively. Conversely, 41.63% (69,710 km2) of the moderate desertification area was
transformed into slight and non-desertification. The slight desertification and non-desertification areas
showed a better stability (Figure 6).
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Table 8. The conversions of various desertification degrees from 2000 to 2015 (area: km2; percentage: %).

Significant Expansion Expansion No Conversion Reversion Significant Reversion

Total
Area 82,143 550,516 5,288,340 393,120 221,775

Percentage 1.26 8.42 80.91 6.01 3.39

China
Area 40,218 194,653 2,107,904 233,211 153,514

Percentage 1.47 7.13 77.23 8.54 5.62

Mongolia Area 36,920 281,681 603,662 126,108 60,490
Percentage 3.33 25.40 54.44 11.37 5.46

Russia
Area 5005 74,182 2,576,774 33,801 7771

Percentage 0.19 2.75 95.52 1.25 0.29
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3.3. Impacts of Human Activities and Climate Change on Desertification

The spatial differences between human activities and climate change on desertification change
showed significant spatial heterogeneity (Figure 7). The increase in the desertification reversion area
was mainly driven by climate change between 2000 and 2015. The contribution of climate change to
desertification in the CMREC area is higher than 50%, amounting to 68.8% (381.162 km2) of the total
desertification reversion area (Table 9). The desertification reversion areas were mainly distributed in the
eastern and central regions of Inner Mongolia in China, and the east of Mongolia. The reversion areas,
mainly caused by human activities, accounted for 27.36% (151.598 km2) of the whole desertification
reversion area, which was distributed across the western regions of Inner Mongolia in China, and the
eastern area of Mongolia. However, the degraded area reached up to 69.68% (396.648 km2) between
2000 and 2015, and was majorly distributed in the central regions of Inner Mongolia in China and the
western area of Mongolia, in which the impacts of human activities were higher than 50%.
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Table 9. The differences in desertification change caused by climate change and human activities (area:
km2; percentage: %).

Climate Change Human Activities Error

Reversion Expansion Reversion Expansion Reversion Expansion

Total
Area 381.16 8.29 151.60 396.65 21.24 164.32

Percentage 68.80 1.46 27.37 69.68 3.83 28.87

China
Area 269.88 0.58 78.09 144.91 0.36 65.62

Percentage 77.48 0.27 22.42 68.64 0.10 31.09

Mongolia Area 97.10 0.01 70.81 188.27 0.28 98.62
Percentage 57.73 0.00 42.10 65.62 0.16 34.38

Russia
Area 14.18 2.90 2.69 63.47 20.60 0.08

Percentage 37.84 4.37 7.19 95.52 54.97 0.11

Moreover, comparing the differences in desertification change from 2000 to 2015 between China,
Mongolia and Russia in the CMREC area shows that the areas of desertification reversion and
expansion were, respectively, 269.88 km2 and 78.03 km2, in which the expansion area caused by human
activities was 144.91 km2 (68.64%) in China. The areas of desertification reversion and expansion were,
respectively, 97.1 km2 (57.3%) and 70.81 km2 (42.1%), in which the expansion area mainly caused by
human activities was 188.27 km2 (65.62%) in Mongolia. The areas of desertification reversion and
expansion were, respectively, 14.18 km2 (37.84%) and 63.47 km2 (95.52%) in Russia.

The result of the driving mechanism incorporated some “Error” regions defined in Table 5.
The “Error” area of the desertification reversion indicated that the actual vegetation growth was getting
better, but the impact of climate change and human activities were causing more land degradation.
Those areas were mainly distributed in Russia, accounting for 3.83% of the whole desertification
reversion area (Table 9). Conversely, the “Error” area of the desertification expansion was defined as
the region where the actual vegetation status was degraded, but the impact of climate change and
human activities benefited better from vegetation growth, and those areas amounted to 28.87% of
the total desertification expansion area. In general, these phenomena, marked as “Error” regions,
were mainly caused by the uncertainty of multisource remote sensing data to map the desertification
pattern, and the driving mechanism based on NPP was often affected by the noise of climate factors,
so it is difficult to avoid these “Error” areas [31].

