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Abstract: Digital and scalable technologies are increasingly important for rapid and large-scale 

assessment and monitoring of land cover change. Until recently, little research has existed on how 

these technologies can be specifically applied to the monitoring of Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) activities. Using the Google Earth Engine (GEE) 

cloud computing platform, we applied the recently developed phenology-based threshold 

classification method (PBTC) for detecting and mapping forest cover and carbon stock changes in 

Siem Reap province, Cambodia, between 1990 and 2018. The obtained PBTC maps were validated 

using Google Earth high resolution historical imagery and reference land cover maps by creating 

3771 systematic 5 × 5 km spatial accuracy points. The overall cumulative accuracy of this study was 

92.1% and its cumulative Kappa was 0.9, which are sufficiently high to apply the PBTC method to 

detect forest land cover change. Accordingly, we estimated the carbon stock changes over a 28-year 

period in accordance with the Good Practice Guidelines of the Intergovernmental Panel on Climate 

Change. We found that 322,694 ha of forest cover was lost in Siem Reap, representing an annual 

deforestation rate of 1.3% between 1990 and 2018. This loss of forest cover was responsible for 

carbon emissions of 143,729,440 MgCO2 over the same period. If REDD+ activities are implemented 

during the implementation period of the Paris Climate Agreement between 2020 and 2030, about 

8,256,746 MgCO2 of carbon emissions could be reduced, equivalent to about USD 6-115million 

annually depending on chosen carbon prices. Our case study demonstrates that the GEE and PBTC 

method can be used to detect and monitor forest cover change and carbon stock changes in the 

tropics with high accuracy. 

Keywords: Landsat-8; Landsat TM; Google Earth Engine; tropical forestry; forest carbon stocks; 

emission reductions; REDD+; PBTC 
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1. Introduction 

The rapid loss of forest cover and acceleration of forest degradation in the tropics have been 

caused by land clearing, burning, and overexploitation [1,2]. A recent study using remote sensing 

technology revealed that tropical forests have been degraded drastically since 2000 [3]. Selective 

logging was a main driver of forest degradation, causing the degradation of approximately 400 

million ha of tropical forests [4,5]. In addition to rapid forest degradation, deforestation remains high 

in the tropics. A recent report by the Food and Agriculture Organization of the United Nations (FAO) 

stated that global forests were reduced by 178 million ha from 1990 to 2000 [6]. More specifically, 

annual losses of tropical forests were 7.8 million ha in 1990–2000, 5.2 million ha in 2000–2010, and 4.7 

million ha in 2010–2020 [6]. Such losses and forest degradation account for about 20% of total global 

emissions, and represent the second largest source of global emissions [7]. 

To reduce these losses, several major international agreements have been reached. Reducing 

Emissions from Deforestation and Forest Degradation (REDD+) of the United Nations Framework 

Convention on Climate Change (UNFCCC) is one of these agreements and is a result-based financial 

scheme for reducing carbon emissions or increasing removals in the tropics in exchange for financial 

compensation. This compensation can occur only if the REDD+ activities are monitored, measured, 

and verified, and the actual emissions are below the Forest Reference Emission Level (FREL) [8,9]. 

Therefore, methods for monitoring, reporting, and verifying (MRV) carbon emissions, reductions, or 

removals are critically needed so that the results from the implementation of the REDD+ activities 

can be reported on a regular basis. Forest inventories are the commonly used input for MRV 

purposes. One of these purposes is the establishment of the FREL because it is a benchmark emission 

against which emission reductions or removals (results) can be assessed for financial incentives 

[10,11]. Other field-based measurement approaches use the real weight of all parts of all trees in the 

targeted sample plots to determine forest biomasses using allometric equations (e.g., diameter at 

breast height and tree height obtained from field-based forest inventory methods) to convert 

inventory measurements into biomass estimates [12,13]. Although these methods provide the most 

accurate assessment of biomasses and carbon stocks, they are time consuming [12,14–16], costly and 

difficult to scale [17,18]. 

