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Abstract: Weakly supervised semantic segmentation in aerial images has attracted growing research
attention due to the significant saving in annotation cost. Most of the current approaches are based
on one specific pseudo label. These methods easily overfit the wrongly labeled pixels from noisy
label and limit the performance and generalization of the segmentation model. To tackle these
problems, we propose a novel joint multi-label learning network (JMLNet) to help the model learn
common knowledge from multiple noisy labels and prevent the model from overfitting one specific
label. Our combination strategy of multiple proposals is that we regard them all as ground truth
and propose three new multi-label losses to use the multi-label guide segmentation model in the
training process. JMLNet also contains two methods to generate high-quality proposals, which further
improve the performance of the segmentation task. First we propose a detection-based GradCAM
(GradCAMD) to generate segmentation proposals from object detectors. Then we use GradCAMD

to adjust the GrabCut algorithm and generate segmentation proposals (GrabCutC). We report the
state-of-the-art results on the semantic segmentation task of iSAID and mapping challenge dataset
when training with bounding boxes annotations.

Keywords: deep learning; image segmentation; weak supervision; aerial image; multi-label learning

1. Introducition

Semantic segmentation in aerial images is a significant task, which aims at classifying each pixel
in the given aerial images. It is useful for city planning, weather service, and other applications
of remote sensing. Recently, Fully Convolutional Network (FCN) [1] based methods [2–21] have
made great progress in semantic segmentation. These works require pixel-level supervised data in
the training process. However, it is rather expensive to create pixel-level semantic segmentation
training sets. Pixel-level annotations cost about 15x more time [22] than bounding box annotations.
Considering bounding boxes are cheaper, we can research semantic segmentation with bounding
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boxes supervision. Several weakly supervised segmentation methods [23–27] explore closing the
gap between pixel-level supervision and bounding boxes supervision.These methods mainly refine
segmentation proposals from bounding boxes supervision, then take these segmentation proposals as
pixel-level supervision and train deep FCN model.These methods mainly use traditional proposals
like CRF [25], MCG [28] and GrabCut [29]. CRF [25] has been broadly used in semantic segmentation.
It tries to model the relationship between pixels and enforce the predictions of pixels that have similar
visual appearances to be more consistent. MCG [28] is a unified approach for bottom-up hierarchical
image segmentation and object proposal generation. GrabCut [29] is an image segmentation method
based on graph cuts. It requires a bounding box around the object. GrabCut estimates the color
distribution of the target object and background using a Gaussian mixture model. BoxSup [23] takes
MCG [28] as initial segmentation proposals and updated the proposals in an iterative way. SDI [30]
takes intersection of MCG [28] and GrabCut [29] as segmentation proposals. Song et al.[27] use dense
CRF [25] as segmentation proposals. These methods all feed one specific proposal to segmentation
model, which easily overfit the wrongly labeled pixels from noisy label and limit the performance
and generalization of segmentation model. So it is a natural idea to tackle these problems by taking
advantage of multiple proposals in the training process.

To train with multiple proposals, traditional combining methods take intersection [30] of two
kinds of segmentation proposals as supervision to reduce the noise. Pixels out of intersection are
ignored in training. These pixels usually take up mainly part of the box area in difficult situations,
which reduces the semantic information and limits segmentation model performance. We propose a
joint multi-label learning network(JMLNet) to address the issue. The overall pipeline of our JMLNet
is in Figure 1. Different from simply using the intersection of two proposals or only use one specific
proposal, we regard multiple proposals as multi-label and make all noisy proposals contribute in the
training process. Specifically, we propose three multi-label losses for training, including multi-label
average loss (MA-Loss), multi-label minimum loss (MM-Loss), and box-wise multi-label minimum
loss (BMM-Loss). These loss functions help segmentation model learn common knowledge from
multiple noisy labels and prevent the model from overfitting one specific label.

