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Abstract: Missing pixels is a common issue in satellite images. Taking Landsat 8 Analysis Ready
Data (ARD) Land Surface Temperature (LST) image as an example, the Source-Augmented Partial
Convolution v2 model (SAPC2) is developed to reconstruct missing pixels in the target LST image
with the assistance of a collocated complete source image. SAPC2 utilizes the partial convolution
enabled U-Net as its framework and accommodates the source into the framework by: (1) performing
the shared partial convolution on both the source and the target in encoders; and (2) merging the
source and the target by using the partial merge layer to create complete skip connection images for
the corresponding decoders. The optimized SAPC2 shows superior performance to four baseline
models (i.e., SAPC1, SAPC2-OPC, SAPC2-SC, and STS-CNN) in terms of nine validation metrics. For
example, the masked MSE of SAPC2 is 7%, 20%, 44%, and 59% lower than that of the four baseline
models. On the six scrutinized cases, the repaired target images generated by SAPC2 have the fewest
artifacts near the mask boundary and the best recovery of color scales and fine textures compared
with the four baseline models.

Keywords: source-augmented partial convolution; SAPC2; partial merge layer; satellite image
inpainting; landsat 8 analysis ready data (ARD); land surface temperature (LST)

1. Introduction

Satellite remote sensing systems can acquire observations/images of atmosphere, ocean, and the
Earth’s surface, providing regional or even global coverages with different spatial resolutions. However,
due to satellite sensor malfunction and poor atmospheric conditions, remote sensing images often suffer
from missing pixel problems, such as thick cloud cover, dead pixels, and the scan line corrector (SLC)
failure [1]. In particular, the cloud fraction over land and ocean is about 55% and 72%, respectively [2].
Therefore, missing pixel problems are common for remote sensing images, which may affect subsequent
image analysis and applications.

Land surface temperature (LST), as one of the most important surface parameters for meteorological
and hydrological studies [3], is key to monitor Earth’s surface energy and water balance related
landscape processes and responses [4]. Over the past several decades, although accuracy of LST
retrieval from satellite thermal infrared (TIR) measurements has significantly improved, missing pixel
problems still exist for satellite-based LST products/images (e.g., Landsat 8 Analysis Ready Data LST
tiles [5]).
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For remote sensing imagery including LST images, there are a variety of traditional missing
information reconstruction methods. They can be categorized into four groups [1]: (i) spatial-based
methods that assume statistical or geometrical structures from the unobscured part are transferable
(e.g., geostatistical interpolation [6], propagated diffusion [7], l1 − l2 norm regularization [8,9],
and exemplar-based inpainting [10]); (ii) spectral-based methods that utilize the redundant spectral
information in multispectral and hyperspectral images (e.g., [9]); (iii) temporal-based methods that
use the temporal dependency information among images (e.g., temporal replacement [11], temporal
filter [12], and temporal learning model [13]); and (iv) spatial-temporal-spectral-based methods (e.g.,
spatial completion with temporal guidance [14] and joint spectral-temporal methods [15]). In addition,
Sun et al. (2018) [16] proposed a special spectral method, graph Fourier transform of matrix network,
to recover the entire matrix network from incomplete observations.

Among the traditional methods, source (or reference) images are mostly used in temporal-based-
related methods. Those source images have implicit/explicit correlation with the corrupted images,
and they can provide information for the missing pixels’ recovery. For example, there exist seasonal
patterns in satellite LST images [17], thus corrupted LST images can be repaired from other adjacently
acquired complete LST images, assuming they have high correlations with the corrupted images.

Recently, as a powerful category in deep learning, convolutional neural networks (CNNs) [18]
have been successfully applied to image-related tasks in many fields including remote sensing [19].
For example, CNNs have been used for super-resolution of remote sensing images [20–22] and denoising
hyperspectral images [23–25]. The success of CNNs comes from their capability of capturing high-level
abstract features from images and transforming them into task-specific outputs by optimizing trainable
parameters with large image datasets. There are some typical network structures in CNNs that can be
applied on recovery of images with missing pixels. The first structure example is the encoder–decoder
structure, where the encoder (implemented by a CNN) extracts high-level features and reduces spatial
resolutions and the decoder (also implemented by a CNN) performs the opposite operations to recover
the input image. Li et al. (2017) [26] used an encoder–decoder structure to generate contents for missing
regions on face images. The next structure example, U-Net [27], is an extension of the encoder–decoder
structure, with the skip connections between the matching levels its distinctive characteristic that
facilitates the recovery of spatial details. Thus, U-Net has been adopted for filling in missing regions of
any shape with sharp structures and fine-detailed textures [28]. The third structure example is generative
adversarial network (GAN), which consists of two neural networks (i.e., a generative network and a
discriminative network) that contest with each other until both reach some equilibrium. Specifically,
the generative network learns to map from a latent space to a data distribution of interest, while
the discriminative network distinguishes candidates produced by the generator from the true data
distribution. Ledig et al. (2017) [29] successfully applied GAN for image super-resolution.

The goal of this paper is to develop a neural network that repairs the corrupted/masked part of a
Landsat 8 ARD LST image patch (the target) with the assistance of a collocated adjacently-acquired
complete LST image (the source). With regard to missing pixel reconstruction for satellite images,
there have been standard CNN based methods that take advantage of auxiliary complementary data
from the spatial, spectral, and temporal domains of satellite images (e.g., [30,31]). With regard to the
fundamental improvement on the CNN structure for image inpainting, partial convolution developed
by Liu et al. (2018) [32] improves the convolution on masked images by accounting for the available
pixels in the convolution slice windows.

Therefore, the proposed model adopts the partial convolution enabled U-Net architecture as the
main architecture with two modifications: (1) the extension of encoders by supplementing the source
information; and (2) the utilization of partial merge layer to generate complete skip connection images
for the corresponding decoders. In addition, the partial convolution is improved by considering
weights during its mask correction.
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Model performance of the proposed model as well as four other baseline models was benchmarked
and analyzed. Two of the baseline models are from previous studies (i.e., [31,33]) and the other two
are variants of the proposed model with the implementation of partial convolution (as well as related
operations) replaced by standard convolution and the original partial convolution [32].

The remainder of this paper is organized as follows. Section 2 describes: (1) the architectures
of the proposed model; (2) the baseline models; (3) the training procedure; (4) the implementation;
and (5) the LST datasets for training and testing the models. Section 3 summarizes the training
process and validation results and compares model performance on selected cases. Section 4 discusses
the potential explanations of the performance differences between the proposed model and the
baseline models.

2. Materials and Methods

2.1. Model Architecture

2.1.1. Overview

The goal of the proposed model is to reconstruct the missing pixels in a corrupted or masked
LST image patch (the target), given a collocated complete image acquired on an adjacent date (the
source), and the respective date information of both images. To achieve this goal, Chen et al. (2019) [33]
proposed a Source-Augmented Partial Convolution neural network (hereafter SAPC1), which derives
from the U-Net architecture and utilizes the partial convolution based operations to handle the missing
pixels in the feature extraction and target-source merging process. This paper inherits the main design
of SAPC1 but introduces a few modifications/improvements on the architecture, the training process,
and the implementation.