Satellite remote sensing technologies provide an alternative approach to MRV tasks required for 

the REDD+ scheme in developing countries in the tropics, where the availability of field 

measurements is sparse [19]. In recent years, phenology-based classification methods using spectral 

remote sensing data and the enhanced vegetation index (EVI) have shown satisfactory accuracy [20–

24]. Previous research [24,25] has shown promising results with high reliability and accuracy for 

vegetation [26], cropland [27] and land cover mapping [24,28]. The most recent studies classified land 

cover categories and changes using the moderate to high spatial resolution of the Landsat remote 

sensing data [24,29,30]. Based on moderate-solution satellite remote sensing data, other studies used 

basic image analysis techniques such as the maximum likelihood, artificial neural network, decision 

tree, support vector machine and random forest techniques to classify land cover categories [31,32] 

using various commercial image processing tools [33,34]. However, these methods are not without 

challenges such as the costs of acquiring remote sensing time series data, limitation of the spatial 

extent, variation of spectral properties, acquisition conditions, atmospheric perturbations, data 

storage, and the limit of image processing speed [35,36]. Many of these challenges can be overcome 

using features inherent available in the Google Earth Engine (GEE) and its phenology-based 

threshold classification (PBTC) methods [24]. GEE’s cloud computing capability has the potential to 

quantify vegetation and land cover change, and assess ecosystem dynamics, in a short time at no cost 

[37]. Furthermore, a larger quantity of training data may not be required for image classification when 

the GEE PBTC method is used. 

The use of PBTC methods in the remote sensing field (including GEE) has raised public and 

scientific attention because these methods have shown promising results with high accuracy for land 

cover mapping using moderate to high spatial resolution satellite data [26,38]. Previous research has 

attempted to study the surface vegetation phenology such as the phenology of natural vegetation, 
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rubber plantations, and rice for land cover mapping in tropical regions [21,23,39,40]. For example, 

Venkatappa et al. [24] determined threshold values for 12 land cover categories by assessing the 

phenological characteristics of each land cover category during the mid-dry phenological season. 

They used GEE’s harmonic model function for Landsat 5 Thematic Mapper (TM) and Landsat 

Operational Land Imager (OLI) EVI time series data to develop a PBTC method by applying the 

appropriate algorithms for classifying Landsat imagery [24]. Although a combination of GEE and 

phenology-based approaches can be used to estimate forest carbon stocks, emissions and removals 

from deforestation and forest degradation activities in the tropics, only a handful of studies exist on 

the applications of these approaches despite their importance for performing the MRV tasks of the 

REDD+ scheme [41].  

This study aims to apply the PBTC method for detecting and mapping the forest cover and 

carbon stock changes by different land cover categories using the available Landsat 5 and Landsat 8 

satellite remote sensing data in GEE over the last 28 years from 1990 to 2018. We chose Siem Reap 

province, Cambodia, as our case study location because of its strategic location, in which all major 

forest types in Cambodia are found. This study was designed to provide a review of the PBTC method 

and the required data and description of various steps and methods for establishing the subnational 

FREL and project emission level. Subsequently, carbon emission reductions and potential carbon 

revenues were estimated. These are discussed and policy recommendations are presented to achieve 

the result-based payments from the REDD+ scheme. 