The quality of Proposals is vital to weakly supervised semantic segmentation.
Previous approaches train the models with MCG, GrabCut, or CRF proposals based on box
supervision. Lacking high-level semantic knowledge, these proposals are easy to confuse in
complicated scenes. As shown in Figure 2c, GrabCut confuses building and plane because of similar
color. Low quality of traditional proposals damages the performance of segmentation model. We
address this problem by proposing GradCAMD and GrabCutC, which generate high-quality pixel-level
proposals. First, GradCAMD aims to generate visual explanations and proper proposals from object
detectors. GradCAMD generates reliable proposals because the detection networks learn precise
semantic information, as shown in Figure 2d. Second, we use GradCAMD to adjust GrabCut algorithm
and generate proposals, which is denoted as GrabCutC. C indicates GradCAM. GrabCutC can be
simply seen as GradCAM + GrabCut. As shown in Figure 2e, GrabCutC proposals are both reliable in
the distinguished semantic area and detailed in instance edge. Our method improves the segmentation
proposals’ quality, which further improves the segmentation performance of JMLNet.

We summarize our contributions as follows:

• We propose a novel joint multi-label learning network(JMLNet), which first regards multiple
proposals as multi-label supervision to train weakly supervised semantic segmentation model.
JMLNet learns common knowledge from multiple noisy labels and prevents the model from
overfitting one specific label.

• GradCAMD and GrabCutC methods are proposed to generate high-quality segmentation
proposals, which further improve the segmentation performance of JMLNet. These proposals
perform both reliable in the distinguished semantic area and detailed in instance edge.
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• We report the state-of-the-art results on semantic segmentation tasks of iSAID and mapping
challenge dataset when training using bounding boxes supervision, reaching comparable quality
with the fully supervised model.

Image and box 
supervision

GrabCutCGrabCut

Generate multiple proposals

Image and box 
supervision

Generate one proposal

Multiple proposals

GrabCut proposal

Output

One label learning

Score mapsImage

Output

Multi-label learning

Score mapsImage Backbone

Backbone

GradCAMD

Figure 1. The overall pipeline of previous weakly supervised semantic segmentation methods (top)
and our proposed JMLNet (bottom). Previous methods generate one specific proposal and use it in the
training process. However, we first generate multiple proposals as multi-label supervision and use
multi-label loss to train the segmentation model.

(a)Image (b)Ground-Truth (c)Bounding-Box (d)GrabCut (e)GrabCutC

Figure 2. Segmentation proposals obtained from bounding box. (a) A training image. (b) Ground
truth. (c) Rectangle proposals. (d) GrabCut [29] proposals. (e) We propose GrabCutC proposals,
which perform better than traditional proposals.

2. Related Work

We introduce the weakly supervised semantic segmentation methods of natural image and
remote sensing image and aerial image, region proposal from box supervision, and learning semantic
knowledge with noisy labels that are related to our work.
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2.1. Weakly Supervised Semantic Segmentation of Natural Image

Weakly supervised semantic segmentation methods of natural image can be classified into
four parts, including image labels methods [15,31–35], points labels methods [26], scribbles labels
methods [36,37], and bounding boxes labels methods [23,27,30]. We mainly introduce bounding boxes
labels methods in the following paragraph. BoxSup [23] takes MCG [28] as initial segmentation
proposals and updated the proposals in an iterative way. SDI [30] takes intersection of MCG [28] and
GrabCut [29] as segmentation proposals. Song et al.[27] propose an attention model to focus on the
foreground regions.

2.2. Weakly Supervised Semantic Segmentation of Remote Sensing Image and Aerial Images

Weakly supervised semantic segmentation methods of remote sensing image and aerial images
can be also classified into four parts, including image labels methods [4,38], points labels methods [39],
scribbles labels methods [40], and bounding boxes labels methods [41]. WSF-NET [4] introduces a
feature-fusion network to fuse different level feature of FCN [1] and increase the ability of feature
representation. SPMF-Net [38] combines superpixel pooling to segmentation methods and use low
level feature to get detail prediction. Wang et al. [39] use CAM [31] proposals as ground truth and train
FCN [1] based model. Wu et al. [40] propose an adversarial architecture based model for segmentation.
Rafique et al. [41] convert the bounding box into probabilistic masks and propose a boundary based
loss function to restrict the edge of predict map to close to bounding box. We separate weakly
supervised semantic segmentation as two aspects, including region proposal from box supervision
and learning semantic knowledge with noisy labels.