Figure 1 gives an overview of the modified Source-Augmented Partial Convolution v2 (SAPC2)
model. On the left bottom, SAPC2 receives a pair of input images: (1) the partially masked target
image (T); and (2) the collocated complete source image (S). Each contains an LST image patch with
the shape of 64 × 64 pixels, its acquisition date of year, and the date difference from the target image’s
acquisition date. In addition, the target image contains a mask image indicating the unmasked and
masked regions. SAPC2 first merges the input images into a complete 8-feature 64 × 64 image using
the Partial Merge layer (see mid-bottom part in Figure 1). This image is reserved as the skip connection
to provide details at the original spatial resolution for the last decoder. SAPC2 then passes the pair of
target and source images through five stacked encoders to: (1) extract shared higher-level features from
the target and source paths while reducing their spatial resolutions; (2) gradually diffuse information
from the unmasked into the masked regions for the target path; and (3) reserve details along the spatial
resolution hierarchy for the decoding phase. Specifically, each encoder will halve the spatial dimension
(i.e., by using a constant stride of 2 in its convolutions) and double the features (until number of
features reaches 512, plateauing afterwards). Following the original partial convolution design [32],
the first two encoders have a slightly larger convolution kernel (i.e., 7 × 7 and 5 × 5) than the rest in
order to capture and diffuse low-level features faster. Same as SAPC2′s first merging operation, each
encoder also merges its output from the two paths into a complete image (skip connections, purple
blocks in the middle of Figure 1) to facilitate the recovery of details in the corresponding decoder.
At the end of the stacked encoders, it is guaranteed that the generated image (shape of 2 × 2) is free of
missing values for any partially masked target images with the shape of 64 × 64. This image serves as
the input image for the decoding path (on the right of Figure 1). SAPC2′s decoding path comprises
five staked decoders and two additional linear layers. By merging the skip connections, the decoders
reverse the process of encoders and gradually increase the spatial resolution until reaching the model
input image’s spatial dimension. Additional linear transformations are applied to the last decoder’s
output to generate the raw repaired target image (i.e., before replacing the unmasked part with true
values). All nonlinear activation functions in SAPC2 are PReLU.



Remote Sens. 2020, 12, 3143 4 of 23Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 24 

 

 

Figure 1. The overall architecture of the proposed Source Augmented Partial Convolution v2 (SAPC2) 

model. The colors and shapes denote the origin and/or the purpose of the symbols. The grey 

boxes/circles indicate operators (including custom layers). The arrows show the data flow of SAPC2; 

the horizontal lines and non-grey rectangles indicate data. The blue rectangles highlight data on the 

target path. Similarly, the green, purple, and black rectangles are data associated with the source path, 

the skip connection, and the decoder path, respectively, and the red line highlights the model output 

(i.e., the raw repaired target image). The dotted lines are masks and imply the associated image has 

missing pixels. The spatial size and number of features are either labeled near the data symbols or 

placed on the left side of the figure. 

2.1.2. Encoder 

To fulfill the three goals of the stacked encoders mentioned in the previous section (Section 2.1.1), 

each encoder shares the same structure, as depicted in Figure 2. The target and source images are 

either the model inputs or the outputs of the previous encoder layer. They are both passed through 

the same series of operators (with the shared weights) including a stride-2 partial convolution layer 

(described in Section 2.1.4), a batch normalization layer, and a Parametric Rectified Linear Unit 

(PReLU) activation to extract shared higher-level features. The partial convolution also fills in missing 

pixels around the boundaries of the mask with the convolution’s kernel size determining how far 

into the mask the filling can occur. To reduce the effects of the target’s missing pixels on estimating 

its true mean and standard deviation values, the masked part of the target image is temporarily set 

to random values with their mean and standard deviation matching the unmasked part before batch 

normalization. After PReLU activation, the processed target and source images are reported as two 

outputs for the next-level encoder. In addition, they are passed through a Partial Merge layer 

(described in Section 2.1.5) and another batch normalization layer to generate the complete image 

(i.e., the purple “M” box in Figure 2) that contains the merged target-source details at the current 

spatial resolution. This image, also called a skip connection, is also an output of the encoder and is 

reserved to be merged in the matching decoder.  

Figure 1. The overall architecture of the proposed Source Augmented Partial Convolution v2 (SAPC2)
model. The colors and shapes denote the origin and/or the purpose of the symbols. The grey boxes/circles
indicate operators (including custom layers). The arrows show the data flow of SAPC2; the horizontal
lines and non-grey rectangles indicate data. The blue rectangles highlight data on the target path. Similarly,
the green, purple, and black rectangles are data associated with the source path, the skip connection,
and the decoder path, respectively, and the red line highlights the model output (i.e., the raw repaired
target image). The dotted lines are masks and imply the associated image has missing pixels. The spatial
size and number of features are either labeled near the data symbols or placed on the left side of the figure.

2.1.2. Encoder

To fulfill the three goals of the stacked encoders mentioned in the previous section (Section 2.1.1),
each encoder shares the same structure, as depicted in Figure 2. The target and source images are either
the model inputs or the outputs of the previous encoder layer. They are both passed through the same
series of operators (with the shared weights) including a stride-2 partial convolution layer (described
in Section 2.1.4), a batch normalization layer, and a Parametric Rectified Linear Unit (PReLU) activation
to extract shared higher-level features. The partial convolution also fills in missing pixels around the
boundaries of the mask with the convolution’s kernel size determining how far into the mask the filling
can occur. To reduce the effects of the target’s missing pixels on estimating its true mean and standard
deviation values, the masked part of the target image is temporarily set to random values with their
mean and standard deviation matching the unmasked part before batch normalization. After PReLU
activation, the processed target and source images are reported as two outputs for the next-level
encoder. In addition, they are passed through a Partial Merge layer (described in Section 2.1.5) and
another batch normalization layer to generate the complete image (i.e., the purple “M” box in Figure 2)
that contains the merged target-source details at the current spatial resolution. This image, also called a
skip connection, is also an output of the encoder and is reserved to be merged in the matching decoder.
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2.1.4. Partial Convolution Layer 
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the sum of absolute convolution weights. Note that if the correction coefficient is a constant value 1, 

Figure 2. Structure of a SAPC2 Encoder. “T” and “S” represent target and source images, respectively.
The dotted line denotes the mask of the target image. The two Partial Convolution layers share the
same weights. For the target image, if there are remaining missing pixels after Partial Convolution,
before batch normalization (BN), the missing part is temporarily filled with random values sampled
from a normal distribution with the mean and standard deviation derived from the unmasked part.

2.1.3. Decoder

As a building block in the decoding path, each decoder (Figure 3) increases the spatial resolution
of the main input image by a factor of two with the ancillary high-resolution details from a skip
connection reserved by the matching encoder. The main input image is either from the final encoder
or from the previous decoder output. The decoder first doubles its resolution with a non-parametric
bilinear up-sampling operator. Then, it merges the upsampled with the skip connection from the
matching encoder to improve the details. Section 2.1.5 describes the details of a Merge layer. Note that
all images involved in the decoder are free of missing pixels, therefore the Partial Merge layer is not
needed. Finally, the decoder passes the merged output through a standard batch normalization layer
and a PReLU activation to generate the layer’s output.
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2.1.4. Partial Convolution Layer

A Partial Convolution layer (PConv), first proposed by Liu et al. (2018) [32] and modified by
Chen et al. (2019) [33], is the extension of the standard 2D convolution on scenarios where input image
may contain missing values. In each sliding window of convolution, PConv first conducts the standard
2D convolution and then corrects the effects of missing pixels by multiplying the convolution result
with a ratio of some metric for the whole image and that for the unmasked part. As for the metric,
Liu et al. (2018) [32] selected the count of pixels while Chen et al. (2019) [33] used the sum of absolute
convolution weights. Note that if the correction coefficient is a constant value 1, PConv becomes a
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standard convolution. In addition, PConv provides the updated mask that is associated with the
convolution result. The core PConv operations in a sliding window of convolution for creating one
(e.g., jth) output feature are expressed in the following equations:

x j
′ =

 sum
(
W j � (X�M)