2. Materials and Methods  

2.1. Study Area 

Siem Reap province has 12 districts as shown in Figure 1. It ranks as one of the 10 largest 

provinces in Cambodia. Siem Reap is located in a tropical area from 14.8 °N to 9.9 °N, and from 102.2 

°E to 107.9 °E. The elevation ranges from 6 m above sea level at Tonle Sap lake (the largest freshwater 

lake in Southeast Asia) to 469 m on Phnom Kulen mountain National Park. The landscape is a mosaic 

of dryland and edaphic forests, rice fields, shifting cultivation, and urban areas (Figure 1). Landscape 

patterns and particularly vegetation phenology are influenced by inter and intra annual precipitation 

patterns [42] as seasonal monsoons bring wet, moisture-rich air from the southwest from May to 

November, whereas December to April is characterized by drier, cooler air that flows from the 

northeast. Most of the rainfall occurs during the wet season with an annual precipitation range from 

1050 to 1800 mm [43]. The total population in the Siem Reap province increased from 896,443 in 2008 

to 1,006,512 in 2019, with an annual growth rate of 1.1% [44]. Siem Reap receives a large number of 

tourists each year because it hosts the World Heritage Site, Angkor Archeologic Park. It hosted 2.2 

million tourists in 2018, increasing from 2.1 million in 2015 [45]. 
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Figure 1. Major land use and land cover categories in Siem Reap province, 2018. Note: The base map 

data—including district boundary, water bodies, economic land concession boundaries, protected 

areas, village locations, road and stream network vector data—were collected from open 

development Cambodia [46]. The land cover map of 2018 was produced from this study. 

Siem Reap was chosen for this study because it has all land cover categories except mangrove 

forest. The major forest types are Evergreen, Semi-Evergreen, Deciduous, Mixed Woods and Shrubs, 

Bamboo, and Flooded forest [24]. The provincial economy is dominated by agriculture and tourism 

[47]. Forest resources are important to the local poor because of their high dependency on forest 

ecosystem services for their livelihoods [47]. The majority of the rural residents depend on the forest 

products for a living [48]. 

2.2. Google Earth Engine Remote Sensing Data 

The Google Earth Engine offers georeferenced and atmospherically corrected real-time remote 

sensing data with calibrated top-of-atmosphere reference (TOA) imagery of the entire Landsat 

satellite image collections, comprising more than 40 years of data. These collections are free of charge 

for education and natural and environmental research applications [37,49]. In this study, we collected 

Landsat 5 TOA data from 1990 to 2010 and Landsat 8 OLI TOA data from 2015 to 2018 covering the 

entire Siem Reap province. Table 1 illustrates the open-access Landsat datasets in GEE from 1990 to 

2018 at five-year intervals. 

Table 1. Google Earth Engine Landsat collections for the phenology-based threshold classification 

method (PBTC) and the assessment of carbon stock changes in Siem Reap province over 28 years. 

Cloud-Free 

Path/Raw Landsat (30 m) 

Selected Bands 

Number of Image Collections 
Month and Year 

for Median 

Enhanced 

Vegetation 

Index 

December–March 126/50 TM-TOA 4,3,1 11 
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1989–1990 127/51 

December–March 126/51 
TM-TOA 4,3,1 21 

1994–1995 127/50 

December–March 126/51 
TM-TOA 4,3,1 19 

1999–2000 167/50 

December–March 126 /51 
TM-TOA 4,3,1 19 

2004–2005 127/50 

December–March 126/51 
TM-TOA 4,3,1 14 

2009–2010 127/50 

December–March 126/51 
OLI-TOA 5,4,2 20 

2014–2015 127/50 

December–March 126/51 
OLI-TOA 5,4,2 20 

2017–2018 127/50 

Total        124 

Note: TM, Landsat Thematic Mapper 5; TOA, top-of-atmosphere reflectance; OLI, Landsat 

Operational Land Imager 8; EVI, enhanced vegetation index. Based on our previous study [24], we 

selected the image collections during the end of the season (December to March) and composited 4 

months of imagery, including one month of the previous year (December), to obtain the single 

composite EVI for the PBTC. Here we consider the maximum months (January–March) of observed 

imagery in a preceding year as the base year in the order of 1990, 1995, 2000, 2005, 2010, 2015, and 

2018. 

