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Abstract: The increasing availability of dense time series of earth observation data has incited
a growing interest in time series analysis for vegetation monitoring and change detection.
Vegetation monitoring algorithms need to deal with several time series characteristics such as
seasonality, irregular sampling intervals, and signal artefacts. While common algorithms based on
deterministic harmonic regression models account for intra-annual seasonality, inter-annual variations
of the seasonal pattern related to shifts in vegetation phenology due to different temperature and
rainfall are usually not accounted for. We propose a transition to stochastic modelling and present
a near real-time change detection method that combines a structural time series model with the
Kalman filter. The model continuously adapts to new observations and allows to better separate
phenology-related deviations from vegetation anomalies or land cover changes. The method is tested
in a forest change detection application aiming at the assessment of damages caused by storm events
and insect calamities. Forest changes are detected based on the cumulative sum control chart (CUSUM)
which is used to decide if new observations deviate from model-based forecasts. The performance is
evaluated in two test sites, one in Malawi (dry tropical forest) and one in Austria (temperate deciduous,
coniferous and mixed forests) based on Sentinel-2 time series. Both forest areas are characterized by
a distinct, but temporally varying leaf-off season. The presented change detection method shows
overall accuracies above 99%, users’ accuracies of 76.8% to 88.6%, and producers’ accuracies of 68.2%
to 80.4% for the forest change stratum (minimum mapping unit: 0.1 ha). Results are based on visually
interpreted points derived by stratified random sampling. A further analysis revealed that increasing
the time series density by merging data from two Sentinel-2 orbits yields better forest change detection
accuracies in comparison to using data from one orbit only. The resulting increase in users’ accuracy
amounts to 7.6%. The presented method is capable of near real-time processing and could be used for
a variety of automated forest monitoring applications.

Keywords: state space models; forest disturbance mapping; near real-time monitoring; Sentinel-2;
CUSUM

1. Introduction

Current Earth observation (EO) missions employing optical sensors such as Sentinel-2 acquire a
vast volume of data: a new image every 5 days of almost every place on earth. By taking orbit overlaps
into account, the time between consecutive images of the same region is reduced even further and the
chance of acquiring cloud-free observations is further increased. Through high-quality georeferencing
and atmospheric correction of the satellite images, it is possible to create consistent time series of
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measured reflectance values for any given spectral band. The vast availability of high-resolution
optical data allows—for the first time—to also map small changes in near real-time. Here, “small”
may apply to both spatial extent as well as spectral change magnitude. However, dense time series of
high-resolution optical data have a number of characteristics that pose a challenge to change detection
applications. In addition to noise effects remaining after atmospheric correction and uncertainties in
the geometric registration, these challenging characteristics include:

• Seasonality: Recurring seasonal patterns can be attributed to plant phenology and/or varying
illumination conditions due to topography and solar angle. Considering that annual variations of
temperature and rainfall also affect phenology, the seasonal patterns can vary between years.

• Irregular sampling interval: Satellites with a regular nadir acquisition scheme usually have a
constant revisit cycle, for example, 5 days for the Sentinel-2A and B constellation. If images from
overlapping orbits are integrated, though, the sampling interval becomes irregular. Data gaps
due to masked clouds, cloud shadows, and snow also add to this irregularity.

• Presence of signal artefacts: Despite using state-of-the-art screening algorithms like Fmask [1],
un-masked clouds, cloud shadows, and snow-covered areas remain in the pre-processed imagery.
Corresponding observations have to be treated as invalid since the measured reflectance values
neither represent the undisturbed land cover state nor a persistent change of it.

Algorithms can be divided based on how they deal with the time series characteristics described
above. The different approaches used to handle these characteristics strongly affect the algorithms’
suitability for monitoring changes in near real-time. Approaches that do not account for seasonality
form a first group of algorithms. A review of change detection studies using Landsat time series
concludes that many older studies focused on mapping changes only at annual or biannual time scales
based on series of cloud-free composite images, which always represent the same season [2]. In this
context, both the Vegetation Change Tracker (VCT) [3] as well as the LandTrendr approach [4] represent
widely used algorithms, but they are not designed for near real-time mapping.

A second group of algorithms explicitly accounts for seasonality by using regression models
based on trigonometric functions to capture the intra-annual variations (variations within one year, i.e.,
seasonality) of the spectral signatures independently for each pixel. With this approach, also frequently
referred to as harmonic regression, periods of stable land cover are modelled as a deterministic,
continuous function of time. Irregular sampling intervals and data gaps are therefore not a problematic
issue, but the deterministic nature of the model does not allow inter-annual variations of the seasonal
pattern (variations between different years, e.g., shifts in seasonality). The seasonal model represents
an average of different conditions occurring within a stable period, e.g., dry and wet years, late and
early leave outbreak. A widely used algorithm belonging to this group is the Breaks for Additive
Season and Trend (BFAST) algorithm [5] and its evolution BFAST Monitor [6]. While the latter is
tailored to near real-time mapping of new changes, the original version is intended for the analysis of
historic time series. Both versions have been used in a variety of studies and can be applied to detect
both abrupt and gradual changes. Concerning the robustness of BFAST to invalid observations, it has
been stated that occasional signal artefacts are well handled, but temporally aggregated occurrences
such as several consecutively un-masked clouds can be a source of error [7]. Also, additional
pre-processing to eliminate artefacts was applied [8–10]. The second widely used implementation of
the harmonic regression approach is the Continuous Change Detection and Classification algorithm
(CCDC), where the original concept [11] is extended to include more types of land cover besides forest,
as well as a classification framework [12]. From the beginning, CCDC was designed to work with
dense Landsat time series and can handle seasonality, irregularly spaced observations, and signal
artefacts to some extent. Both abrupt and gradual changes can be detected. Some further updates to
the algorithm include (i) a mechanism to automatically adjust the complexity of the time series model
based on the number of available clear observations, as well as (ii) a different method to estimate the
model parameters which reduces overfitting [13]. A third algorithm employing harmonic regression
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utilizes residuals from the regression together with statistical quality control charts [14]. This approach
comprises signal artefact detection with Shewhart X-bar charts. After the elimination of artefacts,
both abrupt and gradual changes are indicated by exponentially weighted moving average (EWMA)
charts in a near real-time manner. All of the described algorithms of the second group share certain
basic concepts, but the individual implementations vary. They are designed to process large amounts
of data in a highly automated way and therefore rely on data-driven statistical boundaries for detecting
change, although the distinct nature and computation of these boundaries is quite different.