2.3. Region Proposal from Box Supervision

Without proper pixel-level supervision, weakly supervised methods extract region proposal
from box supervision. [25,28,29] are the most popular region proposal methods. BoxSup [23] takes
MCG [28] as initial segmentation proposals and updated the proposals in an iterative way. SDI [30]
takes intersection of MCG [28] and GrabCut [29] as segmentation proposals. Song et al. [27] use
dense CRF [25] as segmentation proposals. These region proposal methods extract proposals from
class-agnostic low-level features, which leads to generating confusing proposals in complicated
scenes because of lacking high-level semantic information. To this end, we propose a GradCAMD

method to generate visual explanations from object detectors and proper proposals by setting the
threshold. GradCAMD generates reliable proposals because the detection network learns precise
semantic information. Then we use GradCAMD to adjust GrabCut algorithm and generate training
labels, which performs both reliable in the distinguished semantic area and detailed in instance edge.

2.4. Learning Semantic Knowledge with Noisy Labels

Though we can use [25,28,29] to generate proposals within bounding boxes annotations, there are
still so many noises compared with a full-supervised label. How to learn with noisy labels becomes a
key problem of weakly supervised semantic segmentation. SDI [30] directly uses the intersection of
two kinds of segmentation proposals to reduce the noise. Song et al.[27] use different filling rates as
priors to help the model training. These methods all use one specific pseudo label. We first propose
JMLNet to combine multiple noisy labels in the training process. JMLNet helps the model learn
common knowledge from multiple noisy labels and prevent it from overfitting one specific label.
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3. Our Method

3.1. Overview

In this section, we introduce the general pipeline of JMLNet. As shown in Figure 3, we collect
multiple proposals like GrabCut, GradCAMD, and GrabCutC proposals as multi-label supervision and
train the segmentation model with the proposed multi-label loss.

Score mapsImage Backbone

loss1

loss2

lossn

OP
When using MA-Loss, it means average operation.

When using MM-Loss, it means minimum operation.
When using BMM-Loss, it means box-wise minimum operation.

OP Multi-label lossMulti-label loss

Image and box 
supervision

GradCAMD segmentation

GrabCut segmentationGrabCut segmentation

GrabCut segmentationGrabCut segmentation

Figure 3. Overview of JMLNet. We generate multiple proposals as multi-label supervision and use
multi-label loss to train the segmentation model.

Generating pseudo supervision. Except for popular segmentation proposals with bounding
boxes labels, we generate GradCAMD and GrabCutC proposals as pseudo supervision. GradCAMD

is a detection-based GradCAM. The first step to generate GradCAMD proposals is to train an object
detector. We choose Faster R-CNN [42], a classical object detector, in our experiment. Then we calculate
the GradCAMD in feature map of Faster R-CNN and generate the pixel-level proposals. GradCAMD

is also used to adjust GrabCut algorithm and generate GrabCutC proposals. All these proposals
contribute in the training process.

Model training with multiple noisy labels. As shown in Figure 1, we choose popular
Deeplab v3 [43] as semantic segmentation model. Note that we collect multiple proposals
{CRF, GrabCut,GradCAMD, GrabCutC} for a single input image, so we propose multi-label
average-loss (MA-Loss), multi-label minimum loss (MM-Loss), and box-wise multi-label minimum
loss (BMM-Loss) to help the model learn common knowledge from multiple noisy labels and prevent
the model from overfitting one specific label.

3.2. Multi-Label Losses for Multiple Proposals

Most semantic segmentation methods use pixel-wise cross entropy loss as loss function:

LCE = − 1
N

N

∑
n=1

C

∑
c=1

yn,c log pn,c (1)

where N is the number of pixels, C is the number of classes, y ∈ {0, 1} is the ground truth, and p ∈ [0, 1]
is the estimated probability.