)
· ratiopconv

j + b j , sum(M) > 0

0 , otherwise
(1)

m j
′ = m′ =

{
1, sum(M) > 0
0, otherwise

(2)

where SAPC2 and SAPC1 both define the correction ratio as:

ratiopconv
j =

sum
(∣∣∣W j

∣∣∣� 1
)

sum
(∣∣∣W j

∣∣∣�M
) (3)

X and M denote the input image and mask slices in the sliding window. Wj and bj are the
convolution weights and bias (for the jth output feature). xj’ and mj’ are the PConv’s (jth) output value
and the corresponding updated mask value. Figure 4 gives the flowchart of the PConv layer in SAPC2.
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Figure 4. The flowchart of a SAPC2 Partial Convolution layer (PConv) (a) and the PConv Correction
Ratio submodule (b). Hollow black squares represent data nodes and solid black squares represent
trainable weights used in convolutions. Grey symbols denote operators, where circles are pointwise
operators, squares are standard 2D convolutions, and rounded rectangles are custom functions/layers.
For example, the grey circle with “1” inside denotes an operator that sets all values of the input image to 1;
and the grey circle with “|·|” inside denotes an element-wise absolute operator. Symbols B, H, W, and Fin

represent the input image’s batch size, height, width, and number of features, respectively. Symbols kH,
kW, S, and Fout are the convolutions’ kernel width, kernel height, stride length, and number of output
features. The two convolutions in (b) that derive the numerator and the denominator share the same
kernel, |WPConv|. The implementation of the mask updating step (i.e., Conv2D 2 and Clip to [0,1] (b) for
Equation (2) originated from the following source: https://github.com/MathiasGruber/PConv-Keras.

2.1.5. Partial Merge Layer and Merge Layer

The Partial Merge layer (PMerge) takes a partially-masked target image (along with its mask image)
and the corresponding complete source image as inputs, merges them into a complete same-spatial-
dimensions image using a modified partial convolution operation. PMerge first stack the target and
source images along the feature dimension to create the stacked image. Similarly, it stacks target’s

https://github.com/MathiasGruber/PConv-Keras
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mask and source’s mask (an all-one image with the same shape of the source image) to create the
stacked mask. The reason PConv is not chosen to merge the stacked image is that the PConv result
may have inconsistent mean and variation between the target-source-both-unmasked region and the
target-masked-but-source-unmasked region. For example, if both the source and true target are a
one-feature image with a constant value 0.1, and the PConv kernel is of shape [1,1,2,1] and has a
constant value of 0.5, the PConv result at a target-unmasked pixel is 0.1 (=0.5 ∗ 0.1 + 0.5 ∗ 0.1), which
is twice as large as at a target-masked pixel (i.e., 0.05 (=0.5 ∗ 0.1 + 0.5 ∗ 0.0)). To overcome this issue,
Chen et al. (2019) [33] introduced a feature-dimension weighting mechanism in PConv to ensure that
the equivalent number of non-masked values participating the convolution at each pixel remains
the same between the two regions. The modified PConv is the called PMerge. Formally, a PMerge
operation in a sliding window of convolution for creating one (e.g., jth) output feature is expressed by
the following equations:

x j
′ = sum

(
W j � (X�M� tM)

)
ratiopmerge

j + b j (4)

where the feature-dimension weighting mechanism is implemented by multiplying the mask M with
the merge weight tM in Equation (4) and tM is defined by

tM = t(M) = M/
∑
f∈F

M f (5)

where F denotes the entire feature layers. Since tM is part of the convolution, the correction ratio for
PMerge also includes tM:

ratiopmerge
j =

sum
(∣∣∣W j

∣∣∣� (t1 � 1)
)

sum
(∣∣∣W j

∣∣∣� (tM �M)
) (6)

t1 is obtained by Equation (5) with an all-one array with the same shape of M. Other notations in
Equations (4)–(6) are the same as in PConv. Figure 5 presents the flowchart of the PMerge layer.

The Merge layer (Merge), which is used to combine the upsampled image with the matching
skip connection in decoders, is a simplified version of PMerge. Since both input images of Merge
are complete, the term tM will be equal to t1 and can be removed from Equations (4)–(6). However,
Merge cannot be replaced with a standard convolution because the padded image boundary will
have the value 0 (i.e., the correction of convolution in the padding regions is still needed). There are
two differences between Merge and PConv: (1) Merge has two inputs while PConv only has one;
and (2) Merge output is always complete and therefore does not need the mask update step. A Merge
operation is expressed by the following equations:

x j
′ = sum

(
W j � (X�M)

)
ratiomerge

j + b j (7)

ratiomerge
j =

sum
(∣∣∣W j

∣∣∣� 1
)

sum
(∣∣∣W j

∣∣∣�M
) (8)

All notations in Equations (7) and (8) are the same as in PConv. Figure 6 presents the flowchart of
the Merge layer.

2.1.6. Linear Convolution Layer and Final Mean and Standard Deviation Adjustment Layer

These two layers perform additional linear transformations on top of the stacked decoders for fine
adjustment on model prediction. The Linear Convolution layer takes the output of the last decoder as
input and performs a standard 2D convolution with kernel size 1 × 1 to scale the distribution of the
decoder output. It is a global operation, which affects all samples the same way. In contrast, the final
layer is a non-parametric local operation, which affects each sample independently. The final layer
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linearly adjusts the mean and standard deviation of the entire Linear Convolution output for each
sample so that the mean and standard deviation of the Linear Convolution output match those of the
model target input in the unmasked region (based on the model mask input). The output of the final
layer is a raw prediction, which is mosaicked with the unmasked part of the model target input to
generate the mosaic prediction.

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 24 

 

the stacked mask. The reason PConv is not chosen to merge the stacked image is that the PConv result 

may have inconsistent mean and variation between the target-source-both-unmasked region and the 

target-masked-but-source-unmasked region. For example, if both the source and true target are a 

one-feature image with a constant value 0.1, and the PConv kernel is of shape [1,1,2,1] and has a 

constant value of 0.5, the PConv result at a target-unmasked pixel is 0.1 (=0.5 ∗ 0.1 + 0.5 ∗ 0.1),which 

is twice as large as at a target-masked pixel (i.e., 0.05 (=0.5 ∗ 0.1 + 0.5 ∗ 0.0)). To overcome this issue, 

Chen et al. (2019) [33] introduced a feature-dimension weighting mechanism in PConv to ensure that 

the equivalent number of non-masked values participating the convolution at each pixel remains the 

same between the two regions. The modified PConv is the called PMerge. Formally, a PMerge 

operation in a sliding window of convolution for creating one (e.g., jth) output feature is expressed 

by the following equations: 

  ' sum pmerge

j j j jx ratio b
M

W X M t  (4) 

where the feature-dimension weighting mechanism is implemented by multiplying the mask M with 

the merge weight Mt  in Equation (4) and Mt is defined by  

( ) /


   f

f F

M
t t M M M  (5) 

where F denotes the entire feature layers. Since Mt  is part of the convolution, the correction ratio for 

PMerge also includes Mt : 

  
  

sum

sum


jpmerge

j

j

ratio
1

M

W t 1

W t M
 (6) 

1t  is obtained by Equation (5) with an all-one array with the same shape of M. Other notations 

in Equations (4)–(6) are the same as in PConv. Figure 5 presents the flowchart of the PMerge layer. 

 

Figure 5. The flowchart of a SAPC2 Partial Merge layer (PMerge) (a); the Merge Weight submodule 

(b); and the PMerge Correction Ratio submodule (c). 

