
remote sensing  

Article

Bias Correction of the Ratio of Total Column CH4 to
CO2 Retrieved from GOSAT Spectra

Haruki Oshio 1,* , Yukio Yoshida 1 , Tsuneo Matsunaga 1 , Nicholas M. Deutscher 2 ,
Manvendra Dubey 3, David W. T. Griffith 2, Frank Hase 4, Laura T. Iraci 5, Rigel Kivi 6 ,
Cheng Liu 7,8, Isamu Morino 1 , Justus Notholt 9, Young-Suk Oh 10 , Hirofumi Ohyama 1 ,
Christof Petri 9, David F. Pollard 11 , Coleen Roehl 12, Kei Shiomi 13, Ralf Sussmann 14,
Yao Té 15 , Voltaire A. Velazco 2 , Thorsten Warneke 9 and Debra Wunch 16

1 Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba,
Ibaraki 305-8506, Japan; yoshida.yukio@nies.go.jp (Y.Y.); matsunag@nies.go.jp (T.M.);
morino@nies.go.jp (I.M.); oyama.hirofumi@nies.go.jp (H.O.)

2 Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, Faculty of Science,
Medicine and Health, University of Wollongong, Wollongong 2522, Australia;
ndeutsch@uow.edu.au (N.M.D.); griffith@uow.edu.au (D.W.T.G.); voltaire@uow.edu.au (V.A.V.)

3 Los Alamos National Laboratory, Los Alamos, NM 87545, USA; dubey@lanl.gov
4 Institute of Meteorology and Climate Research IMK-ASF, Karlsruhe Institute of Technology, 76021 Karlsruhe,

Germany; frank.hase@kit.edu
5 Atmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA;

laura.t.iraci@nasa.gov
6 Space and Earth Observation Centre, Finnish Meteorological Institute, 99600 Sodankylä, Finland;

rigel.kivi@fmi.fi
7 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics,

Chinese Academy of Sciences, Hefei 230031, China; Chliu81@ustc.edu.cn
8 Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of

China, Hefei 230026, China
9 Institute of Environmental Physics, University of Bremen, 28359 Bremen, Germany;

jnotholt@iup.physik.uni-bremen.de (J.N.); christof_p@iup.physik.uni-bremen.de (C.P.);
warneke@iup.physik.uni-bremen.de (T.W.)

10 Climate Research Division, National Institute of Meteorological Sciences, Seogwipo, Jeju-do 63568, Korea;
ysoh306@korea.kr

11 National Institute of Water and Atmospheric Research, Lauder, Omakau 9352, New Zealand;
dave.pollard@niwa.co.nz

12 Division of Geology and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA;
coleen@caltech.edu

13 Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan; shiomi.kei@jaxa.jp
14 Institute of Meteorology and Climate Research—Atmospheric Environmental Research (IMK-IFU),

Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany; ralf.sussmann@kit.edu
15 Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL),

Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, France;
yao-veng.te@upmc.fr

16 Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada;
dwunch@atmosp.physics.utoronto.ca

* Correspondence: oshio.haruki@nies.go.jp; Tel.: +81-29-850-2416

Received: 21 August 2020; Accepted: 24 September 2020; Published: 25 September 2020
����������
�������

Abstract: The proxy method, using the ratio of total column CH4 to CO2 to reduce the effects of
common biases, has been used to retrieve column-averaged dry-air mole fraction of CH4 from satellite
data. The present study characterizes the remaining scattering effects in the CH4/CO2 ratio component
of the Greenhouse gases Observing SATellite (GOSAT) retrieval and uses them for bias correction.
The variation of bias between the GOSAT and Total Carbon Column Observing Network (TCCON)
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ratio component with GOSAT data-derived variables was investigated. Then, it was revealed that the
variability of the bias could be reduced by using four variables for the bias correction—namely, airmass,
2 µm band radiance normalized with its noise level, the ratio between the partial column-averaged
dry-air mole fraction of CH4 for the lower atmosphere and that for the upper atmosphere, and the
difference in surface albedo between the CH4 and CO2 bands. The ratio of partial column CH4 reduced
the dependence of bias on the cloud fraction and the difference between hemispheres. In addition to
the reduction of bias (from 0.43% to 0%), the precision (standard deviation of the difference between
GOSAT and TCCON) was reduced from 0.61% to 0.55% by the correction. The bias and its temporal
variation were reduced for each site: the mean and standard deviation of the mean bias for individual
seasons were within 0.2% for most of the sites.

Keywords: methane; proxy method; GOSAT; TCCON

1. Introduction

Atmospheric methane (CH4) is the most significant anthropogenic greenhouse gas after carbon
dioxide (CO2) and is emitted from both anthropogenic and natural sources. Satellite observation,
which can obtain data over wide areas, is effective to elucidate the CH4 budget over the globe. In the
last 15 years, the column-averaged dry-air mole fraction of methane (XCH4) has been retrieved from
the spectra of the backscattered Short-Wavelength InfraRed (SWIR) sunlight measured by sensors
onboard satellites [1–6]. Satellite-derived XCH4 data have been applied to the inverse modeling of
CH4 sources and sinks [7–11]. High precision and small bias in spatiotemporal variation are required
for the XCH4 data to be used in inverse modeling [12,13]. It is possible that even a small regional
bias (0.5%) in the XCH4 data can lead to significant errors in regional source and sink estimation [12].
Optical path length modification due to the light scatterings by aerosols and clouds is a large source of
error for the satellite-based SWIR retrievals [14–16]. The degree of optical path length modification
depends on the abundance, optical properties, and vertical distributions of aerosols and clouds and
the reflectance of ground surfaces.

Two retrieval methods have been used to reduce systematic biases due to atmospheric scatterings:
the full-physics method and the proxy method. In the full-physics method, the existence of aerosols is
described in the forward model, and the aerosol-related parameters are simultaneously retrieved with
the gas abundance [17,18]. In the proxy method, information on the optical path length modification for
the CH4 absorption band is obtained from that for the adjacent CO2 absorption band [2] (Equation (1)),

XCH4 =
XCH4,clr

XCO2,clr
×XCO2,mdl, (1)

where XCH4,clr and XCO2,clr are XCH4 and XCO2 retrieved under a clear-sky assumption (no aerosols
and clouds are assumed) and XCO2,mdl is XCO2 from the numerical model. It is assumed that, in the
ratio component (XCH4,clr/XCO2,clr), the impacts of aerosol and clouds cancel each other out between
XCH4,clr and XCO2,clr. It is also assumed that the relative variation of XCO2 is much smaller than that
of XCH4, and that XCO2 is well represented by the numerical model. The proxy method is expected to
offer a larger amount of useful retrieved data than the full-physics method, since highly cloud- and
aerosol-loaded scenes are difficult to handle in the current full-physics algorithms [19–22].

Both errors in the ratio component and the model XCO2 lead to errors in the resulting XCH4.
Butz et al. [23] showed that the scattering-related errors are not perfectly canceled out in the ratio
component depending on atmospheric and ground surface conditions (i.e., cirrus and aerosol load
and surface albedo). Schepers et al. [19] discussed the possibility that the temporal variation of bias
in proxy XCH4 corresponds to that of bias in the ratio component. In the case of inverse modeling,
Parker et al. [24] suggested that it is beneficial to use the ratio component with each own XCO2
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model that is consistent with the XCH4 model used in the inversion. The ratio component can also be
directly inverted [25–27]. The ratio component derived from the Greenhouse gases Observing SATellite
(GOSAT) data has been validated by comparing it with that derived from the Total Carbon Column
Observing Network (TCCON) data [19,24,26,28,29]. However, it has not been fully investigated what
range of cloud and aerosol load permits the canceling out of scattering-related errors in the ratio
component. In general, the criteria for the cloud and aerosol screening have been chosen by the
algorithm developer. Scattering-related errors are expected to remain and to cause bias in the resulting
XCH4, especially when relaxing the data-screening criteria, although this increases the data throughput.
Bias corrections of the proxy-based XCH4 have been conducted; however, a simple linear relationship
between the bias and the surface albedo [30] and a simple global bias correction [29,31] have been used.