2.3. Forest Land Cover Category Threshold Values 

In our previous study [24], we were able to determine the major land cover category threshold 

values, which were derived by assessing phenological characteristics of land cover categories during 

the mid-dry phenological season (December to March) using the GEE harmonic model function for 

Landsat TM and Landsat OLI EVI time series data as described in our previous paper [24]. The 

phenology-based threshold values for individual land cover categories were set for the Landsat 5 

(1990–2010) and Landsat 8 (2015–2018) median EVI data. These land cover category threshold values 

can be applied to the Landsat 5 and Landsat OLI EVI data to classify the forest land cover categories 

in tropical regions, such as Cambodia. A detailed description of EVI land cover category phenology 

assessment can be found in our previous paper [24]. 

Phenology-based threshold values were applied to seven forest categories and three non-forest 

categories (Croplands, Water and other land cover) in the mid-leaf-shedding phase by selecting their 

high-peak vegetation index values in this study [24]. The selected forest land cover category threshold 

values are presented in Table 2 and the JavaScript used for PBTC is available at [24].  

Table 2. EVI threshold values used for forest land cover change detection in the Siem Reap province, 

Cambodia, using Landsat Collections. 

Forest Land Cover Categories in This Study 
TM Threshold Values 

(1990–2010) 

OLI Threshold Values 

(2015–2019) 

 Min Max Min Max 

Bamboo 0.671  0.776 0.854 0.882 
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Plantation (Rubber) 0.659  0.661 0.815  0.841 

Evergreen 0.515  0.659 0.652 0.769 

Semi-Evergreen 0.435  0.501 0.581 0.648 

Deciduous 0.301  0.421 0.476  0.556 

Mixed woods and shrubs 0.212  0.275 0.385 0.445 

Flooded forest 0.381  0.519 0.382 0.581 

Note: TM Landsat Thematic Mapper 5; OLI Landsat Operational Land Imager 8; and Min and Max 

are the forest cover categories’ mean EVI threshold values [24]. 

In our previous study [24], the EVI vegetation index values of the Flooded forest were difficult 

to determine because they were similar to the those of the other forests, specifically Evergreen and 

Semi-Evergreen forest (Table 2) during the mid-dry phenological season. To avoid this confusion, we 

created a boundary around the Tonle Sap lake for the Flooded forest area in GEE using the geometry 

tool, and then separately assigned the threshold values (TM: 0.381–0.519 and OLI: 0.382–0.581) in 

both Landsat TM and Landsat OLI collections to avoid misclassification and improve the map 

accuracy.  

2.4. Phenology-based Threshold Classification 

The Google Earth Engine offers a range of image processing approaches such as the compute 

images at-sensor radiance, TOA reflectance, cloud score and cloud-free composites [37]. We applied 

JavaScript algorithms to the entire Landsat collections, converted these to median values, and then 

applied a cloud thrash/mask function to obtain a cloud-free image. Finally, we applied a filter 

collection function to limit the image to those pixels within the Siem Reap province between 

December and March in each year. We applied the GEE PBTC algorithms for a composite EVI for 

forest land cover and carbon stock changes in the study region, which involved five steps (Figure 2): 

1. Landsat TM and Landsat OLI TOA collections were accessed using an image collection function 

in GEE and then a filter function was applied to obtain the collections for a specific season. We 

used the Siem Reap province area boundary to filter the collections within the study region. 

2. We used a cloud mask function to minimize the cloud cover on the image to less than 60%, and 

applied reducer functions to reduce the median values per pixel [50]. The reducer functions 

decrease the dimensionality of image collections by calculating simple statistics, such as the 

median value for each pixel. The output reducer median image object (single raster layer) 

characterizes the quality of the complete image collection. 

3. The EVI function for the median Landsat collections were applied to entire image collections 

from 1990 to 2018 [24,51,52]. 

4. We assigned the phenology-based threshold values for individual land cover categories by 

referring to our previous study [24] and then applied the PBTC function in GEE for the forest 

land cover classification. The resulting maps were validated using very high-resolution images 

(VHR) in Google Earth-Pro time-lapse. 