Figure 5. The flowchart of a SAPC2 Partial Merge layer (PMerge) (a); the Merge Weight submodule (b);
and the PMerge Correction Ratio submodule (c).

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 24 

 

The Merge layer (Merge), which is used to combine the upsampled image with the matching 

skip connection in decoders, is a simplified version of PMerge. Since both input images of Merge are 

complete, the term 
Mt  will be equal to 

1t  and can be removed from Equations (4)–(6). However, 

Merge cannot be replaced with a standard convolution because the padded image boundary will 

have the value 0 (i.e., the correction of convolution in the padding regions is still needed). There are 

two differences between Merge and PConv: (1) Merge has two inputs while PConv only has one; and 

(2) Merge output is always complete and therefore does not need the mask update step. A Merge 

operation is expressed by the following equations: 

  ' sum merge

j j j jx ratio bW X M  (7) 

 
 

sum

sum


jmerge

j

j

ratio
W 1

W M
 (8) 

All notations in Equations (7) and (8) are the same as in PConv. Figure 6 presents the flowchart 

of the Merge layer. 

 

Figure 6. The flowchart of a SAPC2 Merge layer (Merge) (a); and the Merge Correction Ratio 

submodule (b). 

2.1.6. Linear Convolution Layer and Final Mean and Standard Deviation Adjustment Layer 

These two layers perform additional linear transformations on top of the stacked decoders for 

fine adjustment on model prediction. The Linear Convolution layer takes the output of the last 

decoder as input and performs a standard 2D convolution with kernel size 1 × 1 to scale the 

distribution of the decoder output. It is a global operation, which affects all samples the same way. 

In contrast, the final layer is a non-parametric local operation, which affects each sample 

independently. The final layer linearly adjusts the mean and standard deviation of the entire Linear 

Convolution output for each sample so that the mean and standard deviation of the Linear 

Convolution output match those of the model target input in the unmasked region (based on the 

model mask input). The output of the final layer is a raw prediction, which is mosaicked with the 

unmasked part of the model target input to generate the mosaic prediction. 

2.2. Baseline Models 

Figure 6. The flowchart of a SAPC2 Merge layer (Merge) (a); and the Merge Correction Ratio submodule (b).



Remote Sens. 2020, 12, 3143 9 of 23

2.2. Baseline Models

In this paper, in addition to the proposed model (SAPC2), three other source-augmentation
partial convolution based models (i.e., SAPC1, SAPC2-OPC, and SAPC2-SC) as well as the unified
spatial-temporal-spectral convolution neural network (STS-CNN) are implemented as baseline models.
This study focuses on performance difference induced by the model architecture and tries to minimize
influence from other aspects. Therefore, when possible, all baseline models share the same data
pipeline, training environment, loss and metric functions, etc. as the proposed model (i.e., SAPC2).

2.2.1. SAPC1

The main differences of SAPC1′s [33] architecture compared with SAPC2 include:

(a) the initial skip connection for the last decoder is the source image instead of PMerge of the source
and target;

(b) the first encoder does not have batch normalization after PConv;
(c) the first four encoders’ PConv s use ReLU as activations;
(d) the last (5th) encoder is implemented as PConv on the previous encoder’s target output image

and there is no batch normalization or activation before passing its output to the first decoder;
(e) the first four decoders’ (i.e., Decoders 4, 3, 2, and 1 in Figure 1) activations are LeakyReLU;
(f) the last decoder does not have batch normalization nor activation; and
(g) no unmasked mean square error (MSE) losses imposed between the encoder and decoder pairs

(e.g., encoder 1′s target input vs. decoder 1′s output) to encourage the matching levels have
similar abstract features.

2.2.2. SAPC2-Original Partial Convolution (SAPC2-OPC)

SAPC2-OPC refers to the baseline model that does not include absolute weights in the correction
ratio calculation (i.e., Equations (3), (6) and (8)) for all PConv, PMerge, and Merge layers. Other than
these differences, SAPC2-OPC is the same as SAPC2.

2.2.3. SAPC2-Standard Convolution (SAPC2-SC)

SAPC2-SC refers to the baseline model that sets a constant value 1 to the correction ratios (Equations (3),
(6) and (8)) for all PConv, PMerge, and Merge layers. Other than these differences, SAPC2-SC is the
same as SAPC2.

2.2.4. STS-CNN

The STS-CNN has a significantly different architecture (see details in Figure 3 of [31]) from SAPC2.
Here is an incomplete list highlighting some prominent ones

(a) There is almost no change in number of features (i.e., 60) across the STS-CNN framework except in
the first and last convolution steps. The spatial size is constant for the entire network. In contrast,
SAPC2 is based on U-Net framework with intended feature and spatial size variations.

(b) STS-CNN utilizes multiscale convolution to extract more features for the multi-context information
and dilated convolution to enlarge the receptive field while maintaining the minimal kernel size.

(c) STS-CNN uses standard convolution instead of partial convolution in the framework.
(d) STS-CNN uses ReLU for all activations.

In addition to the architecture, some modifications on the data pipeline and loss/metric functions
are made.

(e) STS-CNN takes the satellite images as inputs but does not utilize date related inputs as in SAPC2
(i.e., day of year and date difference from the target acquisition date). To take into account the
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seasonal LST variations, each sample’s source and target images are independently scaled to the
same range [0,1].

(f) STS-CNN aims to have fast convergence and chooses to optimize the MSE of the residual map,
which is close to (but not the same as) the masked MSE used in SAPC2. As a result, many metric/

loss functions for SAPC2 that are dependent on the unmasked part or on the feature domains are
not provided.

2.3. Training Procedure

2.3.1. Number of Trainable Variables

The SAPC2, SAPC2-OPC, and SAPC2-SC models have the same number of trainable variables:
2,761,446. The SAPC1 has fewer trainable variables: 1,969,204. The STS-CNN has the fewest trainable
variables: 296,161.

2.3.2. Loss Functions

SAPC2 inherits the four losses/metrics defined in Chen et al. (2019) [33], including two MSEs on
the raw repaired image

Lunmasked = MSEunmasked =
‖M�

(
Iout − Igt

)
‖

2

2∑
M

, (9)

Lmasked = MSEmasked =
‖(1−M) �

(
Iout − Igt

)
‖

2

2∑
(1−M)

(10)

and two MSEs on the Sobel filtered raw repaired image

Lsobel,unmasked = MSEsobel,unmasked =
‖M�

(
Sobel(Iout) − Sobel

(
Igt

))
‖

2

2

2
∑

M
(11)

LSobel,masked = MSEsobel,masked ·
∣∣∣CC(IS, Igt)

∣∣∣ = ‖(1−M) �
(
Sobel(Iout) − Sobel

(
Igt

))
‖

2

2

2
∑
(1−M)

·

∣∣∣CC(IS, Igt)
∣∣∣ (12)

where Iout is the raw model prediction (i.e., before replacing the unmasked part with the target image).
Igt is the ground truth (i.e., complete target image). M is the mask in which value 1 indicates unmasked
(good) pixels and value 0 indicates masked pixels. CC() is the correlation coefficient function. Sobel() is
the function that returns the two (i.e., horizontal and vertical) Sobel edge maps.

SAPC2 introduces additional loss terms (with their sum denoted by Lrecovery) that measure the
MSEs between the encoders’ target inputs and the corresponding decoders’ outputs in the unmasked
regions to encourage the recovery of similar features at the matching encoder–decoder levels. These
loss terms do not include the Encoder 1–Decoder 1 level.