The third group of algorithms stands out by also taking inter-annual variations of the seasonal
pattern into account. Structural time series models are set up in terms of components, such as trends
and cycles, which have a direct interpretation. Their statistical treatment is based on the state space form
and the Kalman filter and first described for time series analysis in econometrics [15]. Compared to
the harmonic regression approach, the model is no longer deterministic. Kalman filtering denotes
a versatile parameter estimation technique which yields optimal estimates in a statistical sense [16].
It is well established in many application fields and has been applied to numerous signal tracking
problems [17]. The combination of structural time series models with the Kalman filter and the
concept’s suitability for remote sensing purposes has been investigated in a proof of concept study,
where Landsat time series are used to detect storm damages in a small forest test site in Germany [18].
The Kalman filter has also been applied to time series of MODIS 8-day composites in order to detect
insect-induced defoliation in near real-time at a forest test area in northern Sweden [19]. This study
makes use of the CUSUM control chart [20] to indicate changes, but it does not combine structural
time series models with the Kalman filter. Instead, the filter is used to derive a smoothed time series of
the Normalized Difference Vegetation Index (NDVI) based on a global model trajectory.

With the advantages and limitations of existing algorithms in mind, this work combines the
pixel-by-pixel modelling typical for existing harmonic regression algorithms with the Kalman filter’s
capability to dynamically adjust the model based on new observations. The main aim of this study is
to present an innovative change detection algorithm for optical EO data which is based on a structural
time series model and the Kalman filter. It is largely data-driven and designed especially for near
real-time mapping in web- or cloud-based monitoring services. The algorithm presented in this paper
accounts for seasonality and also allows inter-annual variations of the seasonal pattern, e.g., vegetation
phenology. Furthermore, strategies for handling irregular sampling intervals and signal artefacts
are presented. The algorithm is tested in a forest change detection application using time series of
Sentinel-2 data (S-2). Forest disturbances are detected at two complex forest test sites in Austria and
Malawi. The first test site is an alpine area in Austria characterized by frequent cloud cover, snow cover,
strong topographic effects, and pronounced forest seasonality and phenology. The second test site
is located in the dry tropical forests of Malawi, where forests show a strong and varying seasonality
between dry and rainy seasons. In the Malawi test site, we also analyze and compare accuracy results
for two different data scenarios: first, using S-2 images from only one orbit, and second, using all
available S-2 imagery from two orbits. The aim of this analysis is to investigate if different viewing
angle and inconsistent geo-location of the pixels resulting from the combination of two orbits decrease
the overall change detection accuracies despite the boosted time series density.

2. Materials and Methods

2.1. Test Sites, Data, and Pre-Processing

For the forest change detection demonstration, we selected two test sites, one in Austria and
one in Malawi. The location of the two sites is shown in Figure 1. The Austrian test site is located
in the south-eastern part of the country. The test site is characterized by strong topography in the
northern part (Alpine area), where coniferous forests dominate. The southern part of the test site is
located in the foothills of the Alps with moderate topography and the forests are predominantly mixed
forests composed of coniferous and deciduous trees. The annual temperature amplitude in the Alpine
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area is stronger than in the foothills; however, the Alpine coniferous forests have less pronounced
phenological dynamics in comparison to the mixed and deciduous forests that dominate in the foothills.
The eastern half of the study area is covered by two orbits, and the western half only by one orbit
(see Figure 1). This is a typical data scenario encountered in practical applications.
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Figure 1. Location of the test sites.

The Malawi test site is characterized by flat to slightly hilly topography. The land cover is very
heterogeneous and is subject to a precipitation gradient from east to west. As a result, the area is
characterized by a vegetation phenology gradient from east to west. The forested areas differ in
tree-cover density and tree-type composition and therefore, show very different spectral behavior.
Dry tropical forests and the surrounding land use classes are more difficult to classify and monitor
than humid evergreen forests, as they show a typical phenological development from highly vital in
the rainy season to dry and leafless in the dry season [21]. Understory and grassland fires beneath the
forest canopy can further complicate forest classification. Two S-2 orbits (relative orbits 92 and 135)
cover the Malawi study area. The size of the test site was clipped to the overlap area of two orbits to
investigate the effect of separately processing data from one and two orbits.

Both test sites are located in areas that show distinct seasonal patterns due to phenology. Austria has
the typical European summer growing season with leaf-off time in winter for deciduous species due to
low temperatures. The forests of Malawi also show strong phenological variation as water scarcity
during the dry season (typically May–October) causes leaf-fall. The typical temporal NDVI signatures
of different forest types are shown in Figure 2. Each time series represents two years of NDVI
observations for a single pixel corresponding to a specific forest type and test site. In all cases, data from
two orbits is used and cloud/snow masking has been applied as described below. Aside from the
different seasonal patterns, several other characteristic properties of the data can be observed:
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• The time series density achieved with the Sentinel-2 constellation and overlapping orbits has a
high potential for near real-time monitoring applications.

• Larger data gaps occur during winter (snow cover in Austria) or the rainy season (frequent cloud
cover in Malawi).

• The illustration also gives an impression of the smoothness of the time series. Significant short-term
variance of consecutive observations caused by limited multi-temporal geometric registration
accuracy [22], different viewing angles, and remaining atmospheric effects has to be expected.
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Figure 2. Typical temporal NDVI (Normalized Difference Vegetation Index) signatures over two years
for single pixels corresponding to specific forest types and test sites. Larger data gaps occur in the
winter months due to snow cover in Austria (AUT) or the rainy season in Malawi (MWI). Outside of
these periods, the observation density is high enough to capture the seasonal patterns.

The current data quality report issued by the Sentinel-2 Mission Performance Centre (S2 MPC)
gives statistics for the multi-temporal geometric registration performance [22]. For about half of the
images, the co-registration error is larger than 0.5 pixels at 10 m resolution. Within homogenous
land-cover areas, this can be treated as an additional noise component. The high geometric uncertainty
becomes a larger problem at the border regions between land-cover classes, especially if a given pixel
jumps between forested and non-forested states.