5. We assessed the forest cover changes from the PBTC maps and calculated the carbon stock 

changes and emissions by applying equations adapted from Good Practice Guidelines of the 

Intergovernmental Panel on Climate Change [53] and Sasaki et al. (2016) [10] over the 28-year 

period. Finally, we established the subnational FREL (using the retrospective approach) up to 

2030, an upcoming milestone under the Paris Agreement to which Cambodia is a signatory 

country. 
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Figure 2. PBTC methodology in Google Earth Engine for land cover mapping in Siem Reap 

province, Cambodia. 

2.5. Accuracy Assessment and Data for Validation 

Google Earth is highly detailed digital representation of the globe and has recently been 

recognized for its potential to significantly improve the visualization of land use land cover change 

science. Higher resolution imagery from Google Earth is free of charge and can be used directly in 

land use land cover map validation at any scale [54]. The images are constantly updated when new 

data become available. Depending on the sensor, imagery resolution ranges from 30 m to 15 cm. 

Utilizing the time-lapse feature in Google Earth provides access to zoomable images as far back as 30 

years, which are ideal for monitoring land use land cover changes [55]. Furthermore, it is powerful 

source of location intelligence data that can be used for investigation and preliminary studies with 

suitable accuracy [56,57].  

Google Earth VHR time series imagery can be used to assess the accuracy of reference data. This 

accuracy can be enhanced by applying recognized protocols as recommended by Olofsson et al. [58]. 

In this study, systematic centric sampling techniques were employed to obtain the reference data for 

validating the PBTC maps (Figure 3). A total of 419 samples of 5 × 5 km Universal Transverse 

Mercator coordinate system (UTM) grid points were established for each PBTC map in 1990, 1995, 

2000, 2005, 2010, 2015 and 2018 (Figure 3A). The existing available land cover reference data in 2002 

and 2006 from Sasaki et al. [10] were used to validate the PBTC 2000 and 2005 maps (Figure 3B). 
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Figure 3. Map showing the systematic (5 × 5 km) centric sampling points using Esri’s ArcMap for 

PBTC map (A) and reference land cover map (B) [10,59]. 

Using the ArcMap Fishnet tool, the systematic centric points were allocated to the respective 

points for accuracy assessment on the forest land cover maps within the study region. For any point 

in the sample, we manually assessed whether the point fell on a certain land cover category however, 

consideration of the size of the forest land cover category was not required. A total of 3771 reference 

points were spatially established, of which 2933 were for seven PBTC maps (1990–2018) and 838 were 

for the two reference land use land cover maps (2000 and 2005).  

Subsequently, the PBTC maps were exported to Google Drive using the export function in GEE 

for accuracy validation. We used these maps in ArcMap to transform land use labels into 3771 points 

for validation using ArcMap spatial-join and related tools. The generated 5 × 5 km systematic centric 

sampling points were then converted into a “kml” file and imported into Google Earth for validating 

the PBTC maps.  

All of the 3771 sampling points were visually analyzed using the Google Earth “time slider” tool 

to compare and validate the PBTC land cover categories with historic images from 1990 to 2018. This 

procedure enabled the verification and validation of the proximate PBTC land cover category with 

great accuracy and reliability because computation could be executed on a point-by-point basis 

(Figure 4).  
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Figure 4. Maps showing the locations of accuracy points for accuracy assessment using Google Earth 

high-resolution imagery. These points were used to verify and validate the PBTC land cover 

categories, namely, the Evergreen forest (EG), Semi-Evergreen forest (SE), Deciduous forest (DD), 

Mixed woods and shrubs (WS), Bamboo (BB), Flooded forest (FF), Rubber plantation (RB), and 

Croplands (CR). 