It is obvious that our pseudo proposals are all noisy within bounding boxes annotations and one
specific proposal is hard to perform best in all image sets. Based on the analysis above, we propose
three multi-label losses to help the model learn common knowledge from multiple noisy labels and
prevent the model from overfitting one specific label. In practice, we propose multi-label average-loss
(MA-Loss), multi-label minimum loss (MM-Loss), and box-wise multi-label minimum loss (BMM-Loss).
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Dealing with multiple noisy labels, an intuitive idea is to calculate the average value of cross entropy
losses for multiple proposals. We denote it as multi-label average-loss (MA-Loss):

LMA(p,Y) = 1
Z

Z

∑
z=1

(LCE(p, yz)) (2)

where Y denotes pseudo labels set, Z is the number of proposals types.
Further, we calculate the cross entropy losses for multi proposals and take the minimum value in

back propagation. We denote it as multi-label minimum loss (MM-Loss):

LMM(p,Y) = min
z
LCE(p, yz), z ∈ [1, Z] (3)

In weakly supervised segmentation, a set of box-level labeled data D = {(I, B)} are given,
where I and B denote an image and box-level ground truth respectively. We know the pixels out
of B are background class according to ground truth. So pixels in B are key problem for our case.
We categorize image pixels into two sets P+ and P− according to their coordinates position by

P+ = {(i, j)|(i, j) ∈ B} (4)

P− = {(i, j)|(i, j) /∈ B} (5)

where (i, j) is coordinate.
We calculate the minimum value of cross entropy losses for multi proposals in P+ as follows:

L+(p,Y) =
1

n+ ∑
(i,j)∈P+

min
z

(∑
c=1
−yz

ijc log pijc), z ∈ [1, Z] (6)

where yZ
ijc indicate estimated probability of different proposals and n+ indicates pixel number of P+.

For all coordinates (i, j) in P−, yi,j = 0. We use cross entropy loss in P− as follows:

L−(p,Y) = − 1
n− ∑

(i,j)∈P−
log pb

ij (7)

where pb
ij indicates estimated probability of background and n− indicates pixel number of P−.

The L+ and L− make up box-wise multi-label minimum loss (BMM-Loss):

LBMM(p,Y) = L+(p,Y) + L−(p,Y) (8)

Our proposed MA-Loss, MM-Loss and BMM-Loss help the model learn common knowledge
from multiple noisy labels and prevent the model from overfitting one specific label.

3.3. Pseudo Label Generation by GradcamD and GrabcutC

The GradCAMD of our approach is shown in Figure 4 and Algorithm 1. In order to obtain the
GradCAMD D ∈ Ru×v of width u and height v for target class, we first compute the gradient of target
score s with respect to feature maps Mk, i.e. ∂s

∂Mij
. k ∈ [1, K] and K is the channel number of feature

maps. These gradients flowing back obtain the weight αk, which represents the weight of feature map
Mk for target class.

αk =
1

uv ∑
i

∑
j

∂s
∂Mij

(9)
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We calculate a weighted combination of feature maps.

D =
K

∑
k=1

αk Mk (10)

As shown in Figure 5, GradCAMD explains why detector classifies a specific area as a specific
class and cover instance region well. Based on the observation, we generate high GradCAMD proposal
and low GradCAMD proposal by setting high and low thresholds to GradCAMD, as shown in Figure 4
and Algorithm 1. Low GradCAMD proposal D` is closer to ground truth, and we can use it as the
pseudo label to train segmentation model. High GradCAMD proposalDh can’t cover all positive pixels
of ground truth but contains less false-positive pixels.

Reg branch

Cls branch

c Roundabout 

Back propagation

Image

GradCAMD

Backbone

RoI Align

Target feature kMTarget feature kM

Box target

Weight kWeight k

Figure 4. Overview of the GradCAMD. We generate GradCAMD using back propagation in the
detector’s classification branch. Best viewed in color.

Algorithm 1: Generation of Low GradCAMD Proposals D` and High GradCAMD Proposals Dh

Input: Image I; box supervision B; low GradCAMD threshold τ`; high GradCAMD threshold
τh.

Output: Low GradCAMD proposals D`; high GradCAMD proposals Dh.
1 Feed the I into the detector’s backbone to produce feature Fb ;
2 Feed the Fb and B into the RoIAlign to produce feature Froi ;
3 Feed the Froi into the detector’s RCNN conv layer to produce feature Mk ;
4 Feed the Mk into the detector’s classification branch to produce target score s ;
5 Get weight αk by Equation (9) ;
6 Get GradCAMD D by Equation (10) ;
7 for each value p ∈ D do
8 if p > τ` then
9 D`.append(p);