The present study sought to characterize the bias in the GOSAT ratio component and develop a
method for correcting the bias while considering the atmospheric scattering effects. GOSAT has been
operating for more than 10 years, allowing us to investigate the variation of the bias with time and
space and its factors. The ratio component derived from TCCON data was used as the ground truth.
In Section 2, the data used and its processing are described. In Section 3, the relationship between
the bias and the related variables derived from GOSAT data is investigated. In Section 4, the bias
correction is conducted based on the results of Section 3, and the corrected results are evaluated.

2. Materials and Data Processing

2.1. GOSAT Data

GOSAT was launched on 23 January 2009 and is on a sun-synchronous orbit at 666 km altitude with
3-day recurrence and a descending node around 13:00 local time. It is equipped with two instruments:
the Thermal And Near-infrared Sensor for carbon Observation–Fourier Transform Spectrometer
(TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI). The TANSO-FTS has three bands in
the Short-Wavelength InfraRed (SWIR) region (an O2 A band, a weak CO2 absorption band, and a
strong CO2 absorption band (Bands 1, 2, and 3) centered at 0.76, 1.6, and 2.0 µm, respectively) and
records two orthogonal polarization components (hereafter called P/S components). For the signal
processing of the TANSO-FTS, the amplifier gain level can be controlled at different levels, high (H)
and medium (M), according to the brightness of the target. Gain M is used over bright surfaces such
as the Sahara and central Australia. The instantaneous field of view (IFOV) of the TANSO-FTS is
15.8 mrad, which corresponds to a circular surface footprint of about 10.5 km in diameter at nadir.
The TANSO-FTS L1B product (radiance spectral data) version V210.210 was used in the present study.
We used spectra acquired from April 2009 to December 2018. The sensitivity degradation of the
TANSO-FTS was corrected using a radiometric degradation model that is based on the on-orbit solar
calibration data [32]. The P and S polarization components of the observed spectra were synthesized to
produce a total intensity spectrum [5]. The TANSO-CAI is a push-broom imager and has four narrow
bands in the near-ultraviolet to near-infrared regions centered at 0.38, 0.674, 0.87, and 1.6 µm with
spatial resolutions of 0.5, 0.5, 0.5, and 1.5 km, respectively, for nadir pixels. The TANSO-CAI L2 cloud
flag product (integrated clear confidence level for each TANSO-CAI pixel) version V02.00 was used in
the present study. The integrated clear confidence level expresses the cloudy area with 0, the clear area
with 1, and the ambiguous area with a numerical value between 0 and 1 [33].

2.2. Retrieval

The spectral windows of 1.626–1.695 µm and 1.567–1.618 µm within the TANSO-FTS Band 2 were
used to retrieve XCH4,clr and XCO2,clr under the clear-sky assumption, respectively, using the same
retrieval scheme as in the NIES TANSO-FTS L2 SWIR full-physics retrieval [5,21,34]. The atmospheric
column was divided into 15 layers from the surface to 0.1 hPa with a constant pressure difference,
and the average gas concentration for each layer was retrieved. As an indicator of optical path length
modification, the surface pressure (Psrf) under the clear-sky assumption was also retrieved from the
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TANSO-FTS Band 1 spectra. The state vector for the retrieval of each band also included the surface
albedo and the wavenumber dispersion. The surface albedo was retrieved at several wavenumber
grid points within each band (CH4, CO2, and O2 A) [5]. The mean value was calculated for each band
and was used in the following analysis. Data satisfying all the following criteria were used for the
subsequent analysis: (1) several data-quality flags stored in the TANSO-FTS L1B product and spectrum
quality check utilizing the out-of-band spectra [34] are set as OK; (2) the solar zenith angle is <70◦;
(3) the land fraction of the TANSO-FTS footprint is ≥60%; (4) the mean squared value of the residual
spectrum of the CO2 band is≤ 4; and (5) the degree of freedom for signals (DFS) is ≥1 for both XCH4,clr

and XCO2,clr.

2.3. Variables for Explaining the Bias in the Ratio Component

Butz et al. [23] evaluated the accuracy of the ratio component and analyzed the error sources
(the reasons why the scattering-related errors were not canceled in the ratio component) using simulated
satellite measurements. They used cloud-free aerosol-loaded and cirrus-loaded scenes that were
assumed to be the targets of the full-physics method. They showed that the primary sources of error
were the difference in surface albedo between the CH4 band and the CO2 band and the difference in the
retrieval sensitivity to scattering effects at each height level between these bands. The impact of these
sources is expected to vary according to the amount and vertical distribution of the scattering materials.

In the studies validating the ratio component derived from the actual GOSAT data [19,24,26,28],
the cloud screening was conducted using the cloud fraction within the IFOV of the TANSO-FTS
provided by the TANSO-CAI onboard GOSAT. The TANSO-CAI is prone to fail to detect optically
thin cirrus clouds [35]. In several studies (e.g., [19]), cirrus-loaded scenes were screened out using
the information from the TANSO-FTS 2 µm band. More specifically, if the TANSO-FTS signal level
at the strong water vapor absorption channels exceeds the noise level, elevated scattering materials
(mainly cirrus cloud) are expected [5,36]. However, it has not been fully addressed how well the cloud
fraction and the 2 µm band signal are related to the bias in the ratio component (i.e., the systematic
difference between GOSAT and TCCON). Therefore, we investigated the variation of the bias with
the cloud fraction and the 2 µm band signal. The cloud fraction (fc) was defined as the ratio of
TANSO-CAI pixels with an integrated clear confidence level lower than 0.33 and all TANSO-CAI
pixels within the TANSO-FTS IFOV in this study. The TANSO-CAI tends to identify the pixels over
snow and ice surfaces as cloudy pixels. Thus, we calculated the Normalized Difference Snow Index
(NDSI = (ρO2 − ρCH4)/(ρO2 + ρCH4), where ρO2 and ρCH4 are the retrieved surface albedo for the O2

A band and the CH4 band, respectively), and used data having NDSI ≤ 0.4 for investigating the
relationship between the bias and fc. The threshold value of 0.4 was empirically determined (Figure S1).
The radiance at the strong water vapor absorptive channels normalized with its noise level in the
TANSO-FTS Band 3 (I2µm) was calculated in a manner similar to [5,34].

In the bias correction of the proxy method, possible error sources (e.g., those indicated by
Butz et al. [23]) have hardly been considered. The correction has been conducted based on the
relationship between the bias and the retrieved surface albedo [30] and by a simple global bias
correction [29,31]. The bias in the ratio component has also been corrected using the surface albedo [26].
Then, we investigated the relationship between the bias in the ratio component and the related variables
while considering fc and I2µm. For the related variables, the difference in the surface albedo between
the CH4 and CO2 bands, the surface albedo, the vertical profile of CH4 and CO2, the airmass, and the
deviation of the clear-sky surface pressure from its prior value were considered. The details of the
variables are described below.