The reference land cover maps (2000 and 2006) were classified into seven classes: Evergreen 

forest (EG), Semi-evergreen forest (SE), Deciduous forest (DD), Wood and shrub evergreen (WE), 

Wood and shrub dry (WD), Other forest (OF) and Non forest (NF). To validate the PBTC map 

accuracy of the maps in 2000 and 2005, we combined PBTC land cover categories as follows: Water 

(WA), Others (OT) and Croplands (CR) were merged into the NF category; Flooded forest (FF) and 

Bamboo (BB) were merged into the OF category; and WE and WD were merged into the Mixed WS. 

The EG, SE and DD categories were unchanged. Furthermore, the generated 5 × 5 km 838 spatial 

reference sample points were visually analyzed to compare and validate the PBTC land cover classes 

in 2000 and 2005 using reference land cover data in 2002 and 2006. 

We then calculated the producer’s accuracy (PA) by dividing the number of 5 × 5 km accuracy 

points in an individual land cover category identified accurately by the respective reference points 

total. The user’s accuracy (UA) was computed by dividing the number of reference points in an 

individual land cover category identified accurately by the classified total. Finally, the overall 

classification accuracy (OA) was derived by dividing the total number of accurately classified land 

cover categories by the total number of reference points, and the Kappa coefficient (K) of agreements 

was calculated [23,24,58,60] for the PBTC maps and reference land cover maps using a confusion 

matrix. 
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2.6. Carbon Stocks and Emission Reductions  

To implement the REDD+ scheme, Cambodia employs a national definition of forest consistent 

with the Global Forest Resources Assessment [59], which is part of the Intergovernmental Panel on 

Climate Change (IPCC) “FOREST” land use category (Table 3). 

Table 3. Selected forest land use categories and initial carbon density for Siem Reap province. 

IPCC Land Use 

Category 

Forest Land Cover 

Categories 

Initial Carbon Density 

(MgC/ha) 

Total Carbon 

Stocks 

  
Above 

Ground 

Below 

Ground 

Dead 

Wood 
Litter 

(MgC

/ha) 

(MgC

O2) 

FOREST 

Evergreen Forest 96.2 27.8 27.2 13.6 164.8 604.27 

Semi-Evergreen 98.1 29.8 14.5 12.4 154.8 567.60 

Deciduous Forest 95.1 28.9 14.1 12 150.1 550.37 

Bamboo 36.4 11.1 5.4 4.6 57.5 210.83 

Flooded Forest 32.9 9.5 9.3 4.7 56.4 206.80 

Rubber Plantation 47 13.6 13.3 6.6 80.5 295.17 

Wood Shrubland Dry 20 6.1 3 2.5 31.6 115.87 

Wood Shrubland 

Evergreen 
30 9.1 4.4 3.8 47.3 173.43 

 Weighted Average of Total Carbon Stocks  121.6 445.9 

Note: Adapted initial carbon pools for forest land use categories were obtained from Sasaki et al. 

[10] and the initial forest reference level for Cambodia under the UNFCCC [59]. 

Sasaki et al. [10], estimated above-ground biomass, below-ground biomass, deadwood, litter, 

and total carbon stocks in seven forest categories (Evergreen Forest, Semi-Evergreen, Deciduous 

Forest, Bamboo, Other forest, Wood Shrubland Dry and Wood Shrubland Evergreen) and estimated 

FREL at a provincial level using a retrospective approach. Here, we focused only on major forest 

categories and rubber plantations. For Mixed woods and shrubs carbon density, we used the average 

total carbon stocks (39.45 MgC/ha) of Wood Shrubland Dry and Wood Shrubland Evergreen. The 

weighted average (MgC/ha) was calculated only for Siem Reap Province using 1990 forest cover 

carbon stocks as a baseline (Table 3). 

We used the formulas below for calculating the carbon stocks and emission reduction in seven 

forest categories, namely: Evergreen, Semi-evergreen, Deciduous, Mixed Woods and Shrubs, 

Bamboo, Flooded Forest, and Rubber Plantation. We estimated total forest area carbon stocks (CS) 

and summed carbon stocks from all four pools using forest categories as reported in [10]. 