10 end
11 if p > τh then
12 Dh.append(p);
13 end
14 end

Different from generating visual explanations from classification network, like CAM [31] and
GradCAM [32], GradCAMD generates visual explanations from object detector. Box supervision is
fully used, and the detector learns precise semantic information, which improves the proposal quality.
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As shown in Figure 6, we take GradCAMD as priors and categorize pixels into thre sets D+, D−
and Du by

D+ = {(i, j)|(i, j) ∈ Dh} (11)

D− = {(i, j)|(i, j) /∈ D`} (12)

Du = {(i, j)|(i, j) ∈ D` ∩ (i, j) /∈ Dh} (13)

where (i, j) is coordinate. Pixels inD+ are fixed to the foreground, pixels inD− are fixed to background
and pixels in Du are still uncertain. GrabCut updates proposals by taking these foreground and
background information. The updated proposals are denoted as GrabCutC proposals. As shown in
Figure 2f, GrabCutC generates proposals both reliable in the distinguished semantic area and detailed
in instance edge.

Sh
ip

R
o
u
n
d
ab
o
u
t

P
la
n
e

Figure 5. Visualization of the GradCAMD. It shows why the detector classifies a specific area as a
specific class and covers instance region well.

GrabCutC proposal
Image and box 

supervision
GradCAMD prior

GrabCut

Segmentation

GradCAMD

GradCAMD Setting

ThresholdGenerate

Figure 6. Overview of the GrabCutC. We use GradCAMD as prior to GrabCut and generate GrabCutC.
In GradCAMD prior, green pixels represent foreground, black pixels represent background, and gray
pixels represent uncertainty area. GrabCut takes this information as input and further refines proposal.

4. Experiments

In the experiments, we first introduce the experimental setup, then do ablation study of different
super parameter, finally compare our method with the state-of-the-art methods.
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4.1. Experimental Setup

In experimental setup, we introduce dataset, evaluation method and implementation details of
our experiments.

Dataset: In our experiments, two aerial images dataset are used: iSAID [44] dataset and mapping
challenge dataset [45]. We use iSAID [44] dataset, which is a further semantic labeled version for
DOTA [46] dataset. It contains 15 classes of different objects and 1 background class. The spatial
resolution of images ranges from 800 pixels to 13000 pixels, which exceed resolution of natural images
by far. We train our method with 1,411 high-resolution images, eval with 458 high-resolution images.
We use the mapping challenge dataset [45]. It contains 1 building class and 1 background class.
We train our method with 280,741 images, eval with 60,317 images of size 300x300 pixels. We only
exploit bounding boxes annotations when training. While the dataset contains labels for semantic
segmentation, we only exploit box-level labels.

Evaluation: To evaluate the performance of our method and compare our results to other
state-of-the-art methods, we calculate mean pixel Intersection-over-Union(mIoU), overall accuracy
(OA), true positive rate (TPR) and true negative rate (TNR) as common practice [22,47]. IoU is
defined as:

IoU =
TP

TP + FP + FN
(14)

and mIoU is defined as:

mIoU =
1
C

C

∑
c=1

TP
TP + FP + FN

(15)

and OA is defined as:
OA =

TP + TN
TP + TN + FP + FN

(16)

and TPR is defined as:
TPR =

TP
TP + FN

(17)

and TNR is defined as:
TNR =

FP
FP + TN

(18)

where TP, FP, TN, FN are the number of true positives, false positives, true negatives and false
negatives. C indicates the number of classes.

Implementation Details: For iSAID dataset, we crop the high-resolution images to 512 × 512
patches. We adopt the classical Deeplab v3 [43] model for our experiments, which takes widely used
ResNet-50 [48] as backbone. Firstly, we train a detection model Faster-RCNN [42] with box-level
labels of iSAID [44]. Using the proposed GradCAMD and GrabCutC methods, we generate pseudo
segmentation proposals for train set. Secondly, we train the Deeplab v3 model with the GrabCutC

supervision for 50k iterations, further finetune it with proposed loss function for 10k iterations.
We choose SGD as default optimizer. Mini-batch size is seted to 20. We set initial learning rate to 0.007
and multiply by (1− step

maxstep )
power and power is set to 0.9. We apply random horizontal flipping and

random cropping to augment the diversity of dataset. We implement our method with the PyTorch [49]
framework. For mapping challenge dataset, we follow the same basic setting as Rafique et al. [41]
for fair comparison. We choose Adam optimizer with learning rate of 5e−4, β1 = 0.9, and β2 = 0.999.
Mini-batch size is seted to 16. We train the network for 3 epochs.