All available Sentinel-2 scenes with a nominal cloud cover below 90% were downloaded for the
test sites (Table 1) at Level-1C and atmospherically corrected to surface reflectance (SR) values using the
Sen2Cor processor version 2.5.5 [23]. We then resample the 20 m bands to 10 m spatial resolution and
stack all bands to a 10-band output image. We calculate a combined cloud, cloud shadow, and snow
mask with the FMask algorithm [24,25]. This mask is slightly altered by morphological operations
(erode, expand) to fill cloud holes and the masked pixels are then removed from the pre-processed S-2
imagery by assigning no-data values to them. We also perform a topographic correction based on a
modified Minnaert correction [26] using the Shuttle Radar Topography Mission (SRTM) model at 30 m
spatial resolution as digital elevation model (DEM).

Table 1. Earth ObservationData Information.

Test Site Tile ID No. of Images Used Time Windows

Initialization Change Detection

Malawi—one orbit
(R135) 36LWM 86 2016–2018 2019

Malawi—two orbits
(R135 and R092) 36LWM 134 2016–2018 2019

Austria—two orbits
(R122 and R079) 33TWN 160 2016–2018 2019
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2.2. Change Detection Method Using a Structural Time Series Model and the Kalman Filter

The underlying assumption of the monitoring approach presented in this section is that the normal
temporal trajectory of a given spectral band over the course of the year can be captured by a univariate
structural time series model. Within the structural model, we can further distinguish between an
observation sub-model and a dynamic sub-model. The observation sub-model on the one hand defines
the relationship of the measurements to a set of state variables which cannot be observed directly. In a
structural time series model, the state variables usually represent the series’ additive decomposition
into trend, seasonal, and long-term cyclical components. The dynamic sub-model on the other hand
describes the expected temporal evolution of the state variables. By formulating the dynamic sub-model
in continuous time, the problem of irregular sampling intervals is addressed. The Kalman filter is used
to fit the model to the data and operates recursively from one point in time to the next. Each recursion
may be divided into two steps. In the time-update step, the states’ temporal evolution is predicted
based on the dynamic sub-model. It is followed by the measurement update step, where the predicted
state estimate is enhanced by incorporating newly available observations. Abrupt changes of the
spectral signature, possibly linked to a forest disturbance, are indicated by statistically significant
deviations between new observations and the Kalman filter predictions. The recursive operation of the
filter further implies that prior knowledge about the initial state is required. Because the ability to
distinguish anomalies from normal seasonal changes depends on the quality of the state estimates,
a proper initialization is of high importance. Therefore, a robust least squares method is used to
estimate the initial state from a historic time series covering at least one full year prior to the beginning
of the monitoring period (see initialization time window in Table 1). The following sub-sections
describe the implementation in more detail.

2.2.1. Time Series Model

Structural time series models are mathematically formulated using the discrete-time state space
representation [15]. This concept assumes that a linear, time-variant system can be described by a
set of state variables. Because these variables can usually not be observed directly, an observation
sub-model linking the system state to a set of measurements is required. In case of univariate time
series, the measurement equation is

zk = hkxk + rk, (1)

where hk is a row vector, xk denotes the state vector, and zk is a scalar observation made at time tk.
In addition, rk represents serially uncorrelated observation noise with mean zero and variance Rk.
We will refer to discrete points in time as epochs and define an epoch index k ∈ N to indicate a possible
time-dependency of variables. The temporal evolution of the state vector is described by a dynamic
sub-model using the transition equation:

xk = Φkxk−1 + qk, (2)

where Φk denotes the transition matrix and qk is a vector of serially uncorrelated process noise with
mean zero and covariance matrix Qk. Note that no assumptions regarding the distributions of the
observation and process noises are made at this point, but they are supposed to be uncorrelated
with each other in all epochs. It is further assumed that the initial state x0 is known with a level of
uncertainty characterized by the state error covariance matrix P0.

The structural time series model implemented in this study enables a decomposition of the time
series into additive trend, seasonal, and irregular components. We assume a constant trend and
directly introduce the state variable µk, which represents the trend level at time tk. The seasonal
component on the other hand is constructed by a sum of P-periodic cosine waves, with P denoting the
fundamental duration of the seasonal cycle. Considering the nature of the time series investigated
here, it is appropriate to measure time in days and thus set P to 365.25. For each cosine wave added to
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the seasonal component, two more variables are appended to the state vector. Taking a wave with
frequency ωi, the state variable γi,k representing the cosine waves’ level at time tk is added along
with the variable γ∗i,k, whose interpretation is not particularly important. The structural model for the
Malawi test site features a seasonal component with frequencies corresponding to one and two periods
per year. In case of the Austrian test site, we use just the fundamental frequency because of the less
complex seasonal pattern. The measurement Equation (1) of the Malawi model becomes

zk = [ 1 1 0 1 0 ]


µ
γ1

γ∗1
γ2

γ∗2


k

+ rk (3)

Note that zk represents the observed reflectance value at time tk and h is time-invariant. Using ∆tk =

tk− tk−1 measured in days andωi = 2πi/365.25, the transition Equation (2) of the Malawi model becomes
µ
γ1

γ∗1
γ2

γ∗2


k

=


1 0 0 0 0
0 cos (ω1∆tk) sin (ω1∆tk) 0 0
0 − sin (ω1∆tk) cos (ω1∆tk) 0 0
0 0 0 cos (ω2∆tk) sin (ω2∆tk)

0 0 0 − sin (ω2∆tk) cos (ω2∆tk)




µ
γ1

γ∗1
γ2

γ∗2


k−1

+



qµ
qγ1

qγ∗1
qγ2

qγ∗2


k

(4)

In order to fully specify the state space model, two more quantities need to be defined: Rk and
Qk. The first one will be addressed in the next sub-section. The covariance matrix Qk quantifies the
uncertainties within the dynamic sub-model and is defined depending on the nature of the process
noise. Here, we assume that the state transition is affected by multivariate, continuous time white noise
with constant variances Qc independently specified for the trend and seasonal component, that is:

Qk = ∆tk


Qtrend

c 0 0 0 0
0 Qseas

c 0 0 0
0 0 Qseas

c 0 0
0 0 0 Qseas

c 0
0 0 0 0 Qseas

c


(5)

Note that all off-diagonal elements of Qk equal zero and we therefore assume that the different
process noise components are uncorrelated. Implementing the dynamic model in continuous time
means that the time series model is specified for arbitrary values of ∆tk and irregular sampling intervals
do not pose a problem. Finding appropriate values for Qc is one of the difficulties. Our experiments
showed that setting individual values for each pixel and band proportional to the respective observation
variance R works quite well. Since R is estimated from the data (see the next sub-section), the user
has to specify two proportionality factors, one for the trend component and one for the seasonal
component. We recommend to let Qseas

c be larger than Qtrend
c in order to make the time series model

more responsive to phenological variations.
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2.2.2. Initial State Estimation