In addition, all trainable variables (including convolution weights, PReLU alphas, etc.) are subject
to the l2 regularization loss Lreg,l2.

For training the model, the total loss function is defined as the weighted sum of the six losses
abovementioned:

Ltotal = 1.0Lunmasked + 2.15Lmasked + 0.4Lsobel,unmasked + 0.86Lsobel,masked + 0.01Lrecovery + 3.51e−7Lreg,l2 (13)

The weights of these losses are determined by hyperparameter searching.
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2.3.3. Learning Rate Scheduling

Smith (2017) [34] proposed several cyclical learning rate scheduling methods for deep neural
networks. The main difference of these methods compared with the monotonically decreasing learning
rate is to vary the learning rate cyclically between reasonable boundary values. All of these methods
have a fixed minimum learning rate and an initial learning rate range that is attenuated with training
steps or epochs. The actual learning rate will linearly cycle within the range defined by [minimum
rate, minimum rate + instant range]. For example, the exponential cyclical scheduling uses a power
function to describe the attenuation process: attenuation_fn(cycle) = gamma ** cycle, where gamma is
a constant (e.g., 0.96) and cycle is the current step’s epoch (with fraction, starting from 1.0).

A new scheduling method (exponential cyclical scheduling v2) is derived, inspired by the
exponential cyclical scheduling with the key change in allowing the minimum learning rate to decay
at the same rate as the maximum learning rate. The first step the new method is to determine the
ratio (rnep) between the initial minimum learning rate (lrmin,init) and the final minimum learning rate
(lrmin,nep) at a given epochs (nep). With these two parameters, and assuming a constant decay rate
between any two adjacent epochs, the decay rate per epoch (dep) is expressed by the following equation:

dep = rnep
−1

nep−1 (14)

and the maximum (lrmax,iep) and minimum (lrmin,iep) learning rates and their range (lrrange,iep) at the
ith epoch (iep) are expressed by:

lrmax,iep = lrmax,init
(
dep

)iep
(15)

lrmin,iep = lrmin,init

(
dep

)iep
(16)

lrrange,iep = lrmax,iep − lrmin,iep (17)

where lrmax,init is the initial maximum learning rate. For the DNN in this study, it was found that
lrmax,init three times larger than lrmin,init showed the best model performance.

With lrmin,iep and lrrange,iep, the remaining steps to derive the per step learning rate is the same as
other cyclical scheduling methods. For a step p within the epoch iep, the learning rate at p (lrp,iep) is
derived from the following equations:

cycle = floor(1 + p/(2 ∗ stepsize))
x = abs(p/stepsize− 2 ∗ cycle + 1)

lrp,iep = lrmin,iep + lrrange,iep ∗max(0, 1− x)
(18)

where stepsize is the number of steps for half of the period or cycle length [34].

2.4. Implementation

2.4.1. Software and Hardware

The SAPC2 model is implemented using TensorFlow (tf [35]) v2.2. All main layers such as PConv,
PMerge, Merge, Encoder, Decoder, and all lambda layers (e.g., for copy and slice tensors) are implemented as
subclasses of the keras base Layer (tf.keras.layers.Layer). The total loss function is implemented as subclass
of tf.keras.losses.Loss. The training utilities are implemented as subclasses of tf.keras.callbacks.Callback.
To reduce the retracing time, metric functions, standalone functions, as well as some custom layers’
member functions that contain heavy tf operations, are decorated by the tf.function wrapper. The entire
architecture building upon the custom layers is assembled using the keras functional model API
(tf.keras.Model). A Python interface function is created to manage the entire training process including
the data pipeline preparation, the keras model creation, compilation, and fitting, and the results logging.
Important hyperparameters are passed to the interface function through command line arguments.



Remote Sens. 2020, 12, 3143 12 of 23

The implementation of the four baseline models is similar to SAPC2 with the main differences in the
underlying architectures.

The models are trained on Google Cloud Platform (GCP) Cloud TPU each for 20 epochs. To be
consistent across models, the virtual machine (VM) for training is fixed to be an n1-standard-8 VM plus
a v3-8 tpu in the us-central1 region. This setting allows a batch size of 2048, lrmax,init of 7.05 × 10−4,
and lrmin,init of 2.35 × 10−4 for all five models.

The analysis of the optimized models was conducted on a desktop with an Intel Xeon E5-2630 v3
CPU, 32 GB of RAM, and a NVIDIA GeFore GTX 1080 Ti GPU.

2.4.2. Hyperparameter Tuning

Eight hyperparameters, including the minimum and maximum initial learning rates (lrmin,init and
lrmax,init) and the weights for the six loss terms in Equation (13), are tuned using the grid search with
approximately 21% of the full training dataset. Since the weights for the total loss may not be available
at the time of hyperparameter tuning, the objective function for tuning is the average of masked and
unmasked MSE.

2.5. Dataset

The pairs of target-source LST image/mask patches used in this study originate from the Landsat
8 Analysis Ready Data (ARD) Land Surface Temperature product [5], which is distributed through
the EarthExplorer website (https://earthexplorer.usgs.gov/). The original ARD LST tiles (with cloud
cover and shadow both less than 80%) in the Colorado region for 2014–2018 were combined in Google
Earth Engine (https://earthengine.google.com/). Their Quality Assessment (QA) information was used
to create the mask maps distinguishing the bad/missing pixels (e.g., caused by cloud or outside the
boundary of a satellite scene) from the good pixels (containing valid LST values). On two nearby days
(i.e., absolute acquisition dates difference less than 48 days), pairs of 65 × 65 all-good-pixels LST patches
(along with their day-of-year (DOY) and DOY difference from each other) were randomly sampled to
create the initial LST pairs. These initial pairs were cropped to 64 × 64 pixels. Each pair’s two images
were assigned with either the source or ground truth roles. Then, the size of the pairs was doubled by
flipping the assigned roles. The feature “DOY difference from each other” was converted to “DOY
difference from the target acquisition date” by setting this feature for the target to value zero. Next,
each of them was paired with one same-size mask randomly sampled from the mask maps, creating
the target image by multiplying the ground truth with the mask. Note that the mask here defines the
good pixels (unmasked) with value one and the bad pixels (masked) with value zero. The expanded
pairs were further augmented (e.g., through flips, rotations, and their combinations), standardized
(i.e., normalized by individual features except for the mask), and sharded (i.e., randomly distribute
samples into 1000 files) on the Google Cloud Platform (GCP) DataFlow platform. Since the SAPC2
model relies on the source image to supplement information in the masked regions, only samples
with highly correlated source-target pairs (i.e., correlation coefficient ≥ 0.8) were used. This procedure
generates ~2.475 million data samples, 95% of which (~2.352 million samples) were used for training
and the rest 5% (~0.124 million samples) were reserved for validation.

3. Results

3.1. Training Process

Figure 7 shows the total losses vs. epochs for the SAPC2 model. With the new learning rate
scheduling (i.e., exponential cyclical scheduling v2), the total losses of training and validation both
decrease across the 20 epochs with slight fluctuations. No sign of overfitting is observed. Similar
results are found for all four baseline models (data not shown).

https://earthexplorer.usgs.gov/
https://earthengine.google.com/
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With the batch size of 2048 and the v3-8 tpu accelerator, the average training time of SAPC2 over
the 20 epochs is about 524 s per epoch. The first five epochs took slightly longer (534–547 s) than the
rest (518–529 s). The average training time for SAPC1, SAPC2-OPC, SAPC2-SC, and STS-CNN are 461,
524, 463, and 449 s per epoch, respectively.