The differences in surface albedo and the vertical profile have been revealed as important error
sources [23]. For the difference in surface albedo, the retrieved albedo values (ρCH4 and ρCO2) were
used (∆alb = ρCH4 − ρCO2). Albedo itself (ρCH4) was also used, since it has been used to explain
the bias of the proxy method [26,30] and the full-physics method [37]. For the vertical profile,
the partial column-averaged dry-air mole fractions were calculated for Layers 1–7 (upper atmosphere,
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0–0.47Psrf hPa (XCH4,upper and XCO2,upper)) and for Layers 12–15 (lower atmosphere, 0.73Psrf–Psrf hPa
(XCH4,lower and XCO2,lower)). See Section 2.2 for the definition of layers. The range of the calculation
(1–7 layers and 12–15 layers) was decided by considering the averaging kernel (Figure S2). It is
well-known that the SWIR retrieval has a slight sensitivity to the detailed profile but has a known
sensitivity to the lower atmosphere (e.g., [38]); therefore, the ratios (RCH4 = XCH4,lower/XCH4,upper

and RCO2 = XCO2,lower/XCO2,upper) were used to represent the characteristics of the vertical profile.
Airmass is expected to be related to the impact of optical path length modification on the retrieval
of XCH4,clr and XCO2,clr. The approximate airmass was calculated as (1/cos(solar zenith angle) +

1/cos(observing zenith angle)), which was similar to the previous studies that conducted bias correction
for the full-physics method by considering airmass [37,39]. For the full-physics method, the deviation
of the retrieved surface pressure from its prior value was also used for the bias correction [37,39].
In the case of the clear-sky retrieval, the deviation simply indicates the degree of optical path length
modification for the O2 A band and has been used for the cloud screening [40]. The deviation is
expected to contain information about the scattering effect by aerosols that can be hardly accounted for
by fc and I2µm. Then, the deviation of the clear-sky surface pressure from its prior value was calculated
as (∆Psrf = Psrf,retrieve − Psrf,prior).

2.4. TCCON Data and Matching with GOSAT Data

TCCON XCH4 and XCO2 data (GGG2014) from 26 sites [41–67] were used as the ground truth to
validate the GOSAT ratio component. The map of the sites is shown in Figure A1, and the overview of the
sites is shown in Table A1. The TCCON XCH4 and XCO2 data used in the present study (XCH4,TCCON

and XCO2,TCCON) represent the mean values measured at each TCCON site within ±30 min of the
GOSAT observation time. GOSAT data were selected within a ±2◦ latitude/longitude box centered at
each TCCON site and within the difference in altitude between GOSAT (average within footprint) and
TCCON site of 400 m. The ratio component of TCCON was then calculated (XCH4,TCCON/XCO2,TCCON).
The relative difference (∆ratio) was calculated to evaluate the GOSAT ratio component as

∆ratio = 100 × (Xratio,G − Xratio,T)/Xratio,T, (2)

where Xratio,G and Xratio,T are the ratio components of GOSAT and TCCON, respectively. Most of the
matched GOSAT data were acquired with gain H. Therefore, the data acquired with gain H were used
in the following analysis. The data acquired with gain M are briefly addressed in the latter part of the
analysis.

3. Investigating the Bias in the Ratio Component

3.1. Comparison Between GOSAT and TCCON Under Cloud-Free Conditions

First, in order to confirm the baseline of the bias, Xratio,G was compared with Xratio,T under
the conditions in which cloud-free scenes were expected (fc = 0 and I2µm ≤ 1). Figure 1 shows the
scatterplot of the ratio component and the latitudinal variation of the bias, precision of single scan,
and interseasonal bias for each TCCON site. The bias and precision are defined as the mean and
standard deviation of ∆ratio, respectively. This precision value was used with the number of data
to calculate the standard error of the mean value. The interseasonal bias is the standard deviation
of bias values of the four seasons (DJF, MAM, JJA, SON) regardless of year, which has been used
to represent the seasonal variability of bias [68]. The intersite bias is the standard deviation of bias
values for individual TCCON sites, which is related to the spatial variability of bias. Only sites having
more than nine data points were included in the calculation of intersite bias. The intersite bias of
0.14% might indicate that the spatial variation of bias is sufficiently small; however, the influence
of loosening the cloud screening criteria and the temporal variation of bias should be investigated.
Previous studies validating the GOSAT ratio component using TCCON data reported that the bias,
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precision, and intersite bias were about 0.2–0.6%, 0.5–0.7%, and 0.15–0.2%, respectively [19,24,26,28].
Although the retrieval scheme, the version of the TANSO-FTS L1B product, the number of TCCON sites
used, the data matching criteria, the cloud screening method, and other details of the data screening
differ between the present study and the previous studies, the overall results were comparable.
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Figure 1. Comparison of the ratio component between Greenhouse gases Observing SATellite (GOSAT)
and Total Carbon Column Observing Network (TCCON): (a) Scatter plot of individual data; (b) result
for each site. GOSAT data obtained under conditions where cloud-free scenes were expected (cloud
fraction = 0 and normalized 2 µm band radiance ≤1) were used. In (a), the correlation coefficient (R),
the slope and intercept of the linear regression, and the number of data points (N) are also shown.
In (b), the latitudinal variations of the bias, precision, and interseasonal bias for TCCON sites having
more than nine data points are presented.

Table A2 shows that there was no clear variation of bias with tightening of the matching criteria of
GOSAT and TCCON, but the precision was improved (there was a decrease in the standard deviation).
Then, we assessed the influence of the matching criteria on our analysis and confirmed that the
results shown below were hardly affected by the matching criteria (Appendix A). We also assessed
the relationship between ∆ratio and Fractional Variation in Solar Intensity (FVSI). FVSI is stored in
TCCON data, and low FVSI values (≤1%) indicate a reasonably clear sky, where larger FVSI values
could indicate some cirrus cloud presence. Only TCCON data having small FVSI values (≤5%) were
provided to ensure the quality of XCH4 and XCO2 data. Figures S3 and S4 show that similar results
were obtained between data with FVSI ≤ 1% and that with FVSI > 1%. This suggests that TCCON data
can be used to validate the GOSAT ratio component regardless of FVSI values (0–5%).

3.2. Relationship Between Bias and Related Variables

3.2.1. Cloud Fraction and Normalized 2 µm Band Radiance

Figure 2 shows the variation of ∆ratio with fc and I2µm. The data with NDSI ≤ 0.4 were used. ∆ratio

increases with the increase in I2µm. ∆ratio decreases with the increase in fc for the data with small
I2µm. The large ∆ratio is observed for data with both fc and I2µm exceeding certain levels, although
the amount of data is small for such cases. To interpret the information from the TANSO-CAI and
the TANSO-FTS 2 µm band clearly, we mainly used the data with fc = 0 and that with I2µm ≤ 1 in
the following analysis. Most of the data fell within these cases (leftmost column and bottom row
of Figure 2d). In the case of fc = 0, I2µm is related to the optically thin elevated scattering materials
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(mainly cirrus cloud) that were not identified by the TANSO-CAI. In the case of I2µm ≤ 1, fc is related
to the middle- or low-altitude clouds with a certain level of optical thickness.
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Figure 2. Variation of the relative difference in the ratio component between GOSAT and TCCON
(∆ratio) according to the cloud fraction (fc) and the normalized 2 µm band radiance (I2µm). Data with 0
< fc ≤ 1 were divided into 10 bins (horizontal axis), and data with −1 ≤ I2µm ≤ 35 were divided into
18 bins (vertical axis). The mean ∆ratio, standard error (SE) calculated by the precision of single data
((a,b)), standard deviation (SD) of ∆ratio (c), and number of data points (d) for each bin are presented.
Data with Normalized Difference Snow Index (NDSI) ≤ 0.4 were used. Only bins having more than
two data points are colored except in panel (d). The white line indicates the cloud screening criterion
(Section 4.3).

Figure 3a shows the variation of ∆ratio with I2µm. ∆ratio increases with I2µm. This can be attributed
to the light path enhancement, which is greater for the CH4 band than for the CO2 band because the
surface albedo of the CH4 band is generally higher than that of the CO2 band. The difference in vertical
profile between CH4 and CO2 also seems to contribute to the results. More specifically, the light path
enhancement means that the light repeatedly passes the area where the CH4 concentration is higher
than the column average, since the CH4 concentration significantly decreases in the upper atmosphere.
It is considered that the influence of the difference in the albedo and vertical profile becomes large with
the increase in I2µm.
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Figure 3. Variation of the relative difference in the ratio component between GOSAT and TCCON
(∆ratio) according to (a) the normalized 2 µm band radiance (I2µm) and (b) the cloud fraction (fc,).
Only data with fc = 0 were used for (a), and only data with I2µm ≤ 1 and NDSI ≤ 0.4 were used for (b).