In order to further explain the relative roles of human activities and climate change in desertification
in the CMREC area, annual total precipitation, average temperature and annual total evapotranspiration
were selected to represent climate change, and per capita GDP was used to describe human activities
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(Figure 8). Combining these alternative indices can also explicitly illuminate the driving mechanism
of the “Error” regions mapped by the temporal datasets and NPP. The annual average temperature
in the CMREC area increased by 1.57 ◦C, especially in the southwestern CMREC area where severe
desertification was mainly distributed between 2000 and 2015. The significant reversion and reversion
areas of desertification were mainly located in the region where the annual total precipitation increased
by more than 50 mm from 2000 to 2015, especially in the northeast plain, the south of the Greater
Hinggan Mountains and the Ordos Plateau (Figures 5 and 8) of China. The distribution of the
reversed desertification area was consistent with the increased precipitation area and the decreased
evapotranspiration area (Figure 8). The annual total precipitation in the severe and high desertification
areas showed an increasing trend, and the annual evapotranspiration also increased by more than
25 mm in Mongolia. In general, the significant expansion and expansion areas in the CMREC area
were mainly affected by the increasing trend of temperature and evapotranspiration, which showed
that the rising temperature contributed to the increasing soil evaporation that additionally accelerated
land degradation, especially in the “Error” area.
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However, the change trend of climate change cannot be used to explicitly describe the dynamics
of desertification due to the spatial–temporal heterogeneity of climate change in the CMREC area.
The impact of human activities on desertification expansion was more than that of climate change
in the CMREC area between 2000 and 2015. The per capita GDP of the total area increased by USD
6369. The Omnogovi aimag of Mongolia, in the “Error” region, had the fastest growth in per capita
GDP, mainly due to its rich mineral resources, such as Oyu Tolgoi, the world’s largest copper mine,
which is likely to be associated with desertification expansion. Moreover, the desertification in China
was restored due to the implementation of a series of national major ecological projects, such as the
Beijing and Tianjin Sand Source Control Project since 2002, and the Return Grazing to Grass Program
since 2003.
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4. Discussion

Based on the GEE cloud platform, multisource remote sensing datasets and vegetation, soil,
terrain and climate data can be conveniently combined to monitor the long-term dynamics of
desertification changes in large-scale areas [29,41,43]. Moreover, the identified results of desertification
degrees in the CMREC area show that the CART, SVM, RF, and Albedo-NDVI models [25,26] can be
conveniently operated in the GEE cloud platform, in which the optimal model is selected to extract the
change patterns of desertification with multisource remote sensing data in different periods. Based on
different types of basic data, there are different accuracies in relation to a certain study object [27,28].
To identify the desertification, the CART model is better than the RF and SVM methods, and could be
used to efficiently extract the change patterns of desertification in the CMREC area.

Different vegetation indices [23], such as NDVI, topsoil grain size index (TGSI), land surface albedo
(Albedo), soil-regulated vegetation index (MSAVI), and bare soil index (BSI), can be used to explain
different change trends of land cover [8,12,59]. Multi-parameters can assess dynamic desertification
change [17] through classification regression tree (CART) methods [24]. Thus, PNPP and HANPP
could be integrated to explain the changing trends of desertification under the effects of climate
change and human activities. The linear trend method could be introduced to calculate the impacts
of climate change and human activities on desertification. However, currently, during the process
of identifying the change patterns of desertification in the CMREC area, the downscaling process
for the vegetation, soil, terrain, and climate indicators with different resolutions may be affecting
the accuracy [62]. In future works, the important textural features of land types and the interannual
changes in various indicators will be considered, which can provide cropland shape information and
growth curves of vegetation [63,64]. Moreover, the object-oriented approach, coupled with the SVM
model for mapping desertification, can be used to obtain land cover change information with time
series images [65]. These approaches will help the CART model to further distinguish the difference
between desertification and other similar land cover types, such as fallow cropland and bare land.

Since the 21st century, areas of severe, high, and moderate desertification have decreased,
while areas of slight desertification have increased in the CMREC area [29,35,40]. Meanwhile, the total
area of various desertification degrees, including severe, high, moderate, and slight desertification,
declined in China, but severe and moderate desertification areas expanded heavily in Mongolia [41,66].
These results are consistent with some recent research studies conducted in China, Mongolia, and
Russia [22,23,38,67]. Furthermore, grassland was the main land cover type, accounting for 49.12% of
the CMREC area, and bare land was also widely distributed, accounting for 14.59%, especially in the
southwestern CMREC area between 2000 and 2015. The degradation of grassland areas meant that
they were mainly converted into bare land, accounting for 89.94% of the total increased bare land
area. These land cover changes also indicated that extremely severe desertification areas experienced a
reducing trend [68], which additionally verifies the research results. Moreover, current studies show
that drylands are one of the most sensitive areas to climate change and human activities [4], and the
increasing temperature, evapotranspiration and growing human activities will exacerbate the risk of
land degradation and desertification in the near future in the drylands of developing countries [69,70].
Therefore, we should not only consider the impact of climate warming, but also pay more attention to
the impact of human activities on the desertification in the CMREC area in the future.

5. Conclusions

The research results indicate that the CART model is more suitable to identify the changing
patterns of desertification in the CMREC area than the other three methods. The total area of the
severe, high, and moderate desertification types showed a declining trend, while the area of slight
desertification increased in the CMREC area between 2000 and 2015. The total area of land degradation
zones decreased in China, but contrarily increased in Mongolia and Russia. Severe desertification areas
were mainly converted into high desertification areas, and the slight desertification areas were mainly
converted into non-desertification areas in desertification reversion areas. High desertification areas
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were mainly converted into severe desertification areas in desertification expansion areas. In general,
the impact of climate change on desertification degradation was higher than that of human activities in
the CMREC area. Moreover, understanding the changing patterns of desertification would be beneficial
in order to understand the future carbon balance of vegetation ecosystems, which could be approved
by the data supporting plans for the sustainable development of countries in the CMREC area.
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