3.2. Validation Statistics

The model prediction refers to the raw model output (e.g., the bottom right red line (Repaired
Target) in Figure 1), and the mosaicked model prediction replaces the unmasked part of the model
prediction with that in the target image. For the four SAPC-based models, because their total loss
for training relies on both the masked and unmasked parts, their model predictions in the unmasked
part should have meaningful patterns that are close to the target and worth evaluation. However,
for STS-CNN, because it optimizes residual map, its model prediction in the unmasked part is close to all
zeros and should not be evaluated. Therefore, for STS-CNN, the evaluation of the model performance
focuses on the mosaicked model prediction or on the masked part of the model prediction.

To compare the performances of the five models, nine metrics were calculated on each validation
data sample:

• MSEmasked: The Mean Square Error (MSE) between the model prediction and ground truth in the
masked part

• Lsobel,masked: The source-target-correlation-coefficient-weighted MSE between the Sobel-edge
transformed model prediction and the corresponding transformed ground truth in the masked part

• MSEunmasked: The MSE between the model prediction and ground truth in the unmasked part
• MSEsobel,unmasked: TheMSEbetweentheSobel-edgetransformedmodelpredictionandthecorresponding

transformed ground truth in the unmasked part
• MSEweighted: The weighted sum of MSEmasked, Lsobel,masked, MSEunmasked, and MSEsobel,unmasked,

with the weights given in Equation (13)
• MSEmosaic: The MSE between the mosaicked model prediction and ground truth
• CCmosaic: The Correlation Coefficient between the mosaicked model prediction and ground truth
• PSNRmosaic: The Peak Signal-To-Noise ratio of the mosaicked model prediction
• SSIMmosaic: The Structural Similarity Index of the mosaicked model prediction
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Table 1 lists the means and standard deviations of the nine metrics on the entire validation dataset
(~0.124 million samples) for all five models. It is seen that the proposed model (SAPC2) has the
lowest mean values on all six MSE metrics and the highest mean values on the other three metrics (i.e.,
CCmosaic, PSNRmosaic, and SSIMmosaic). SAPC2 also has the lowest standard deviation values on all
metrics except for PSNRmosaic, on which STS-CNN has the lowest value (4.33).

Table 1. Means and standard deviations of nine validation metrics for the proposed model (SAPC2)
and the four baseline models (SAPC1, SAPC2-OPC, SAPC2-SC, and STS-CNN). The top value in
each box is the mean value of the row’s metric for the column’s model, and the bottom value in the
parentheses in each box is the corresponding standard deviation value. The arrows beneath each
metric name indicate whether a greater or less value is better for the metric: the arrow on the left
side is the indicator for the mean value and the arrow in the parentheses on the right side is the
indicator for the standard deviation value. The best values for each metric (i.e., for each row) are bolded.
Since STS-CNN returns close-to-zero values in the unmasked part, four metrics (i.e., Lsobel,masked,
MSEunmasked, MSEsobel,unmasked, and MSEweighted) is not available (N/A) for STS-CNN.

Metric SAPC2 SAPC1 SAPC2-OPC SAPC2-SC STS-CNN

MSEmasked
↓(↓)

0.00317
(0.00645)

0.00341
(0.00699)

0.00398
(0.00700)

0.00566
(0.00832)

0.00769
(0.01198)

Lsobel,masked
↓(↓)

0.01156
(0.01430)

0.01203
(0.01531)

0.01608
(0.01641)

0.01600
(0.01734)

N/A
(N/A)

MSEunmasked
↓(↓)

0.00025
(0.00023)

0.00033
(0.00030)

0.00072
(0.00050)

0.00063
(0.00050)

N/A
(N/A)

MSEsobel,unmasked
↓(↓)

0.00221
(0.00188)

0.00273
(0.00221)

0.00803
(0.00565)

0.00482
(0.00342)

N/A
(N/A)

MSEweighted
↓(↓)

0.01793
(0.02576)

0.01913
(0.02786)

0.02635
(0.02950)

0.02852
(0.03249)

N/A
(N/A)

MSEmosaic
↓(↓)

0.00098
(0.00232)

0.00105
(0.00250)

0.00121
(0.00251)

0.00168
(0.00290)

0.00228
(0.00444)

CCmosaic
↑(↓)

0.986
(0.019)

0.985
(0.019)

0.981
(0.022)

0.973
(0.034)

0.955
(0.074)

PSNRmosaic
↑(↓)

47.55
(5.34)

47.33
(5.42)

46.12
(4.92)

44.21
(4.59)

42.85
(4.33)

SSIMmosaic
↑(↓)

0.989
(0.020)

0.989
(0.021)

0.986
(0.022)

0.983
(0.025)

0.971
(0.031)

One way to summarize the model performance based on the nine metrics is to assign a score for
each model based on its order (best = 1 and worst = 5) in each metric and calculate the average value
of the orders across the applicable metrics as the comprehensive score for each model. For the metrics’
means, the comprehensive score for SAPC2 is the highest (1), followed by SAPC1 (2), SAPC2-OPC
(3.3), SAPC2-SC (3.7), and STS-CNN (5). For the metrics’ standard deviations, the comprehensive
score for SPAC2 is also the highest (1.3), followed by SAPC1 (2.3), SAPC2-OPC (3.2), SAPC2-SC
(3.6), and STS-CNN (4.2). The comprehensive scores derived from means and standard deviations
both suggest that SAPC2 has the best performance, followed by SAPC1, SAPC2-OPC, SAPC2-SC,
and STS-CNN.

To have a deeper insight on the model performance, Probability Density Functions (PDFs) of the
nine metrics over the entire validation dataset are analyzed. Figure 8 compares the PDFs between
SAPC2 and the other four baseline models on the metric MSEmasked. The SAPC2’s PDFs are displayed
as the blue shapes in the four subplots, while the orange shapes represent the four baselines’ PDFs. It is
seen that the STS-CNN has the most distinguishable PDF than SAPC2 (Figure 8a). The SAPC2’s left
end is closer to zero, its peak is higher and has a smaller MSE value, and its right tail is much shorter
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than STS-CNN. Although the similar patterns are also seen on SAPC2-SC (Figure 8b), and SAPC2-OPC
(Figure 8c), their PDFs are closer to matching SAPC2’s. The PDF of SAPC1 (Figure 8d) is almost
identical to that of SAPC2, but from the left end to MSEmasked ~= 0.025, SAPC2 (the blue bars) has
slightly higher PDF values. All other metrics’ PDF comparison shows similar distinguishable results
(data not shown).Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 24 
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Figure 8. Comparison of Probability Density Functions (PDFs) of MSEmasked between SAPC2 and
STS-CNN (a), SAPC2-SC (b), SAPC2-OPC (c), and SAPC1 (d) on the entire validation dataset. Note
that the bin size of the PDFs is small (i.e., 0.0002). As a result, the PDF values at some bins may be high,
but the sum of the bin-size weighted PDF values in the full range of MSEmasked still equals 1.

3.3. Case Study

Figures 9–14 show the five models’ mosaicked prediction results on six cases.
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Figure 9. Model predictions comparison, Case 1: (a) the input source image (acquired on day of year
(DOY) 228); (b) the masked target image (acquired on DOY 276) with the black color highlights the
masked part; (c) the ground truth (complete target) image (also acquired on DOY 276); (d–h) mosaicked
model predictions for the four baseline models (i.e., left to right: STS-CNN, SAPC2-SC, SAPC2-OPC,
and SAPC1) and for the proposed model (i.e., SAPC2). All model predictions share the same color
bar as that of the ground truth (c). Note that the color bars are independent between the source and
the target (or the ground truth). The masked fraction of the target image (b) is 0.476. The correlation
coefficient between source (a) and ground truth (c) images is 0.957.