Figure 3b shows the variation of ∆ratio with fc. The data with NDSI ≤ 0.4 were used. ∆ratio is
0.4% to 0.5% for the data with fc ≤ 0.2 and decreases with increasing fc. This is because the effect of
the difference in the retrieved surface albedo between the CH4 and CO2 bands becomes small with
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the increase in fc, and the influence of the upper atmosphere where the CH4 concentration is low
becomes large because of the increase in the amount of light passing through a short path (scattered at
the upper part of the cloud and reaching the sensor). Although the influence of clouds depends on
their height and optical thickness, it is considered that the influence of the ground surface becomes
small with the increase in cloud cover. ∆ratio is almost stable for the data with fc ≥ 0.4. It seems that
the above-mentioned effects of the decreasing ∆ratio and light path enhancement by clouds (multiple
scattering within clouds) are balanced. Note that we obtained GOSAT data having large fc value,
which fell within the matching criteria of GOSAT and TCCON. This means that GOSAT data was
obtained under cloudy conditions even when TCCON data was obtained under clear-sky conditions
since cloud conditions varied within a ±2◦ latitude/longitude box.

3.2.2. Surface Albedo, Difference in Surface Albedo, Airmass, and Deviation of Surface Pressure

Figure 4 shows the relationship between ∆ratio and the related variables (ρCH4, ∆alb, airmass,
and ∆Psrf). Section 3.2.1 showed that ∆ratio was stable for data with fc ≤ 0.2 and increased with I2µm

continuously; therefore, the results are separately plotted according to the fc and I2µm values. Case 1: fc

≤ 0.2 and I2µm ≤ 1; Case 2: fc ≤ 0.2 and I2µm > 1; Case 3: fc > 0.2 and I2µm ≤ 1. The results for Case 1 are
discussed in this paragraph. ∆ratio increases with ρCH4, although the variation is gentler than that for
the other variables (Figure 4b–d). One possible reason is that the high surface albedo is prone to bring
light path enhancement, by which the influence of the difference in the vertical profile between CH4

and CO2 becomes large (even if the surface albedo is similar between the CH4 and CO2 bands). For the
difference in albedo, ∆ratio clearly increases with the increase in ∆alb. As Butz et al. [23] indicated
in their theoretical study and as discussed in the former section, the difference in albedo causes a
difference in optical path length modification between the CH4 and CO2 bands, significantly affecting
the ratio component. ∆ratio decreases with an increase in airmass. The influence of optical path length
modification seems to be relatively small for the cases with large airmass (the modified light path is
relatively short when the geometric path is long). The characteristics of the retrieval (e.g., errors in
spectroscopy) might also affect the airmass dependence. The airmass dependence of retrieved XCH4

and XCO2 has been corrected empirically for satellite data [37,39] and TCCON data [69,70]. Recently,
Mendonca et al. [71] found that using speed-dependent Voigt line shapes for retrieval of the O2 total
column reduces the airmass dependence of TCCON XCO2. ∆ratio significantly increases with ∆Psrf,
although the number of data with large ∆Psrf is small. Although ∆Psrf is related to the optical path
length modification for the O2 A band (TANSO-FTS Band 1), the large ∆Psrf indicates the possibility
that the light path enhancement effect, rather than light path shortening, is dominant for Band 2.
More specifically, multiple scattering might occur within the area where the concentration of CH4 is
relatively high compared to the column average. In contrast to the cases with high fc, the fraction of
light passing a short path is expected to be low, and the influence of the ground surface is expected to
be large, yielding a positive bias in the ratio component.
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Figure 4. Variation of the relative difference in the ratio component between GOSAT and TCCON (∆ratio)
according to the related variables: (a) retrieved surface albedo of the CH4 band (ρCH4); (b) difference
in the retrieved surface albedo (CH4 band minus CO2 band, ∆alb); (c) airmass; (d) deviation of the
retrieved clear-sky surface pressure from its prior (∆Psrf). In each panel, the mean and standard
deviation (SD) of ∆ratio and the number of data points (N) for each bin are presented. The results are
separately plotted according to the cloud fraction (fc) and the normalized 2 µm band radiance (I2µm).

For Case 2, ∆ratio is larger than that for Case 1. Although the dependence of ∆ratio on ∆alb is in the
same direction between Cases 1 and 2, the increase in ∆ratio with ∆alb becomes steep, meaning that the
influence of the difference in surface albedo becomes large when elevated scattering materials exist.
In contrast, for Case 3, the variation trend of ∆ratio with ρCH4 and ∆alb differs significantly from that of
Cases 1 and 2. This is because clouds affected the retrieved albedo (ρCH4 and ∆alb increased with the
increase in fc).

3.2.3. Vertical Profile of CH4 and CO2

Figure 5 shows the variation of ∆ratio with RCH4 and RCO2 (see Section 2.3 for the definition).
The variation of ∆ratio with RCH4 is small if the possibility of the existence of elevated scattering materials
is low (Case 1). In contrast, for Case 2, ∆ratio increases with the increase in RCH4. This corresponds to
the qualitative discussion of the influence of the CH4 profile on ∆ratio in Section 3.2.1. Although the
retrieval cannot reproduce the real-world profile in detail, it is considered that the retrieved RCH4

represents the real-world RCH4 (Ract
CH4) well and can be used to explain ∆ratio. In contrast to CH4,

∆ratio was expected to decrease with an increase in RCO2 because CO2 is the denominator of the ratio
component. However, no clear relationship between ∆ratio and RCO2 is seen in Figure 5. Two possible
reasons are considered: (1) the influence of the CO2 profile on the ratio component is small, since Ract

CO2
is smaller than Ract

CH4 in general; (2) the sensitivity of the retrieval to the vertical profile for CO2 is
lower than that for CH4 (DFS for XCO2,clr was 1.0–1.5 and that for XCH4,clr was 1.7–2.3 in the present
study). When only the retrieved data having DFS for XCO2,clr ≥ 1.3 (almost half of all data) were
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used, the results were not noticeably changed (Figure S5). For Case 3, the range of RCH4 and RCO2

differs from that for Cases 1 and 2, since RCH4 and RCO2 were affected by clouds. RCH4 was negatively
correlated with fc, which is considered to contribute to the increase in ∆ratio with RCH4. Although
a variation of ∆ratio with RCO2 was expected for Case 3, since RCO2 was also negatively correlated
with fc, the variation was small. The correlation between the variables (as mentioned in Sections 3.2.2
and 3.2.3) was accounted for in the variable selection for the bias correction (Section 4.2).Remote Sens. 2020, 11, x 10 of 30 
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Figure 5. Variation of the relative difference in the ratio component between GOSAT and TCCON
(∆ratio) according to the ratio between the partial column-averaged dry-air mole fractions for the lower
atmosphere and that for the upper atmosphere (RCH4 and RCO2): (a) Case 1 (the cloud fraction (fc) ≤ 0.2
and the normalized 2 µm band radiance (I2µm) ≤ 1); (b) Case 2 (fc ≤ 0.2 and I2µm > 1); (c) Case 3
(fc > 0.2 and I2µm ≤ 1).