4.2. Ablation Study

We conduct two types of ablation studies, including the analysis of the contribution of proposed
loss functions and the performance of the proposal with different thresholds.

Proposals quality. We do experiments on different proposals and loss functions. As shown in
Table 1, experimental results show that our proposed GradCAMD and GrabCutC proposals perform
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better than traditional proposals. We train the Deeplab v3 model with different proposals as pseudo
labels, including rectangle proposals, CRF proposals, GrabCut proposals, our proposed GradCAMD

proposals and GrabCutC proposals. As shown in Table 1, our proposed GradCAMD and GrabCutC

proposals achieve 53.88% and 54.24% mIoU, outperforming all the compared methods. As shown
in Figure 7, the main difference between GrabCut and our proposed GradCAMD and GrabCutC

proposals is edge predictions. Using GrabCut as label, segmentation model will tend to do predictions
based on low level features, including color and edge. In hard cases, low level features can not
represent precise information of target features, which lead to wrong predictions. GradCAMD and
GrabCutC proposals perform better because they are of high level features obtained from object
detector. As shown in Table 2, we evaluate the effectiveness of GradCAMD proposals on iSAID
validation set. Our GradCAMD can be seen as a detection-based GradCAM. So we make a comparison
between GradCAMD and standard GradCAM proposals within bounding box. Experimental results
show that our proposed GradCAMD outperforms standard GradCAM.

Table 1. Evaluating the effectiveness of JMLNet, including GradCAMD proposals, GrabCutC proposals
and three novel loss functions on iSAID validation set. BOX: Rectangle proposals, CRF: CRF proposals,
GrabCut: GrabCut proposals.

Loss
Proposals

mIoU
BOX CRF GrabCut GradCAMD GrabCutC

CE Loss

X 46.20
X 51.27

X 53.12
X 53.88

X 54.24

MA-Loss

X X 52.27
X X 52.64

X X 53.58
X X 54.45

X X X 54.61
X X X X 54.21

X X X X X 53.72

MM-Loss

X X 52.45
X X 52.83

X X 54.25
X X 54.64

X X X 54.97
X X X X 54.63

X X X X X 53.94

BMM-Loss

X X 53.22
X X 53.41

X X 54.67
X X 55.10

X X X 55.34
X X X X 54.85

X X X X X 54.05

Losses selection. As shown in Table 1, experimental results show that our proposed MA-Loss,
MM-Loss and BMM-Loss all improve segmentation results, in which BMM-Loss performs best.
We combine different proposals and use our proposed loss functions to train the Deeplab v3
model. As shown in Table 1, using a combination of different proposals and our proposed
loss functions, we improve segmentation results significantly. In particular, combination of
{GrabCut,GradCAMD,GrabCutC} and BMM-Loss achieve the best performance, 55.34% mIoU.
We analyze that the reason why BMM-Loss performs best is BMM-Loss considers the similarity between
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predictions and multiple proposals in pixel-wise within boxes. The other loss functions, MA-Loss and
MM-Loss, only focus on loss of the whole image. Segmentation performance will not be improved by
adding rectangle proposals and CRF proposals to {GrabCut,GradCAMD,GrabCutC}. We analyze that
compared with {GrabCut,GradCAMD,GrabCutC}, rectangle proposals and CRF proposals are quite
rough and introduce more wrongly labeled pixels. Low quality of proposals will hurt the performance
of segmentation model. We deal with noisy label by automatically selecting the high quality label in
training process. It partly solves the problem of noisy label but adding bad pseudo-labels will hurt
our performance in practice. There are still many future works that can be done to handle the bad
influence of noisy label.

(a)Image (b)Ground Truth (c)GrabCut (d)GradCAMD (e)GrabCutC

Figure 7. Examples of segmentation results of our method on mapping challenge dataset. (a) Image.
(b) Ground Truth. (c) GrabCut. (d) GradCAMD. (e) GrabCutC. Red circle indicates the difference results.

Table 2. Evaluating the effectiveness of GradCAMD proposals on iSAID validation set. GradCAM:
Standard GradCAM proposals within bounding box.