Figure 9 shows a case with a pair of source-target inputs that are acquired 48 days apart. Even
though the source and the ground truth are highly correlated (i.e., correlation coefficient, cc = 0.957),
an 8.3 K difference in maximum temperature but only 2.4 K difference in minimum temperature and
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a close-to-half masked fraction make it an interesting case. Overall, the SAPC2 (h) has the lowest
MSEmasked and Lsobel,masked values among the five models (i.e., 0.00183 and 0.00268). They are 67% and
46% lower than those of SAPC1 (0.00560 and 0.00494), 55% and 32% lower than those of SAPC2-OPC
(0.00403 and 0.00394), 83% and 59% lower than those of SAPC2-SC (0.01070 and 0.00647), and 59% and
98% lower than those of STS-CNN (0.00449 and 0.13682). According to these metrics, SAPC2 is the
best model for the case. Along the left edge of the mask, Figure 9d–g shows some significant edge
artifacts, where STS-CNN exhibits some random noisy pixels and the three SAPC-based models show
smooth pattern but abrupt color shift near the edge area. The details in the masked regions are not
well recovered by all methods due to the source image’s quality; however, the overall color scale of
SAPC2 in the masked part is closer to the ground truth than the other methods.

Case 2 (Figure 10) has a more adjacently acquired source image (only 16 days away from the
target). The quality of the source is also better than the first case. Not only cc between the source and
the ground truth is slightly higher (0.975 vs. 0.957), but the micro patterns including sharp boundaries
match better. As a result, SAPC2 is capable of restoring both the color scale and details from the source
without displaying striking edge effects. In contrast, all other methods exhibit some levels of visible
edge effects. In terms of metrics, SAPC2 also shows the best performance. The values of MSEmasked and
Lsobel,masked for SPAC2 are 0.00075 and 0.00267, respectively. They are 53% and 14% lower than those of
SPAC1 (0.00161 and 0.00312), 44% and 32% lower than those of SPAC2-OPC (0.00134 and 0.00392), 91%
and 65% lower than those of SPAC2-SC (0.00843 and 0.00761), and 67% and 98% lower than those of
STS-CNN (0.00227 and 0.11243). According to these metrics, SAPC2 is the best model for Case 2.
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Figure 10. The same as Figure 9 but for Case 2. The acquisition DOYs for source and target inputs
are 251 and 267, respectively. The masked fraction of the target image (b) is 0.531. The correlation
coefficient between source (a) and ground truth (c) images is 0.975.

Case 3 (Figure 11) has a similar temperature range between the source and the ground truth
even though they are acquired 48 days apart. Figure 11d–g (i.e., STS-CNN, SAPC2-SC, SAPC2-OPC,
and SAPC1) shows various levels of artifacts near the bottom of the top mask edge while subplot
Figure 11h (SAPC2) does not show any visible edge effects. Inside the top mask region, STS-CNN
demonstrates some noisy pixels while SAPC2-SC and SAPC2-OPC lose the details and show blurry
results. SAPC1 reserves some sharper details but its color scale is slightly off the ground truth. In terms
of metrics, the values of MSEmasked and Lsobel,masked for SPAC2 are 0.00126 and 0.00917, respectively.
They are 39% and 16% lower than those of SPAC1 (0.00207 and 0.01098), 40% and 13% lower than
those of SPAC2-OPC (0.00211 and 0.01057), 75% and 23% lower than those of SPAC2-SC (0.00508 and
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0.01194), and 69% and 86% lower than those of STS-CNN (0.00410 and 0.06764). According to these
metrics, SAPC2 is the best model for Case 3.
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Figure 11. The same as Figure 9 but for Case 3 (acquisition DOYs for source and target inputs are 258
and 210, respectively). The masked fraction of the target image (b) is 0.448. The correlation coefficient
between source (a) and ground truth (c) images is 0.955.

In Case 4 (Figure 12), all methods restore the dark-blue block with sharp edges at the center of the
ground truth with some lighter-blue and dilated shape due to the discrepancy between the source and
the ground truth in the region. However, at the bottom right corner, SAPC2 recovers the whitish block
closer to the ground truth than other methods. SAPC2-SC and SAPC2-OPC show blurry patterns in
the masked region. STS-CNN’s result is noisy near the boundaries of the mask. In terms of metrics,
the values of MSEmasked and Lsobel,masked for SPAC2 are 0.00106 and 0.00657, respectively. They are 36%
and 9% lower than those of SPAC1 (0.00166 and 0.00722), 55% and 20% lower than those of SPAC2-OPC
(0.00236 and 0.00824), 80% and 30% lower than those of SPAC2-SC (0.00528 and 0.00941), and 43% and
83% lower than those of STS-CNN (0.00187 and 0.03858). According to these metrics, SAPC2 is the best
model for Case 4.
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 Figure 12. The same as Figure 9 but for Case 4 (acquisition DOYs for source and target inputs are 258
and 242, respectively). The masked fraction of the target image (b) is 0.549. The correlation coefficient
between source (a) and ground truth (c) images is 0.968.
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Case 5 (Figure 13) has a slightly lower cc (i.e., 0.915) between the source and the ground truth.
The edge effects appear in all methods’ mosaicked predictions but are least evident in SAPC2′s.
For example, there is one unmasked pixel on the left of the mask. Other than SAPC2, all methods
show a darker-than-surrounding pixel in their predictions. In addition, SAPC2 recovers the color
scale in most masked region closer to the ground truth. For example, on the top left of the mask, even
though the source shows light blue pattern, SAPC2 correctly fill that region with light red color. In the
middle of the mask where SAPC2-SC restores a dark red “Z”-shaped block, SAPC2-SC, SAPC2-OPC,
and SAPC1 all fill it with darker colors than the ground truth while SAPC2′s color scale in the region
looks closer to the ground truth. As in previous cases, STS-CNN exhibits strong noise near the mask’s
edge. In terms of metrics, the values of MSEmasked and Lsobel,masked for SPAC2 are 0.00277 and 0.01194,
respectively. They are 68% and 49% lower than those of SPAC1 (0.00872 and 0.02335), 39% and 21%
lower than those of SPAC2-OPC (0.00457 and 0.01516), 65% and 31% lower than those of SPAC2-SC
(0.00787 and 0.01729), and 85% and 96% lower than those of STS-CNN (0.01866 and 0.31452). According
to these metrics, SAPC2 is the best model for Case 5.
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Figure 13. The same as Figure 9 but for Case 5 (acquisition DOYs for source and target inputs are 212
and 260, respectively). The masked fraction of the target image (b) is 0.476. The correlation coefficient
between source (a) and ground truth (c) images is 0.915.

Case 6 (Figure 14) has the lowest cc (i.e., 0.839) between the source and the ground truth among the
six presented cases. STS-CNN’s prediction is noisy across the entire masked region. Both SAPC2-SC
and SAPC2-OPC show blurry result with some clear edge effects. SAPC1′s result recovers most details
but the color scale in the masked region (especially near the bottom line) is slight off from the ground
truth. In terms of metrics, the values of MSEmasked and Lsobel,masked for SPAC2 are 0.00233 and 0.00536,
respectively. They are 53% and 35% lower than those of SPAC1 (0.00499 and 0.00824), 40% and 32%
lower than those of SPAC2-OPC (0.00386 and 0.00783), 63% and 35% lower than those of SPAC2-SC
(0.00632 and 0.00821), and 59% and 92% lower than those of STS-CNN (0.00565 and 0.06605). According
to these metrics, SAPC2 is the best model for Case 6.
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Figure 14. The same as Figure 9 but for Case 6 (acquisition DOYs for source and target inputs are 208
and 160, respectively). The masked fraction of the target image (b) is 0.407. The correlation coefficient
between source (a) and ground truth (c) images is 0.839.