4. Bias correction

4.1. Method

Linear regression was used as in many previous studies [20,37,39,72] as

∆pred
ratio=

∑i=n

i=1
Cixi + Cn+1, (3)

where ∆pred
ratio is the predicted ∆ratio, n is the number of variables, C1–Cn+1 are the regression coefficients,

and xi represents the explanatory variable. In the calculation of coefficients (least squares method),
each data point (matched GOSAT and TCCON data) was weighted according to the amount of total
matched GOSAT and TCCON data of the site to which the data point belonged. More specifically,
the weight was given as Rsite/Nj and 1/Nj for the data from sites in the northern hemisphere and that
from sites in the southern hemisphere, respectively, where Nj is the total number of matched GOSAT
data for each site, and Rsite is the number of sites in the southern hemisphere divided by that in the
northern hemisphere. For each GOSAT data point, the correction was calculated as

Xcor
ratio,G = Xratio,G/

(
1 + ∆pred

ratio/100
)
, (4)

where Xcor
ratio,G is the corrected ratio component.

4.2. Selecting Explanatory Variables

The correlation between the variables and the correlation between ∆ratio and the variables were
evaluated to select the variables for the bias correction (Figure 6). In Figure 6, the data with NDSI ≤ 0.4
were used to calculate the correlation coefficient with respect to fc. Figure 6a shows that the variables
were correlated with each other. In particular, fc was highly correlated with the other variables,
as mentioned in Sections 3.2.2 and 3.2.3. Therefore, the variation of ∆ratio was expected to be explained
by the use of fewer than the total number of variables. We confirmed that the correlation between ∆ratio

and the variables did not become small by the correction using one variable. Therefore, corrections
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by multiple linear regression were tested. Figure 6b shows the correlation coefficient between the
corrected ∆ratio and the variables for the corrections using different numbers of variables. First, I2µm

and airmass were used, since ∆ratio varied significantly with these variables (Figures 3 and 4), and the
correlation between them was low (Figure 6a). When three variables including RCH4 were used,
the correlation coefficient became close to zero, except in the case of ∆alb. This can be attributed to
the fact that RCH4 included information on optical path length modification by scattering by clouds
and aerosols. RCH4 is considered to be a useful variable for correcting ∆ratio, although the relationship
between ∆ratio and RCH4 is somewhat empirical, especially when fc is high.
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Figure 6. Correlation coefficient (a) between variables and (b) between the relative difference in the ratio
component between GOSAT and TCCON (∆ratio) and variables. The color in the figure corresponds
to the coefficient value (blue: large negative coefficient; white: zero; red: large positive coefficient).
The meaningless pixels are filled by gray. Eight variables were used: the normalized 2 µm band
radiance (I2µm), cloud fraction (fc), retrieved surface albedo of CH4 band (ρCH4), difference in the
retrieved surface albedo (CH4 band minus CO2 band, ∆alb), airmass (Am), deviation of the retrieved
clear-sky surface pressure from its prior (∆Psrf), and ratio between the partial column-averaged dry-air
mole fractions for the lower atmosphere and that for the upper atmosphere (RCH4 and RCO2). In (b),
results for bias-uncorrected ∆ratio and bias-corrected ∆ratio (corrections using two, three, and four
variables) are shown. Data with fc = 0 and that with I2µm ≤ 1 were used. Only data with NDSI ≤ 0.4
were used to calculate the correlation coefficient for fc.

In addition to the correlation coefficient, the relationship between ∆ratio and the variables was
further evaluated. Figure 7 shows the variation of ∆ratio with the variables. The results were separately
plotted for the different hemispheres and seasons in order to confirm that the spatiotemporal variation
of bias was reduced. Data with NDSI≤ 0.4 were used to obtain the variation of ∆ratio with fc. Even when
the correction was conducted using I2µm and one other variable, the difference in variation of the
∆ratio with I2µm between the northern and southern hemispheres remained. Although the number
of TCCON sites and the number of data points for the southern hemisphere were smaller than those
for the northern hemisphere (larger standard error for the southern hemisphere), the difference in
variation of the ∆ratio with I2µm between hemispheres was larger than the standard error. The cause of
this difference is that the degree of influence of elevated scattering materials on ∆ratio varies according
to the vertical profile of CH4. When RCH4 was used in the correction, the difference in variation of the
∆ratio with I2µm between the hemispheres was significantly reduced. For fc, the corrected ∆ratio varies
around zero for both hemispheres and both seasons. For other variables, the difference between the
hemispheres becomes small. Then, we decided to use the four variables airmass, I2µm, RCH4, and ∆alb

for the bias correction.
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Figure 7. Variation of the relative difference in the ratio component between GOSAT and TCCON
(∆ratio) according to the explanatory variables: normalized 2 µm band radiance (I2µm); cloud fraction
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(fc); retrieved surface albedo of CH4 band (ρCH4); difference in the retrieved surface albedo (CH4

band minus CO2 band, ∆alb); airmass (Am); deviation of the retrieved clear-sky surface pressure from
its prior (∆Psrf); and ratio between the partial column-averaged dry-air mole fractions for the lower
atmosphere and that for the upper atmosphere (RCH4 and RCO2). Results for (a) bias-uncorrected ∆ratio

and bias-corrected ∆ratio (corrections using (b) two, (c) three, and (d) four variables) are presented.
Results for the winter (January to April) northern hemisphere, the summer (July to October) northern
hemisphere, and the southern hemisphere are plotted with different colors. Data with fc = 0 and that
with I2µm ≤ 1 were used. Only data with NDSI ≤ 0.4 were used to obtain the variation of ∆ratio with fc.

4.3. Quality Control

As quality control before evaluating the bias-corrected ratio component, cloud screening was
investigated. Figure 8 shows the variation of the corrected ∆ratio by the four variables according to
fc and I2µm. The data with NDSI ≤ 0.4 were used. Although the data with fc = 0 and those with
I2µm ≤ 1 were used for the results shown in the previous sections (Figures 3–7), all data were used to
generate Figure 8 (similar to Figure 2). Although ∆ratio is close to zero for many cases where fc is > 0
and I2µm is > 1 (i.e., data not used for the regression), the large mean and standard deviation of ∆ratio

remains. Therefore, the cloud screening was conducted as follows. We considered a function of fc as
g(fc) = (afc + b)/(cfc + 1), where a, b, and c are coefficients, so that the tolerance range of I2µm decreases
with the increase in fc. The coefficients were determined to make the criteria be I2µm ≤ 15 when fc =

0 and I2µm ≤ 1 when fc = 1, and to screen out the data in areas where the mean and/or the standard
deviation of ∆ratio were large in Figure 8. The criteria of I2µm ≤ 15 when fc = 0 is based on the result
that the difference in ∆ratio between the hemispheres became large with the increase in I2µm (Figure 7).
Then, we decided to reject the data with I2µm > g(fc), where coefficients a, b, and c were 46, 15, and 60,
respectively. The criteria are depicted by the white line in Figure 8.
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Figure 8. Similar to Figure 2, but for the bias-corrected ratio component: (a) mean relative difference
in the ratio component between GOSAT and TCCON (∆ratio); (b) standard error (SE); (c) standard
deviation (SD) of ∆ratio; (d) number of data points. The white line indicates the cloud screening criterion.