In order to obtain estimates of the initial state vector x0, its associated covariance matrix P0, and the
observation variance R, the state space model outlined above is transformed to a linear regression
model with the measurement equation:

z1

z2
...

zm

 =


hΦ(t1, t0)

hΦ(t2, t0)
...

hΦ(tm, t0)

x0 +


r1

r2
...

rm

 (6)

Equation (6) also illustrates the key difference between a structural time series model and a
regression model. The latter does not distinguish between observation sub-model and dynamic sub-
model and has no notion of process noise. Standard least squares methods may be used to obtain
estimates of x0 and P0 from a batch of m historic observations acquired before the monitoring period.
We applied a robust parameter estimation approach known as iteratively reweighted least squares
(IRLS). The technique belongs to the class of M-estimators [27] and the implementation follows [28].
We further use the mean squared error of the weighted least squares fit as an estimate for the observation
variance R. If the number of valid historic observations is low, for example in areas with extremely high
cloud probability, the observation variance can be severely underestimated. Existing studies applying
harmonic regression also report this issue and we take up the suggestion to define a certain minimum
value for R that is used if the estimate is lower [12,29].

2.2.3. Kalman Filter

Once the time series model and the initial values x0 and P0 are defined, the discrete-time Kalman
filter recursion can be used to obtain estimates for the state and its error covariance matrix in subsequent

epochs. The time update step yields the predicted (a-priori) estimates
~
xk and

~
Pk based on the dynamic

model and the previous estimates at time tk − 1:

~
xk = Φk

^
xk−1 (7)

~
Pk = Φk

^
Pk−1ΦT

k + Qk (8)

Then, the a-priori measurement residual yk and its variance Ck is computed according to
Equations (9) and (10). The residual represents the difference of the prediction to the actual measurement
and is referred to as innovation, since it contains new information currently not present in the predicted
state [17].

yk = zk − h
~
xk (9)

Ck = h
~
PkhT + R (10)

In the measurement update step of each recursion, new information is merged with the predictions

to obtain improved (a-posteriori) estimates
^
xk and

^
Pk. The Kalman gain kk (11) determines how much

the newly acquired measurement will influence the a-posteriori estimates of the state and its error
covariance and appears in both update Equations (12) and (13), where I represents an identity matrix.

kk =
~
PkhTC−1

k (11)

^
xk =

~
xk + kkyk (12)

^
Pk = (I− kkhk)

~
Pk (13)
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2.2.4. Signal Artefact Handling and Change Detection

When the sequence of measurements processed by the filter may contain artefacts, an additional
anomaly detection step should be included before the measurement update. The properties of
the innovations can be exploited to detect anomalous measurements by means of a statistical test.
Provided that the underlying model assumptions are valid, and the observation noise is Gaussian,
the innovations should be normally distributed with mean zero and variance Ck. The test statistic T̂k
given in (14) follows the χ2-distribution with a single degree of freedom. The hypotheses to be tested
on a significance level α are stated in (15) and (16), respectively:

T̂k =
y2

k
Ck

, T̂k ∼ χ
2 (14)

H0 : yk = 0 if T̂k ≤ χ
2
1, 1−α (15)

H1 : yk , 0 otherwise (16)

Considering that anomalous observations will cause large innovations, the null hypothesis
will be rejected. In that case, the measurement update is not carried out so that the state estimate
remains unbiased.

The change detection part of the algorithm is based on the cumulative sum control chart
(or CUSUM) [20]. The key quantity here is again the sequence of filter innovations, which should
have zero mean if the Kalman filter model assumptions reflect the truth closely enough. We use the
CUSUM control chart to monitor if the innovations deviate from mean zero. Of course, the presence
of artefacts like un-masked clouds presents a problem in this regard, because a single innovation
corresponding to an artefact may shift the mean significantly and hence trigger a (inaccurate) change
signal. The previously described anomaly test cannot distinguish between an artefact and an abrupt
land cover change. To work around this limitation, a new quantity we call edited innovation y̌k is
introduced. It represents the original innovation divided by its standard deviation, but also limited in
magnitude based on the significance level α specified for the anomaly test, that is:

y̌k =


min

(
yk√
Ck

,
√
χ2

1,1−α

)
if yk ≥ 0

max
(

yk√
Ck

,−
√
χ2

1,1−α

)
if yk < 0

. (17)

Dividing by the standard deviation means that sequences of edited innovations should be close to
having unit variance across different bands and pixels. The limit operation on the other hand ensures
that the CUSUM control chart with y̌k as input is less sensitive to single statistical outliers. A temporal
aggregation of edited innovations with the same sign is required to shift the mean of the sequence
significantly. The CUSUM test statistic for a positive mean shift with respect to spectral band i is
implemented as:

S+
i (0) = 0

S+
i (k) = max(0, S+

i (k− 1) + y̌i(k) − d)
(18)

where d is a drift parameter which generally compensates small deviations and also ensures that effects
of occasional signal artefacts on the test statistic fade away over time. A mean shift is signaled if
the test statistic crosses a predefined threshold. Instead of evaluating all processed bands separately,
we decided to aggregate the test statistics of several bands by simple summation and then use a global
threshold. We look for anomalous reflectance increases in the red, red edge, and short wave infrared
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(SWIR) bands, as these have proven to be sensitive to vegetation changes [30]. The implemented
criterion for detecting a forest disturbance at time tk is given in Equation (19) using S-2 band numbers.∑

i

S+
i (k) > change threshold where i ∈ {B04, B05, B11, B12} (19)

Both the change threshold in (19) and the drift parameter in (18) are user-defined tuning parameters.
Appropriate values need to be determined empirically. Because of the limit operation described
by (17), the maximum of a single edited innovation is a known constant and amounts to ~2.57 if
α = 1%. This knowledge provides a helpful yardstick for setting both threshold and drift parameters.
The statistical normalization applied to the edited innovations means that the same values can be
used globally for all pixels. The flowchart depicted in Figure 3 illustrates how the methods discussed
in the preceding sections are joined together in order to create a data-driven algorithm capable of
detecting abrupt changes on the pixel level. A summary and some additional explanatory comments
are given below.
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1. The initial state as well as the observation noise are estimated on the pixel level using the
iteratively reweighted least squares (IRLS) method. Therefore, the user has to supply a stack of
historic images as a training dataset. At least one year of observations is required, but, especially
for models using two seasonal frequencies, we recommend two or three years to ensure a stable
initial model.