4. Discussion

4.1. SAPC2 Versus STS-CNN

As mentioned in Section 2.2.4, the STS-CNN implemented in this study follows the experimental
setting in [31] and does not take any information other than the satellite image (e.g., DOY and DOY
from the target) as model inputs to keep the framework generic for all other source/reference types (e.g.,
spectral sources). Instead, the target and the source are independently scale to range [0,1] to account
for the variation related to seasonal temperature changes. This adjustment is inspired by the test code
provided in [31], where both the source and target are in the range of [0,1] before sending them to the
model. Without this adjustment, it is found that the STS-CNN will generate significant artifacts in the
middle of a large masked region (i.e., near constant significantly biased values within the shrunk shape
of the mask, data not shown). As a result, the validation metrics of STS-CNN with non-zero-one-scaled
inputs are about five times worse than the metrics currently presented in Table 1 (i.e., the average
validation MSEmasked = 0.03728 for non-scaled versus 0.00769 for the scaled). For LST images, even
with the standardization on the entire dataset as described in Section 2.5, because of the seasonal LST
variation, the distributions for the target and the source in one sample could still be far away from
each other even they are highly correlated. Such distribution distance between the two images can be
much smaller after the zero-one scaling, reducing the burden of the model for matching the means
between the distributions. This may also explain why the significant artifacts are not an issue for large
masks with zero-one scaling (e.g., on cases presented in the previous section). With zero-one scaling,
the STS-CNN model only needs to look for fine adjustment to the source image in the masked region
(evidence: STS-CNN has a deep skip connection that allow the source image information bypass most
of the network before output), zero values in the mask rather than information diffused from the target
will have limited influence on the model prediction.

However, the zero–one scaling is only a linear operation, which cannot correct the nonlinear part
of LST variations over time. This is especially the case when partial areas experienced more significant
temperature changes than the rest of the images. The introduction of DOY and DOY difference as
additional features to the LST inputs in SAPC-based models provides the models freedom to explore
and compensate the nonlinear seasonal LST pattern between the source and the target and to reduce
the models’ burden on matching the two images’ distributions when focusing on merging the fine
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details. Therefore, even without partial convolution, SAPC2-SC still reaches a better performance
than the STS-CNN. For example, mean validation MSEmasked is 0.00566 for SPAC2-SC while that of
STS-CNN is 0.00769. If the reasoning above DOY and DOY difference on improving the nonlinear
matching of distributions is correct, it suggests that considering other ancillary data that have nonlinear
influence on LST change over time as the model inputs may further improve the model performance.

4.2. SAPC2 Versus SAPC2-OPC and SAPC2-SC

Incorporating the concept of partial convolution [32] into the missing pixels reconstruction process
is a fundamental improvement to the deep learning architectures based on standard convolution.
The correction ratio term (r) bridges the standard convolution and the partial convolution. Therefore,
three implementations of the correction ratio on the same architecture are compared in this study:
(1) r = 1, which makes the convolution equivalent to standard convolution; (2) r = sum(1)/sum(M),
the mask-only correction ratio, which is used in the original partial convolution [32]; and (3) r =

sum(|W|·1)/sum(|W|·M), the absolute weight adjusted correction ratio, which is used in the improved
partial convolution [33]. Mathematical proof of the effect of these correction ratios need further study
(e.g., in terms of probability). Instead, their empirical effects on the LST missing pixel reconstruction are
examined. Specifically, the three implementations of r in PConv correspond to the three model versions
in this study: r = 1 for SAPC2-SC, r = sum(1)/sum(M) for SAPC2-OPC, and r = sum(|W|·1)/sum(|W|·M) for
SAPC2. Note similar changes of correction ratios in the PMerge and Merge layers are also implemented
accordingly. All other aspects of the three models including data, optimization, hyperparameters,
software and hardware environments, etc. are the same. The number of trainable parameters is the
same for the three models (~ 2.76 million), but the training time per epoch is (13%) longer for SAPC2
and SAPC2-OPC (both are 524 s) than for SAPC2-SC (463 s). After optimization, the three models
show significantly different performance (Table 1). For example, the mean validation MSEmasked for
SAPC2 (0.00317) is 20% and 44% smaller than that for SAPC2-OPC (0.00398) and SAPC2-SC (0.00566);
the standard deviation of validation MSEmasked for SAPC2 (0.00645) is also 8% and 23% smaller than
that for SAPC2-OPC (0.00700) and SAPC2-SC (0.00832). Comparison of MSEmasked PDFs between
SAPC2 and the other models (Figure 8b,c) also corroborates the findings on the mean and standard
deviation of MSEmasked. These results suggest that, for the LST missing pixel reconstruction problem,
both versions of partial convolution are superior to the standard convolution, and partial convolution
with the absolute weight adjusted correction ratio may generate better results than the original partial
convolution with the mask-only correction ratio.

4.3. SAPC2 Versus SAPC1

Based on the cases presented in the Results Section, the edge effects are less evident in SAPC2 than
in SAPC1. The lower mean (3.9%) and the lower standard deviation (6.6%) of the validation metric
Lsobel,masked for SAPC2 compared with those of SAPC1 suggest that the improvement is statistically
important. Since a lower encoder/decoder layer usually contains more spatial details than the higher
layers, it is speculated that changing the skip connection from the source alone (implemented in SAPC1)
to the PMerge of the source and the target (adopted in SAPC2) might be the main contributor to this
improvement. In contrast, the improvement of SAPC2 over SAPC1 on MSEmasked may be more of a
combined effects of all architecture differences between the two models as well as the additional loss
term (Lrecovery in Equation (13)) newly introduced in SAPC2. In addition, the performance improvement
of SAPC2 over SAPC1 in the unmasked region (in terms of both MSEunmasked and MSEsobel,unmasked) is
greater than in the masked region, which may indirectly improve the transition between the masked
and unmasked regions in the model mosaicked prediction.

5. Conclusions

This paper develops a deep learning model, Source-Augmented Partial Convolution v2 (SAPC2),
to reconstruct missing pixels in partially-corrupted Landsat 8 ARD LST 64 × 64 image patch (the target)
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with the assistance of a collocated adjacently-acquired complete ARD 8 LST image patch (the source).
To achieve this goal, SAPC2 utilizes the partial convolution enabled U-Net as the framework and
accommodates the source into the framework by: (1) performing the shared partial convolution on both
the source and the target in encoders to extract high-level features; and (2) merging the source and the
target using the partial merge layer to create complete skip connection images for the corresponding
decoders. SAPC2 are trained with 2.352 million target-source image pairs and its performance on
validation dataset is compared with four baseline models including two previous published models
(SAPC1 and STS-CNN) and two variants of SAPC2 (SAPC2-OPC and SAPC2-SC). The results show
that SAPC2 has the best performance in terms of nine validation metrics. For example, the MSEmasked

of SAPC2 is 7%, 20%, 44%, and 59% lower than that of SAPC1, SAPC2-OPC, SAPC2-SC, and STS-CNN,
respectively, and the Lsobel,masked of SAPC2 is 4%, 28%, and 29% lower than that of SAPC1, SAPC2-OPC,
and SAPC2-SC, respectively. The results also show that on selected validations cases, the repaired
target image generated by SAPC2 have the fewest artifacts near the mask boundary and the best
recovery of color scales and fine textures compared with the four baseline models.
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