4.4. Evaluating the Corrected Results

To examine the usefulness and applicability of the bias correction, the matched GOSAT and
TCCON data acquired in the even-numbered years were used to obtain the regression coefficients,
and then the correction was applied to the GOSAT data acquired in the odd-numbered years. The
obtained coefficients for airmass, I2µm, RCH4, and ∆alb and the intercept were −0.28, 0.019, 1.06,
17.69, and −0.31, respectively (note that the four variables are dimensionless; see Section 2.3 for the
definition of the variables). The cloud screening described in Section 4.3 was conducted. Figure 9
shows the comparison of the bias, precision, and interseasonal bias for each TCCON site between the
bias-uncorrected and the bias-corrected ratio component. After the bias correction, the interseasonal
bias was reduced, and the variation between sites in the northern hemisphere and the difference
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between hemispheres became small. The precision and intersite bias were also improved. The
reduction of precision value was statistically significant (p < 0.001 from F test). The reduction of
intersite bias value was less significant, but the 75% confidence intervals (CI) showed almost no
overlap (0.177–0.234% and 0.143–0.179% for before and after the bias correction, respectively). The
CI of intersite bias was estimated by the nonparametric bootstrap method. For each site, a bootstrap
sample was taken, and a bootstrap estimate of bias (mean ∆ratio of the sample) was obtained. Then, the
intersite bias (standard deviation of the estimated bias values for individual sites) was calculated. This
calculation was repeated 2000 times, and the CI was obtained from the 2000 intersite bias values.
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Figure 9. Latitudinal plot of (a) the bias, (b) precision, and (c) interseasonal bias of the uncorrected and
the bias-corrected GOSAT ratio component for each TCCON site. Only sites having more than nine
data points are shown. The bias, precision, correlation coefficient (R), and the slope and intercept of
the linear regression calculated using all data (in a manner similar to Figure 1a) are presented below
the graphs.

Figure 10 shows the temporal variation of the uncorrected and corrected ∆ratio for each TCCON
site. The results for TCCON sites with long-term observation and a large number of data points
are shown. For other sites, it was difficult to discuss the temporal variation of ∆ratio, but no results
contradicting the following discussion were obtained. On the whole, seasonality was seen for the
uncorrected ∆ratio, but it was significantly reduced by the correction. ∆ratio was small even before the
correction for the high-latitude site (Sodankylä [73]). Such a general seasonal and latitudinal pattern of
∆ratio seems to be caused by the airmass dependence of ∆ratio (Figure 4). In addition to this general
pattern, the characteristics of each site were observed as described below. For each site, the temporal
variation of ∆ratio was determined as follows: the mean ∆ratio was calculated for each season (DJF,
MAM, JJA, SON) in each year (four seasons × five years), and then the mean and the standard deviation
of the mean ∆ratio values were calculated (Figure 11). For comparison, results for the corrected ∆ratio

with two and three variables are also shown.
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Figure 10. Temporal variation of the relative difference in the ratio component between GOSAT
(bias-uncorrected and bias-corrected) and TCCON (∆ratio) for each TCCON site: (a) Sodankylä;
(b) Orléans; (c) Park Falls; (d) Lamont; (e) Tsukuba; (f) Caltech; (g) Saga; (h) Darwin; (i) Wollongong.
Individual data and monthly mean are plotted. Results for the data acquired in the odd-numbered
years are shown to assess the applicability of the bias correction using the independent data (coefficients
for the correction were obtained using the data acquired in the even-numbered years).
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Figure 11. (a) Mean and (b) standard deviation (SD) of the mean values of relative difference in the
ratio component between GOSAT and TCCON (∆ratio) calculated for individual seasons (each season
in each year) for each TCCON site. Results for the bias-uncorrected and bias-corrected ratio component
(corrections using two, three, and four variables) are presented. The color in the figure corresponds to
the ∆ratio value (blue: large negative value; white: zero; red: large positive value) and the SD value
(blue: zero; red: large value) for the mean and SD, respectively.
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For Sodankylä, the uncorrected ∆ratio was smaller than that for the other sites owing to the large
airmass. The low possibility of elevated scattering materials (I2µm was small for most of the data) also
seems to have contributed to the small ∆ratio. ∆ratio was overcorrected by the correction using two
variables. fc tended to be high for the data over this site, and Ract

CH4 seemed to be large according to
the model (prior value). Then, the overcorrection was reduced by using four variables. For Orléans,
occasional large I2µm, in addition to the airmass effect, seemed to cause a large standard deviation;
however, the deviation decreased after the correction. For Park Falls, the uncorrected ∆ratio was
considered to be affected by many factors. The temporal variation of ∆alb was large, since this site
was covered by snow during winter and by vegetation during summer. Large I2µm was observed
during spring. Ract

CO2 is expected to be small during summer due to photosynthesis by vegetation.
Ract

CH4 seemed to be large during summer according to the model (prior value). Correction using
RCH4 reduced ∆ratio, although a relatively large ∆ratio remained, since the complicated conditions
were not perfectly accounted for by the correction. For Lamont, large ∆alb generally brought large
∆ratio. The correction using ∆alb reduced ∆ratio. A large uncorrected ∆ratio was occasionally seen in the
early months of the year (Figure 10). We found that the large ∆ratio corresponded to the large I2µm

in February 2013 and 2017. According to Figure 10, these large errors were properly corrected. The
use of I2µm in the correction had only a small effect on the averaged results (Figure 11), since I2µm

was not always large; however, the effect could be confirmed for individual cases. For Tsukuba, a
large I2µm was observed during spring to summer, which enhanced the seasonality of the uncorrected
∆ratio. ∆alb of this site was small, and thus the overcorrection was reduced by using ∆alb in the
correction. For Caltech, ∆alb was small, and the temporal variations of Ract

CH4 and Ract
CO2 were small

according to the model. The difference between Ract
CH4 and Ract

CO2 was also small. Then, the uncorrected
∆ratio showed small temporal variation, and the corrected ∆ratio varied around zero with the small
temporal variation retained. For Saga, the airmass effect and the large I2µm during spring to summer
enhanced the seasonality, and ∆ratio was significantly reduced by the correction using two variables.
The temporal variation of Ract

CH4 was expected to be large according to the model. Thus, using RCH4

in the correction improved both the mean and standard deviation (Figure 11). For the sites in the
southern hemisphere (Darwin and Wollongong), although Ract

CH4 and Ract
CO2 were expected to be small,

the amplitude of temporal variation of uncorrected ∆ratio was comparable to that for the sites in the
northern hemisphere (Figure 10). For Darwin, the uncorrected ∆ratio showed large temporal variation,
although the variation of airmass was small. For Wollongong, occasional large uncorrected ∆ratio did
not correspond to the large I2µm. The standard deviation was reduced only slightly by the correction
for these sites (Figure 11). Although using RCH4 in the correction reduced the difference between the
northern and southern hemispheres (Figure 7), unaccounted factors might remain. On the whole, the
optimal variables differ between sites; but the correction using four variables brought the best result in
terms of the balance between sites (the mean of absolute ∆ratio values for individual sites was close to
zero and the variation between sites was small).

We also conducted a bias correction for the data acquired with gain M using the four variables
and the above-mentioned coefficients (i.e., the coefficients were obtained using the gain H data).
The bias correction functioned properly for the gain M data, although the bias was small even for the
uncorrected data (Appendix B). This result supports the applicability of the bias correction.

5. Conclusions

The relationship between the bias in the GOSAT ratio component and the variables derived from
GOSAT data was investigated, and the bias correction and its evaluation were performed. The bias
between the uncorrected GOSAT ratio component and the TCCON ratio component was 0.43% when
the cloud-free condition was expected (normalized 2 µm band radiance (I2µm) ≤ 1 and cloud fraction
(fc) = 0). The bias increased with the increase in I2µm and reached 1.5% when I2µm was 30. The variation
of bias with fc was small when fc was small or large (the bias was 0.4% to 0.5% for the data with
fc ≤ 0.2 and −0.1% to 0% for the data with fc ≥ 0.4). The variation of bias according to I2µm and fc
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could be interpreted based on the difference in the detection target between I2µm and fc, the difference
in surface albedo between the CH4 and CO2 bands (∆alb), and the vertical profile of CH4 and CO2.
The relationship between the bias and other related variables was also investigated. We used the
retrieved profile and the ratios between the upper and lower atmosphere CH4 and CO2 (RCH4 and
RCO2), in addition to the variables that have been used in the bias correction for the full-physics method
(airmass) and in the cloud screening (deviation of the retrieved clear-sky surface pressure from its prior
(∆Psrf)) and that have been revealed to be a large error source for the proxy method (∆alb). The bias
showed clear variations with the variables except for RCO2.