2. New images acquired in the monitoring period are processed one-at-a-time in a Kalman filter
loop. A hypothesis test is used to identify anomalous observations showing significant deviations
to the prediction.

3. Whenever an observation is marked as anomalous, the measurement update step is bypassed in
order to avoid adverse influence of signal artefacts on the state estimates.

4. Spectral bands are processed in parallel and the aggregated CUSUM test statistic used for change
detection is evaluated after processing each new image.

Figure 4 visualizes the method for a forest change pixel (10 by 10 m) in a deciduous forest in the
Austrian test site. The first four sub-plots show the surface reflectance of Sentinel-2 bands 4 (red), 5 (red
edge), 11 (SWIR1), and 12 (SWIR2) over time. The sub-plot at the bottom shows the value of the CUSUM
test statistic defined in Section 2.2.4 over time. A phenological cycle that is typical for deciduous tree
species can be observed. Higher reflectance values correspond to the leaf-off season during winter.
The red line represents the Kalman fit and the grey area corresponds to the 90% confidence interval of
the model forecast. While blue observations are considered in the model and measurement update step
(compare Figure 3), the orange observations are flagged as anomalous and therefore ignored during
the measurement update step. Please note that the level of significance for the anomaly test is α = 1%,
hence blue observations may also appear outside of the plotted confidence interval. Occasional positive
anomalies will cause a short-lived increase of the related CUSUM, but in most cases, it should not
exceed the threshold (e.g., middle of 2016 or end of 2017 in Figure 4). Such anomalies occur if for
example small cloud artefacts remain in the pre-processed data. A prolonged increase of the CUSUM
is triggered by a persistent signal shift. At some point, the threshold is exceeded, and the pixel is
flagged as changed, in this case, at the end of 2018. The vertical dashed line in Figure 4 marks the
date on which the change is visible for the first time in the S-2 imagery. Note that anomalies with
significant magnitude are first detected only in the SWIR bands, while the signal shift in the red and
red edge band initially occurs within the 90% confidence interval; however, the aggregated CUSUM
test statistic allows a timely detection of the change. After a threshold crossing, the test statistic is
reset to zero. Repeated change alerts, as shown in this example, may thus occur. This could be used
to increase the confidence about a detected change at the cost of delaying the detection; however,
this aspect has not been investigated in detail in this work. For the resulting forest change maps at the
two test sites, we first include all Sentinel-2 single pixel changes (10 by 10 m) that were detected by
the described approach within the change detection time window. For the final forest change maps,
a minimum mapping unit of 0.1 ha is applied to the forest change stratum, which relates to change
areas represented by at least ten connected 10 m pixels. Detected forest change areas smaller than
10 pixels are removed from the final forest change maps.
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Figure 4. Example of the time series model for a deciduous forest pixel at the Austrian test site, where a
forest change occurred at the end of 2018. The plots show the surface reflectance of Sentinel-2 bands 4,
5, 11, and 12. The vertical dashed line marks the date on which the change is visible for the first time in
the S-2 image time series. The plot at the bottom shows the cumulative sum control chart (CUSUM)
used for detecting the change event (coordinates: X 559045 m, Y 5235095 m, in EPSG 32633).
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2.3. Evaluation Method

In order to test the operational application of the presented forest change detection method, a full
area-based validation of the resulting change maps is performed in both test sites based on stratified
random sampling points that are located within forest areas outlined by benchmark forest masks
(status 2016 for Malawi and summer 2018 for Austria). The overall number of samples and samples
per stratum are based on recommendations for land cover accuracy estimation [31,32]. Points that
were found to be already deforested before the beginning of the change detection time window were
excluded from the analysis since these cases correspond to errors of the initial forest masks.

For Malawi, 849 reference sample points are used for statistical analysis, with 735 sample points
belonging to stratum forest and 114 sample points belonging to stratum change. During blind
interpretation, we flagged all sample points that were located at or very close (~10 m) to the border
of a forest change patch. This allows us to treat these points as correctly classified in a subsequent
plausibility analysis. This approach is usually termed “plausibility analysis”, because it is deemed
plausible that the border point can also belong to the other stratum. This is especially true for
the small-scale 10 by 10 m change assessment we use in this study considering that some of the
spectral bands of Sentinel-2 used to derive the changes only have a nominal spatial resolution of 20 m.
For Malawi, assessments are based on the following validation approaches and input data options:

• Blind versus plausibility validation approach.
• Input data from only one orbit versus combined input data from two orbits.

The plausibility analysis is only performed for the two-orbit input data. Thus, the comparison of
the two input data options in Malawi is based only on the blind assessment approach.

For Austria, we interpreted a total of 1585 reference points, of which 21 points were removed as
they were found to be non-forest already before the beginning of the change detection window. From the
remaining 1564 points, 1212 belong to stratum forest and 352 to stratum change. The plausibility
approach was carried out in the same manner as in Malawi. Please note that the Austrian test site
is only partly covered by two orbits, which is a typical data scenario when working with Sentinel-2
data. Combined input data from two orbits is used where possible. For all assessments, we provide
unbiased estimates of the mapped area proportions as well as the products’, users’, and producers’
accuracies by applying Equations (1) and (6)–(8) from Reference [31].

3. Results

Table 2 gives a summary of key validation results for both test sites, different assessment
approaches, and input data scenarios. The detailed results of the forest disturbance detection are shown
in Tables 3–7, where the upper part presents the sample counts and the lower part presents the unbiased
estimates of area proportion and accuracy measures. Overall accuracies are very high (96.4–99.3%).
This is not surprising since the unchanged forest class accounts for 98.7% of the validation area at the
Malawi test site and for 98.6% at the Austrian test site. It is also evidence for a low rate of false-positive
change detections. For better comparison, Table 2 also lists the users’ accuracies and producers’
accuracies of the different validation approaches for the change class. The plausibility analysis increases
the users’ accuracy of the change class by 17.5% in Malawi and by 4.1% in Austria. Producers’ accuracies
show a strong increase of 31.1% in Malawi and 29.1% in Austria. Overall accuracies after plausibility
analysis reach 99.3% at both test sites. Results show that combining data from two orbits leads to an
increase in users’ accuracy of 7.6% (Malawi—blind validation approach) compared to using data from
only one orbit, while producers’ accuracies remain the same. The detailed accuracy metrics for Malawi
are shown in Tables 3–5, and for Austria, they are listed in Tables 6 and 7. For comparison between
one and two orbits, please compare Tables 3 and 4. For comparison of blind and plausibility results,
please compare Tables 4 and 5 for Malawi and Tables 6 and 7 for Austria.
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Table 2. Summary of the accuracy measures for the forest change maps at both test sites for different
assessment approaches (blind interpretation and plausibility analysis).