GradCAM GradCAMD

mIoU (%) 51.35 53.88
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(a)Image (b)Prediction (a)Image (b)Prediction

Figure 8. Examples of segmentation results of our method on iSAID. (a) Image. (b) Prediction.

Threshold τ` of low GradCAMD proposals D`. Low GradCAMD proposals D` depends on one
key hyper-parameter, threshold τ`. We use D` as pseudo label to train segmentation model, which is
vital to final performance. The threshold τ` balances the foreground and background pixels within
boxes annotations. If τ` is set to 0, all pixels within boxes annotations are seen as proposals. As τ`
increases, the area of proposals decreases and only the distinguished part of GradCAMD remained
in proposals. Table 3 shows the influence of threshold τ`. As τ` get higher, the area of foreground
pixels get lower. Because foreground pixels usually take up most area within boxes annotations, so we
find best τ` in small values. When τ` = 0.15, using D` proposals as ground truth, we achieve the best
performance. Table 1 indicate thatD` reachs 53.88% mIoU on iSAID validation set. We also fix τ` = 0.15
in generating GrabCutC proposals.
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Table 3. Influence of τ`. The hyper-parameter τ` balances the foreground and background pixels
when generating low GradCAMD proposals. τ` = 0 means all pixels within boxes annotations are seen
as proposals.

τ` 0 0.05 0.1 0.15 0.2 0.25

mIoU (%) 44.20 51.34 53.46 53.88 53.76 53.20

Threshold τh of high GradCAMD proposals Dh. High GradCAMD proposals Dh depends on
threshold τh. We use Dh as foreground to adjust GrabCut algorithm and generate GrabCutC. Table 4
shows the influence of threshold τh. When τh = 0.8, GrabCutC achieves the best performance. Table 1
indicates that GrabCutC reachs 54.24% mIoU in iSAID validation set.

Table 4. Influence of τh. The hyper-parameter τh influences quality of GrabCutC. τh = 1 means no
positive foreground for GrabCut proposals.

τh 0.5 0.6 0.7 0.8 0.9 1

mIoU (%) 53.30 53.58 54.10 54.24 54.23 53.67

4.3. Comparison with the State-Of-The-Art Methods

In the comparison with the state-of-the-art methods, we mainly choose SDI [30], Song et al. [27]
and Rafique et al. [41].

Results of weakly-supervised semantic segmentation on iSAID dataset. As shown in Table 5,
our method achieves 55.34% mIoU, 98.58% OA, 61.75% TPR and 99.63% TNR on iSAID validation set.
Specific IOU for per category can be found in Table 6. Figure 8 shows the segmentation results of our
method. Our method outperforms all compared weakly supervised semantic segmentation approaches.
The results indicate that our proposed method is effective when learning common knowledge from
multiple noisy labels.

Table 5. Weakly supervised results on iSAID validation set.

Supervision Methods mIoU (%) OA (%) TPR (%) TNR (%)

Weak
SDI [30] 53.82 98.30 59.87 99.59

Song et al. [27] 54.18 98.36 60.56 99.60
Ours 55.34 98.58 61.75 99.63

Semi
SDI [30] 54.87 98.43 61.23 99.61

Song et al. [27] 55.15 98.50 61.64 99.62
Ours 56.76 98.62 63.25 99.64

Full Deeplab v3 [50] 59.05 98.75 65.78 99.67

Table 6. Our segmentation results for per category on iSAID validation set, which are evaluated by
mIoU (%). ST: Storage tank, BD: Baseball diamond, TC: Tennis court, BC: Basketball court, GTF: Ground
field track, LV: Large vehicle, SV: Small vehicle, HC: Helicopter, SP: Swimmingpool, RA: Roundabout,
SBF: Soccerballfield.