Then, airmass, I2µm, RCH4, and ∆alb were selected as explanatory variables for a linear regression
of the bias by considering the correlation between the variables and the correlation between the
variables and the bias. Using RCH4 in the correction reduced the dependence of the bias on fc and
∆Psrf. The difference in bias between the northern and the southern hemispheres was also reduced.
These results are attributed to the information on the CH4 vertical profile and the effect of atmospheric
scattering included in RCH4. Although the relationship between bias and RCH4 is somewhat empirical,
RCH4 is an important variable for correcting the bias in the ratio component. Before evaluating the
corrected results, cloud screening was applied. The criteria were determined as the threshold value of
I2µm decreases with the increase in fc (I2µm ≤ 15 when fc = 0 and I2µm ≤ 1 when fc = 1), by investigating
the variation of bias in the corrected ratio component with fc and I2µm. Although fc and I2µm have
been used for the cloud screening of the GOSAT proxy retrievals, our results give a quantitative basis
for the screening.

Comparison between the corrected ratio component and TCCON showed that the precision
(standard deviation of the difference between GOSAT and TCCON) was reduced from 0.61% to 0.55%,
and the intersite bias was reduced from 0.20% to 0.15%. The temporal variation of bias was further
investigated for the sites having a long-term record and a large amount of data. The uncorrected bias
showed a seasonality with a large bias in summer. The difference in monthly mean bias between
summer and winter exceeded 1% for several sites. In addition to such seasonality, the months with a
large mean bias corresponded to the months with a large mean I2µm. The temporal variation of bias
was significantly reduced by the correction. Although the optimal variables differed between sites,
the mean and standard deviation of the mean bias values for individual seasons (each season in each
year) were within 0.2% for most of the sites, when the four variables were used for the correction.

The bias-corrected and cloud-screened ratio component data in the present study reduce the
concern that the residual errors related to the atmospheric scattering and the property of ground
surfaces affect the inverse modeling of CH4 sources and sinks. In future work, the impact of utilizing
the bias-corrected data in the inverse modeling will be investigated. GOSAT has been operating for
more than 10 years. GOSAT-2, a successor mission to the GOSAT, was launched on 29 October 2018.
Providing long-term, consistent, and high-quality XCH4 data set by the GOSAT series is expected to
contribute to the studies on CH4 budgets over the globe. To construct such a data set, GOSAT and
GOSAT-2 data will be continuously compared with each other and with the data from other satellites
and TCCON.
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of the GOSAT clear-sky retrieval for (a) XCH4 and (b) XCO2 (monthly mean values of GOSAT data matched
the TCCON data). Figure S3: Similar to Figure 1, but for the data with TCCON Fractional Variation in
Solar Intensity (FVSI) ≤ 1% and the data with FVSI > 1%. Figure S4: Relationship between the relative difference
in the ratio component between GOSAT and TCCON (∆ratio) and the TCCON Fractional Variation in Solar Intensity
(FVSI). Figure S5: Similar to Figure 5, but using GOSAT data with DFS for XCO2 ≥ 1.3.
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Appendix A. TCCON Sites and the Influence of the Matching Criteria of GOSAT and TCCON

We used TCCON data from 26 sites [41–67]. Figure A1 shows the map of TCCON sites, and Table A1
shows an overview of the sites. Basically, the sites are located in areas with relatively uniform surface
properties and are reasonably far from anthropogenic sources. However, several sites are in areas with
nonflat topography or are located near or in urban areas. Such characteristics are summarized in the
rightmost column of Table A1.

In the main text, GOSAT data within a ±2◦ latitude/longitude box centered at each TCCON site
were used for the comparison. The influence of the matching criteria on the analysis was assessed.
Table A2 shows the mean and standard deviation of ∆ratio for each TCCON site. Results for the different
matching criteria are tabulated. The mean value showed almost no clear trend, but the deviation
value decreased as the matching criteria were tightened. Figure A2 shows the relationship between
∆ratio and the related variables for the matching criteria of ±2◦ and that of ±0.5◦. Although more
deviated values are seen for the matching criteria of ±2◦, the regression lines were similar between the
criteria. The mean ∆ratio values for the bins also show similar trends between the criteria (Figure A3).
The skewness around 0 indicates the small asymmetry for the distribution of ∆ratio values for each bin.
Large negative kurtosis values were hardly seen, meaning there was no high frequency for either side
(large and small ∆ratio).
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Table A1. Overview of the TCCON sites used.

Site Country Latitude
(deg.)

Longitude
(deg.) Altitude(km) Observation Period

of the Data Used
Specific

Characteristics

Ny
Ålesund

Spitzbergen,
Norway 78.92N 11.92E 0.02 6 April 2014–

31 December 2018

Useful data are not
obtained during

winter due to the high
solar zenith angle.

Sodankylä Finland 67.37N 26.63E 0.19 16 May 2009–
31 December 2018

Useful data are not
obtained during

winter due to the high
solar zenith angle.

East
Trout
Lake

Canada 54.35N 104.99W 0.50 7 October 2016–
31 December 2018

Bialystok Poland 53.23N 23.03E 0.18 23 April 2009–
1 October 2018

Bremen Germany 53.10N 8.85E 0.03 22 January 2010–
31 December 2018

The site is in the
middle-sized city

(population ~550 000).

Karlsruhe Germany 49.10N 8.44E 0.12 19 April 2010–
31 December 2018

The site is near the
middle-sized city

(population ~300 000).

Paris France 48.85N 2.36E 0.06 23 September 2014–
31 December 2018

The site is in the large
city (population ~2.15

million).

Orléans France 47.97N 2.11E 0.13 29 August 2009–
31 December 2018

Garmisch Germany 47.48N 11.06E 0.74 23 April 2009–
31 December 2018

Park
Falls USA 45.95N 90.27W 0.44 23 April 2009–

31 December 2018

Rikubetsu Japan 43.46N 143.77E 0.38 16 November 2013–
31 December 2018

Indianapolis USA 39.86N 86.00W 0.27 23 August 2012–
1 December 2012

The site is in the
suburban area of a
middle-sized city

(population ~880 000).

Four
Corners USA 36.80N 108.48W 1.64 16 March 2013–

4 October 2013

The site is far from the
city area but observes

plant plumes and
methane from mine
shafts and fugitive
leaks [74,75]. The

observed total column
peaks in the late

morning.

Lamont USA 36.60N 97.49W 0.32 23 April 2009–
31 December 2018

Anmyeondo Korea 36.54N 126.33E 0.03 2 February 2015–
18 April 2018

The site is located on
the west coast of the
Korean Peninsula.

Tsukuba Japan 36.05N 140.12E 0.03 4 August 2011–
31 December 2018

The site is in the
middle-sized city

(population ~240 000).

Edwards USA 34.96N 117.88W 0.70 20 July 2013–
31 December 2018

The site is adjacent to
a very bright playa.

JPL USA 34.20N 118.18W 0.39 19 May 2011–
14 May 2018

The site is near the
large city (population

~17 million).

Caltech USA 34.14N 118.13W 0.23 20 September 2012–
31 December 2018

The site is near the
large city (population

~17 million).
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Table A1. Cont.

Site Country Latitude
(deg.)

Longitude
(deg.) Altitude(km) Observation Period

of the Data Used
Specific

Characteristics

Saga Japan 33.24N 130.29E 0.01 28 July 2011–
31 December 2018

The site is in the
middle-sized city

(population ~230 000).

Hefei China 31.91N 117.17E 0.03 18 September 2015–
31 December 2016

The site is near the
large city (population

~5 million).

Burgos Philippines 18.53N 120.65E 0.04 3 March 2017–
31 December 2018

The site is at the
northernmost point of

Luzon Island in the
Philippines.