Country Validation Approach Change Class
Overall

Users Producers

Malawi Blind—1 orbit 63.5% 37.2% 96.4%
Malawi Blind—2 orbits 71.1% 37.1% 98.0%
Malawi Plausibility—2 orbits 88.6% 68.2% 99.3%
Austria Blind—2 orbits 72.7% 51.5% 98.6%
Austria Plausibility—2 orbits 76.8% 80.4% 99.3%

Table 3. Error matrix for Malawi, blind approach—1 orbit.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 714 20 734 55,258
Change 42 73 115 1407

Total 756 93 849 56,665

Forest 0.949 0.027 0.975 54,266 97.3 ± 1.2% 99.1 ± 0.2%
Change 0.009 0.016 0.025 2399 63.5 ± 8.8% 37.2 ± 10.7%

Total 0.958 0.043 1.000 56,665 96.4 ± 1.2%

Confidence interval of accuracy measures: 95%.

Table 4. Error matrix for Malawi, blind approach—2 orbits.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 723 12 735 55,909
Change 33 81 114 756

Total 756 93 849 56,665

Forest 0.971 0.016 0.987 55,215 98.4 ± 0.9% 99.6 ± 0.1%
Change 0.004 0.009 0.013 1450 71.1 ± 8.4% 37.1 ± 13.4%

Total 0.974 0.026 1.000 56,665 98.0 ± 0.9%

Confidence interval of accuracy measures: 95%.

Table 5. Error matrix for Malawi, plausibility approach—2 orbits.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 731 4 734 55,909
Change 13 101 115 756

Total 744 105 849 56,665

Forest 0.981 0.005 0.987 55,691 99.5 ± 0.5% 99.9 ± 0.1%
Change 0.002 0.012 0.013 974 88.6 ± 5.9% 68.2 ± 21.0%

Total 0.983 0.017 1.000 56,665 99.3 ± 0.5%

Confidence interval of accuracy measures: 95%.
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Table 6. Error matrix for Austria, blind approach.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 1084 11 1095 426,192
Change 128 341 469 6253

Total 1212 352 1564 432,445

Forest 0.976 0.010 0.986 423,617 99.0 ± 0.6% 99.6 ± 0.1%
Change 0.004 0.010 0.014 8828 72.7 ± 4.0% 51.5 ± 14.8%

Total 0.980 0.020 1.000 432,445 98.6 ± 0.6%

Confidence interval of accuracy measures: 95%.

Table 7. Error matrix for Austria, plausibility approach.

Reference Ai (ha) Users Producers Overall
Forest Change Total

Map Forest 1092 3 1095 426,192
Change 109 360 469 6253

Total 1201 363 1564 432,445

Forest 0.983 0.003 0.986 426,478 99.7 ± 0.3% 99.6 ± 0.1%
Change 0.003 0.011 0.014 5967 76.8 ± 3.8% 80.4 ± 17.8%

Total 0.986 0.014 1.000 432,445 99.3 ± 0.3%

Confidence interval of accuracy measures: 95%.

Figure 5 shows some mapping examples of windthrow detection for the Austrian test site.
The series of S-2 images illustrates the development of forest disturbances occurring at an alpine subset
of the test site that was affected by windthrow late in the year 2018 (storm Vaia on 29/30 October
2018). Please note that the depicted sequence does not represent all available imagery, but a selection
of cloud-free images of the area of interest. The first image (top left) shows the undisturbed state
two weeks before the storm event. A large windthrow area can be identified in the second image
(top middle; surrounding the red circle). Forest change detection is complicated by the fact that the
timing of the storm exactly coincides with leaf discoloring and leaf-fall for the broadleaf trees at the
site and by subsequent bad weather conditions also leading to snow cover. Remaining snow (blueish
colored areas) can still be seen in early April 2019 (top right image). Harvesting of damaged forest
areas leads to a continuous increase in deforested areas in the subsequent images. Typically, also areas
adjacent to completely thrown forest areas are affected to some degree by wind damage, e.g., single tree
throws or broken stems. In Austria, all storm damage affected areas are usually harvested directly
after the storm event to prevent bark beetles from spreading. The last image in the series shows which
pixels are flagged as changed by the algorithm and in which month the changes were detected. Due to
frequent cloud and snow cover at the site from mid-November 2018 to April 2019, only few pixels
were detected as changed shortly after the storm as only two usable post-storm observations were
available until the end of 2018. Many detections are thus delayed until early spring 2019, when the
time series of snow-free Sentinel-2 imagery continues and when the damaged forest areas are being
cleared (removal of damaged and broken trees). This example shows both the capabilities, but also the
limitations of the method when used in near real-time forest change mapping scenarios for Central
European/Alpine forests.
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The software needed to create the presented mapping example and time series plots has been
implemented in Python. This Python implementation is capable of processing smaller test sites (up to
10 MP) for development and demonstration purposes in reasonable time. For large-area processing,
a performance-optimized C/C++ implementation is also available. However, both versions rely on
certain in-house modules and libraries which are subject to licensing restrictions.

4. Discussion

When comparing our results to those of other studies on near real-time forest change detection,
similarly high overall accuracy values can be observed. This is to be expected for a land cover class
and test sites that are characterized by a large proportion of unchanged areas. In this case, users’ and
producers’ accuracies of the change class are much better measures to determine the suitability and
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practical implementation potential of a monitoring approach. Many recent near real-time forest change
monitoring approaches detect and evaluate changes at a minimum mapping unit (MMU) of at least one
Landsat 8 pixel (~0.1 ha) as most related studies are still primarily based on Landsat 8 imagery with a
lower spatial resolution than Sentinel-2 [29,33–35]. For better comparability, we have also applied a
0.1 ha MMU for the change class, but our change polygons can be of any shape representing at least
ten connected Sentinel-2 change pixels.