Supervision Ship ST BD TC BC GTF Bridge LV SV HC SP RA SBF Plane Harbor Mean

Weak 55.36 47.98 73.10 78.81 55.32 56.15 28.22 51.76 28.57 27.05 41.37 62.74 68.84 69.18 42.94 55.34
Semi 56.85 49.62 74.62 80.64 56.56 57.99 29.61 53.10 30.44 28.51 43.26 64.80 70.10 70.12 44.09 56.76
Full 59.74 50.49 76.98 84.21 57.92 59.57 32.88 54.80 33.75 31.29 44.74 66.03 72.13 75.84 45.68 59.05

Results of weakly-supervised semantic segmentation on mapping challenge dataset. We compare
our proposed method with existing state-of-the-art weakly supervised semantic segmentation
approaches on mapping challenge dataset. As shown in Table 7, our method achieves 75.65% mIoU on
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mapping challenge dataset validation set. Our method outperforms Rafique et al. [41], around 1.31%
in mIoU, 0.64% in OA, 0.84% in TPR and 0.33% in TNR. Figure 9 shows the segmentation results of
our method. The results indicate that our proposed method is effective in different datasets.

Results of semi-supervised semantic segmentation on iSAID dataset. We also do semi-supervised
semantic segmentation experiments and compare to state-of-the-art approaches. In semi-supervised
task, 141 pixel-level labels, 1/10 of the training sets, are added for training. As shown in Table 5,
our proposed method outperforms all the compared methods and achieves 56.76% mIoU, 98.62% OA,
63.25% TPR and 99.64% TNR. Specific IoU for per category can be found in Table 6. The results indicate
that our method is still effective in semi-supervised condition and the performance is very close to the
fully supervised model.

(a)Image (b)Prediction (a)Image (b)Prediction

Figure 9. Examples of segmentation results of our method on mapping challenge dataset. (a) Image.
(b) Prediction.
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Table 7. Weakly supervised results on validation set of mapping challenge dataset. These methods are
all box-based and only have bounding boxes annotations in the training process.

Methods mIoU (%) OA (%) TPR (%) TNR (%)

SDI [30] 73.57 85.67 88.76 87.70
Song et al. [27] 73.95 85.82 89.42 87.96

Rafique et al. [41] 74.34 86.31 90.10 88.24
Ours 75.65 86.95 90.94 88.57

5. Discussion

In this section, we further discuss: (1) The advantages of our method compared to the traditional
methods, (2) the limits of our method and (3) potential improvement of the framework.

(1) The advantages of our method.
Learning strategy from noisy labels and the quality of proposals are two key problems of weakly

supervised semantic segmentation in aerial images. We tackle these problems by taking advantage
of multiple proposals in the training process and proposing two kinds of high quality proposals,
GradCAMD and GrabCutC. The experimental results in Sections 4.2 and 4.3 prove that the proposed
method can effectively improve the performance of weakly supervised semantic segmentation in
aerial images.

(2) The limits of our method.
Our method needs bounding boxes annotations, which have two weaknesses in aerial images.

On the one hand, bounding boxes annotations are slightly more expensive than image level annotations
and points level annotations. On the other hand, bounding boxes annotations are not suitable for all
semantic segmentation tasks in aerial images. For example, bounding boxes annotations represent
airplanes, cars and buildings well but can not represent roads because roads are more similar to lines.

(3) Potential improvement of the framework.
As shown in Table 1, although our method improves segmentation results significantly

by using combination of different proposals. The performance will not increase when
adding all kinds of proposals. In particular, adding rectangle proposals or CRF proposals to
{GrabCut,GradCAMD,GrabCutC} will hurt the performance. We analyze that low quality of proposals
will hurt the performance of segmentation model. In the ideal condition, we want our method can
ignore most of the noise which is coming from noisy label. There are still many future works that can
be done to handle the bad influence of noisy label.

Our combination strategy of multi-label is naive and can be improved by introducing more
advanced statistical methods. Expectation-Maximization is elegant and we think it will contribute to
experiments. We will try to realize it in future research.

6. Conclusions

In this paper, we propose a novel JMLNet, which first regards multiple proposals as multi-label
supervision to train weakly supervised semantic segmentation model. JMLNet learns common
knowledge from multiple noisy labels and prevents the model from overfitting one specific label.
GradCAMD and GrabCutC methods are proposed to generate high-quality segmentation proposals,
which further improve the segmentation performance of JMLNet. These proposals perform both
reliable in the distinguished semantic area and detailed in instance edge. We report the state-of-the-art
results on semantic segmentation tasks of iSAID and mapping challenge dataset when training using
bounding boxes supervision, reaching comparable quality with the fully supervised model.
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