Manaus Brazil 3.21S 60.60W 0.05 1 October 2014–
24 June 2015

Darwin Australia 12.42S 130.89E 0.03 23 April 2009–
31 December 2018

Lauder New
Zealand 45.04S 169.68E 0.37 23 April 2009–

31 December 2018
The site is in the midst

of rolling hills.

Wollongong Australia 34.41S 150.88E 0.03 23 April 2009–
31 December 2018

The site is between
the ocean and a sharp

escarpment.

Table A2. Mean (µ) and standard deviation (SD) of the relative difference in the ratio component
between GOSAT and TCCON and the number of matched GOSAT and TCCON data points (N) for
each TCCON site. Results for four different matching criteria are shown: GOSAT data within ±2◦,
±1◦, ±0.5◦, and ±0.1◦ latitude/longitude boxes centered at each TCCON site. Only sites having more
than 29 data points are shown. The GOSAT data obtained under conditions where cloud-free scenes
were expected (cloud fraction = 0 and normalized 2 µm band radiance ≤ 1) were used. Intersite bias is
calculated using the same sites as in the case of matching criteria of ±0.1◦.

±2◦ ±1◦ ±0.5◦ ±0.1◦

Site µ (%) SD (%) N µ (%) SD (%) N µ (%) SD (%) N µ (%) SD (%) N

Sodankylä 0.43 0.74 328 0.26 0.85 88
East Trout Lake 0.57 0.68 40

Bialystok 0.50 0.56 263 0.46 0.51 87 0.53 0.45 50
Bremen 0.51 0.54 81

Karlsruhe 0.22 0.62 267 0.19 0.57 102
Paris 0.43 0.52 102 0.50 0.50 59

Orléans 0.35 0.51 518 0.35 0.51 224 0.43 0.52 75
Garmisch 0.55 0.61 286 0.53 0.56 184 0.54 0.52 56
Park Falls 0.61 0.55 1017 0.61 0.55 728 0.59 0.55 575 0.60 0.55 536
Rikubetsu 0.63 0.46 135 0.73 0.44 56

Indianapolis 0.44 0.64 67
Lamont 0.59 0.54 1949 0.59 0.51 855 0.61 0.45 461 0.62 0.45 305

Anmeyondo 0.51 0.45 50 0.52 0.37 33
Tsukuba 0.31 0.61 1407 0.31 0.59 1186 0.28 0.60 675 0.41 0.49 179
Edwards 0.43 0.45 126 0.60 0.45 59

JPL 0.26 0.49 609 0.27 0.43 490 0.24 0.39 438 0.25 0.38 103
Caltech 0.32 0.43 2067 0.32 0.43 1924 0.32 0.43 1412 0.31 0.43 853

Saga 0.59 0.59 438 0.58 0.55 288 0.65 0.53 222 0.72 0.52 66
Darwin 0.37 0.36 555 0.38 0.36 500 0.56 0.36 46 0.48 0.34 30

Wollongong 0.42 0.71 349 0.31 0.58 195 0.34 0.61 100
Lauder 0.36 0.35 124 0.35 0.34 121 0.37 0.31 92 0.36 0.30 85
All sites 0.43 0.55 10846 0.41 0.52 7263 0.40 0.51 4357 0.45 0.49 2249

Intersite bias 0.14 0.13 0.16 0.15
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Figure A2. Relationship between the relative difference in the ratio component between GOSAT and
TCCON (∆ratio) and the related variable: (a) normalized 2µm band radiance (I2µm); (b) difference in
retrieved surface albedo (CH4 band minus CO2 band, ∆alb); (c) airmass; (d) ratio between the partial
column-averaged dry-air mole fractions for the lower atmosphere and that for the upper atmosphere
(RCH4). Results for the different matching criteria are plotted (GOSAT data within ±2◦ and ±0.5◦

latitude/longitude boxes centered at each TCCON site). Linear regressions are depicted by solid lines.
For I2µm and RCH4, the data with cloud fraction = 0 were used. For ∆alb and airmass, the data with
cloud fraction = 0 and I2µm ≤ 1 were used.
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Figure A3. Relationship between the relative difference in the ratio component between GOSAT and
TCCON (∆ratio) and the related variables. The variables (a–d) are similar to those in Figure A2, but in
each panel, the mean and standard deviation (SD) of ∆ratio, number of data points (N), skewness, and
kurtosis for each bin are shown. Results for the different matching criteria are plotted (GOSAT data
within ±2◦ and ±0.5◦ latitude/longitude boxes centered at each TCCON site). For I2µm and RCH4,
the data with cloud fraction = 0 were used. For ∆alb and airmass, the data with cloud fraction = 0 and
I2µm ≤ 1 were used.

Appendix B. Bias Correction for the Data Acquired by Gain M

The different gain settings of the TANSO-FTS (H and M) only affect the spectral radiance of the
Band 1 [76]. Therefore, the ratio component should show similar characteristics between the data
acquired with gain H and that acquired with gain M. Then, the bias correction equation established
using the gain H data (four variables with the coefficients shown in Section 4.4) was applied to the gain
M data. Figure A4 shows the scatterplot of the ratio component derived from GOSAT gain M data and
that derived from TCCON. The results for each site are shown in Table A3. The bias-uncorrected and
bias-corrected results are presented in the left and right sides in Figure A4 and Table A3, respectively.
Figure A5 shows the dependence of ∆ratio on the related variables for the uncorrected and the corrected
data. The matching criteria were similar to those in the main text. Only GOSAT data over the areas
east of 118◦W were used to reject the data over Bakersfield where there are oil fields. According to
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Figure A4, the bias was smaller than that for the gain H data for the uncorrected data, and the bias
was slightly overcorrected. Table A3 shows that the overcorrection was seen for the data of JPL and
Caltech. This is reasonable for the following reasons. Almost all the GOSAT data acquired with gain
M in this region were located around the Edwards site. For the time period during which TCCON
observation was not being performed at the Edwards site, the GOSAT data were matched with the
TCCON data at JPL or Caltech. The Edwards site is located in the north of San Gabriel Mountains,
while the other two sites are located in the south of the mountains. Therefore, it was possible that the
air at the other two sites was occasionally different from the air at the Edwards site. Then, the results
for the Edwards site (bias of −0.07% after the correction) indicate that the GOSAT data can be used
for the proxy retrieval without exercising caution with respect to the gain settings and support the
applicability of the bias correction.
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Figure A4. Similar to Figure 1a but for GOSAT data acquired with gain M: (a) bias-uncorrected;
(b) bias-corrected.

Table A3. The relative difference in the ratio component between GOSAT (gain M) and TCCON (∆ratio)
for each site: mean (µ), standard deviation (SD), and interseasonal bias (SSD) of ∆ratio and the number
of matched GOSAT and TCCON data points (N) are shown.

Uncorrected Bias-Corrected
Site µ (%) SD (%) SSD (%) N µ (%) SD (%) SSD (%) N

Edwards 0.35 0.41 0.11 766 −0.07 0.39 0.04 766
JPL 0.01 0.50 0.11 214 −0.39 0.46 0.09 214

Caltech 0.04 0.35 15 −0.40 0.34 15
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Figure A5. Relationship between the relative difference in the ratio component between GOSAT and
TCCON (∆ratio) and the related variables for the GOSAT data acquired with gain M: (a) normalized
2 µm band radiance (I2µm); (b) cloud fraction (fc); (c) retrieved surface albedo of CH4 band (ρCH4);
(d) difference in the retrieved surface albedo (CH4 band minus CO2 band, ∆alb); (e) airmass (Am);
(f) deviation of the retrieved clear-sky surface pressure from its prior (∆Psrf); (g,h) ratio between
the partial column-averaged dry-air mole fractions for the lower atmosphere and that for the upper
atmosphere (RCH4 and RCO2). Mean ∆ratio for each bin is plotted for the bias-uncorrected and
bias-corrected data.
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