There are a number of near real-time forest change studies and algorithms that provide accuracy
statistics similar to those presented here. The near real-time humid tropical forest monitoring approach
of Global Forest Watch was evaluated at national scale in Peru with a reported producer’s accuracy
of 75.4% and a user’s accuracy of 92.2% [33]. However, a direct comparison of results is difficult,
since 63% of the detected forest changes in this study were at least one hectare in size, while only
4% were the size of one single Landsat pixel (~0.1 ha). In our test sites, the vast majority of change
polygons is smaller than 0.5 ha. Another change detection approach has recently been developed and
tested for seasonal tropical forests in Myanmar. It uses a harmonic regression model to account for
seasonality and a set of time series disturbance probabilities to detect forest changes [35]. The authors
report overall disturbance detection accuracies of 78.3% for Landsat 8 data and 83.6% for Landsat 8
data combined with Sentinel-1 data. The reported users’ accuracy for the disturbance class at the single
Landsat 8 pixel level (~0.1 ha) is 84.1% and producers’ accuracy is 78.6%, but disturbance detections
are significantly delayed by 65 days on average. Very high users’ and producers’ accuracies of 88%
and 89% were also reported for a forest change detection approach that combines Landsat 8, Sentinel-1,
and ALOS-2 PALSAR-2 data at a dry tropical forest site in Bolivia characterized by distinct dry and wet
seasons [34]. Instead of adapting the time series model in near real-time to the observed phenology,
the authors apply a-priori spatial normalization to reduce the dry forest seasonality in the time series
and then apply the change detection analysis on the normalized data [10]. The method is reported
to perform well for extreme events, but we would expect that such a combined normalization and
change detection approach could fail in years that behave significantly different from the average, e.g.,
years with extreme dryness (deviation in magnitude) or a very late start (deviation in time) of the
wet season.

Our approach to use the Kalman filter is quite different in that it continuously accounts for
inter-annual phenology variations and updates the time series model. The method proved to work
properly at both test sites even for cases where the phenology curve significantly differs between years.
Figure 6 shows three false-color Sentinel-2 images (band combination B11, B04, B03) of an unchanged
forest area at the Malawi test site from three consecutive years, acquired almost on the same day of
each year (mid-August). Significant differences in the phenological state can be observed both in the
images as well as in the corresponding time series plot below (Figure 6). The time series plot shows the
Sentinel-2 red band surface reflectance for a pixel at the center of the red circle in the images. Each year
shows time periods with strong deviations from the average IRLS fit over all years. Year 2016 shows an
early and stronger than average dry season, while the observations of year 2018 indicate a pronounced
prolongation of the spring rainy season and thus late start of the dry season. The observed reflectances
for August 2016 and August 2018 deviate by more than 7% of total surface reflectance. A widely used
deterministic modelling approach based on harmonic regression (see IRLS fit represented by the green
line in Figure 6) results in large and prolonged deviations between observations and the model curve
which is disadvantageous for change detection. The Kalman filter is able to track the differences in
plant vitality much better. In the given example, only one single observation in December 2018 was
flagged as anomalous.
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Figure 6. The illustration shows 3 false-color images (B11, B04, B03) acquired in three consecutive years
in Malawi, almost on the same day (gray dashed lines). The upper time series plot shows the red band
surface reflectance for a single pixel located in the center of the red circle together with a harmonic
regression fit (IRLS—iteratively reweighted least squares) and the Kalman filtered trajectory. The lower
plot shows the trend and seasonal components separately.

This seasonal phenological effect is further illustrated in Figure 7, which compares the residuals
of the IRLS fit shown in Figure 6 with the corresponding Kalman filter innovations. The IRLS residuals
show a much larger degree of unwanted systematic patterns left in the sequence, which is apparent
when comparing the moving mean of the last 15 observations (dashed orange line in Figure 7).
These systematic patterns represent the difference in phenology (both in time and magnitude) from the
“average” fit. In combination with the CUSUM test, these systematic deviations of the IRLS fit would
result in a larger amount of erroneous forest change detections. In case of the Kalman filter innovations,
remaining non-random patterns appear when the model receives adjustments to the current phenology
(especially the second half of 2018 in Figure 7). However, the drift parameter in Equation (18) avoids
that small and short-lived deviations from the zero mean assumption accumulate to a change signal.
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Figure 7. The residuals of the regression fit (IRLS) and the corresponding Kalman filter innovations for
the same plot as in Figure 6. The orange dashed line represents the moving mean based on the last
15 observations.

We could show that the combination of Kalman filter innovations and the CUSUM test is suitable
for rapid near real-time detection of abrupt forest changes as shown in Figure 4. With the CUSUM test,
changes can be detected with a smaller time lag than with traditional change detection methods based
on multiple confirmations [21,35–37]. Many existing algorithms require a fixed number of observed
anomalies to signal a change, and some enforce the condition that anomalies also have to be detected
consecutively. Certain statistical boundaries or change probabilities specific to the method have to be
exceeded multiple times for a change to be recorded. When the spectral footprint of a change event is
at the border of detectability, these restrictions likely lead to omission errors or a large time lag between
change event and detection. Because of its cumulative nature, the proposed CUSUM test statistic is not
restricted in the same away. Any post-change observation can add information to the test statistic,
regardless of being flagged by the anomaly test or not. Depending on the spectral footprint of the
change event, it may take two, three, or more post-change observations to detect the change. At this
point, we cannot give a quantitative evaluation of the typical time lag because appropriate reference
data were not available.

The reduction of the time lag between change event and change detection is of major importance to
near real-time forest monitoring systems. For this reason, several recent studies have combined optical
data with Synthetic Aperture Radar (SAR) data in order to reduce this time lag [34,35]. Regarding optical
data, persistent cloud cover during rainy seasons represents a major limitation as the time gap between
consecutive valid observations may become very large. Change detection methods that require multiple
confirmed change detections will therefore show large time lags between the change event and its
detection. Two studies carried out in tropical regions reported mean time lags of 63 days and 70 days
for Myanmar and Bolivia respectively, if only optical Landsat 8 data is used [34,35].

At the Malawi site, we also tested if exploiting overlaps of two S-2 orbits delivers higher forest
change detection accuracies. Using two orbits has the advantage of providing a much denser time
series, but a potential disadvantage stems from the geometric shifts related to the different orbit viewing
angles. Especially, the forest border is often slightly misplaced in data from two orbits as the DEM that
is used by the European Space Agency (ESA) to orthorectify the imagery does not accurately account
for tree height. At the 10 m spatial resolution of Sentinel-2, the effect of orbit-related geometric shifts on
the spectral reflectance of single forest border pixels is much stronger than that, for example, in 30 m
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Landsat 8 pixels. Elevation errors in the DEM may also lead to strong dislocations of up to 20 m at
mountain ridges as observed in the alpine test areas in Austria. In Malawi, our test site is characterized
by flat to slightly hilly terrain, so errors related to topography are negligible. The results show that for
Malawi, the users’ accuracy increases from 63.5% to 71.1% when using two orbits instead of only using
one orbit. Especially, the commission error is much higher with only one orbit (see mapped areas of
1407 ha versus 756 ha in Tables 3 and 4, respectively). The main reason for this strong improvement may
be found by looking at the inter-annual temporal distribution of valid observations. The time series
density at the Malawi test site is quite inhomogeneous (see Figure 6). While many clear observations
are available during the dry season, the time series is sparse in the rainy season from November to
April due to frequent cloud cover. Using two orbits greatly increases the chance of including a few
clear observations during the rainy season, which is very important for a proper initialization of the
time series model. To our knowledge, such a comparative analysis on using Sentinel-2 data from one
or two orbits as input to a change detection approach has not been performed before. Thus, we cannot
assess whether our findings are in line with other research results. While our findings suggest that
denser time series resulting from orbit overlaps lead to higher forest change mapping accuracies, it is
not yet clear if these findings for the dry forests in Malawi are also valid for other forest types and for
other regions. Further studies with different data input scenarios and at various forest test sites are still
needed to fully answer this question.

The presented approach for detecting forest changes in near real-time using Sentinel-2 imagery has
a high potential for operationalization of forest monitoring services, such as improved and automated
REDD+ (Reducing Emissions from Deforestation and Forest Degradation) services in the tropics,
and windthrow damage assessment or bark beetle monitoring in Central Europe. Future studies to
improve the presented forest change detection method and similar near real-time approaches should
focus on an integrated and automated separation of different biotic and abiotic forest disturbance
agents. Additional developments should include a multivariate analysis of relevant reflectance bands
and a spatiotemporal analysis of changes. The near real-time capability should be tested in operational
scenarios and the time lag of change detection needs to be assessed with field data or EO data of
very high geometric and temporal resolution (e.g., Planet data). For tropical forest monitoring and
REDD+ activities, the method should be tested in combination with recent Sentinel-1 SAR forest change
detection approaches, such as SAR shadow detection [38], backscatter composite differencing [39],
or SAR backscatter thresholding based on the coefficient of variation [40]. With minor adaptations,
the presented time series analysis approach might also be directly applicable to SAR data. The approach
could also be used for other EO-based applications, such as phenology monitoring in agriculture or
grassland monitoring (detection of mowing events).

5. Conclusions

In this paper, we presented a new algorithm designed for vegetation monitoring and change
detection using optical EO data. The approach is largely data-driven and designed especially for near
real-time mapping in web- or cloud-based monitoring services. Compared to existing algorithms
employing harmonic regression, this study explored methodological improvements, mainly in two
aspects:

• Seasonal patterns related to plant phenology can vary strongly between years because of different
climate conditions, such as temperature and rainfall. With widely used harmonic regression
models, it can be difficult to separate these normal variations from true disturbances due to the
deterministic modelling approach. Our algorithm uses structural time series models in state
space form which take into account that the trend and seasonal components in a time series can
evolve over time. This class of stochastic models is typically used in conjunction with the Kalman
filter, which also enables elegant handling of irregular sampling intervals and signal artefacts like
un-masked clouds and cloud shadows. We showed that it is possible to track the phenology-related
vegetation dynamics more closely without losing the ability to detect disturbances.
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• Many existing algorithms require that specific change probabilities or statistical boundaries have
to be exceeded multiple times for a change to be confirmed. In our algorithm, the sequence of
Kalman filter innovations (i.e., the differences between the one-step-ahead model forecasts and
corresponding observations) opens up alternative possibilities to characterize change. If the time
series model assumptions are correct and no changes occur, the innovation sequence should be
mostly free of temporal autocorrelation and it should have zero mean. We used the CUSUM
control chart to monitor these properties and assumed that significant deviations indicate change.
Additionally, a separate anomaly test intended to suppress commission errors due to signal
artefacts was implemented. Compared to the multiple confirmation approach, our results indicate
that the CUSUM approach has the potential to reduce the time lag between change event and
detection and a better chance of detecting subtle and gradual changes because of its cumulative
nature. However, a better understanding of different change types and especially reference data
for validation are required to support this claim.

Two challenging test sites located in Austria and Malawi were selected to test the algorithm
in a forest change detection scenario based on Sentinel-2 data. Both sites show pronounced and
dynamic seasonal patterns in the Sentinel-2 time series due to plant phenology. The dominant change
types in Malawi are deforestation and forest degradation. In Austria, we were mainly interested
in changes caused by storm damages or bark beetle infestations, but of course, deforestation also
occurs. The validation of the results was performed based on visually interpreted points derived by a
stratified random sampling approach. For the forest change class, we reported users’ accuracies of
76.8% (Austria) to 88.6% (Malawi), and producers’ accuracies of 68.2% (Malawi) to 80.4% (Austria).
Due to the low rate of commission errors and large proportion of stable forest, overall accuracies
reached over 99%.

In the Malawi site, we further showed that a denser time series with data from two different
orbits results in better change detection results compared to using data from only one orbit. The larger
number of input images seems to outweigh the possible negative effects of spectral and geometric
differences related to the different viewing angles, which especially occur at forest edges. The observed
increase in users’ accuracy when using two orbits amounted to 7.6%. However, further studies with
different data inputs and at various forest test sites are required to confirm these results.

In summary, it can be stated that the combination of structural time series models and Kalman
filtering represents an appropriate method for a variety of automated forest monitoring applications.
Beside the possibility of detecting abrupt changes, for example caused by storm damages or
deforestation, the method also shows a high potential to detect more subtle and continuous changes,
such as bark beetle infestations, forest degradation, or drought stress. Regarding the detection of insect
infestations, the interesting research question to be dealt with in future is whether an early detection of
bark beetle green attack is feasible.
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