2.6.1. Estimating the Forest Land Cover Change 

The retrospective approach was used to develop forest cover changes based on past 

deforestation trends for the province by applying Equation (1) [10]. 

���(�) = ���(0) × ���×� (1) 

where FAi(t) is the total forest cover (ha) of each forest land category (i) at time t (year), FAi (0) is the 

forest cover (ha) of forest land cover category (i) at the start of the model (0) (i.e., in 1990), ai is the rate 

of change of each forest land cover category i between 1990 and 2018. Using data in Table 4, ai was 

derived for each forest land cover category between 1990 and 2018. ai and FAi (0) were obtained from 

regression analysis using the PBTC data from 1990, 1995, 2000, 2005, 2010, 2015 and 2018. Using this 

ai value, forest cover and change between 1990 and 2030 were estimated. 

Table 4. Forest land cover change rate by category from the regression analysis. 

Forest Category i ai 
Initial Values of 

Forest Areai(t0) 
R2 

Mix Woods and Shrubs −0.02 151,201.84 0.48 



Remote Sens. 2020, 12, 3110 11 of 30 

 

Deciduous Forest −0.01 253,342.02 0.73 

Semi-Evergreen Forest −0.01 253,342.02 0.73 

Evergreen Forest −0.01 209,323.64 0.84 

Flooded Forest −0.02 153,747.99 0.92 

2.6.2. Estimation of Total Forest Carbon Stocks  

Total forest carbon stocks in Siem Reap province between 1990 and 2018 were obtained by: 

���(�) = ∑ ���(�) × ���
�
���   (2) 

where TCS(t) is total above ground carbon stocks in Siem Reap province (MgC); FAi is the area of the 

7 forest categories i in the province of 12 districts; CSi is the carbon stocks (MgC/ha/year) in 7 forest 

categories i. 

2.6.3. Annual Carbon Emissions Due to Forest Cover Change 

The Gain–Loss method was applied to obtain carbon emissions by forest category using 

Equation (3): 

�� (�)
∑ ����(�2) − ���(�1)� × ���

�
���

�2 − �1
×

44
12

 (3) 

where, CE (t) = annual carbon emissions (MgCO2/year (t)) due to deforestation in Siem Reap province. 

CSi is the average of carbon stocks for forest category i (MgC/ha) in Table 4. We excluded the Bamboo 

and Rubber plantation categories in the projected carbon emissions because their combined total 

forest land cover area and carbon stocks are less than 10% of total carbon stocks. Therefore, these two 

forest categories can be ignored as per IPCC guidelines [53]. The ratio 44/12 is the molecular weight 

ratio of carbon dioxide to carbon [10,53]. 

2.6.4. Forest Reference Emission Level between 2020 and 2030 

The FREL is an essential benchmark for carbon emissions. The more countries agree to reduce 

emissions, the more financial support they receive according to REDD+ schemes for performance-

based payments [61]. However, it is important to have a good understanding of the historical trend 

of land use and land cover change and forest deforestation at a moderate to high resolution scale 

because this helps to establish FREL for measuring the performance when the REDD+ activities are 

implemented. FREL can be established by: 

 ���� (�) = ��(�) (4) 

where FREL(t) = Forest reference emission level in Siem Reap at time t (MgCO2/year). Because we 

used the retrospective approach, FREL for Siem Reap province during the Paris Agreement (2020–

2030) is the same as the projected CE(t) during the same period between 2020 and 2030.  

2.6.5. Project Emissions  

If REDD+ project is implemented to reduce the deforestation and forest degradation in the Siem 

Reap province, the emissions from such project can be estimated by: 

PE(�) =  FREL(t) ×  [1 − RPI(t)]   (5) 

where PE(t) = Project emission (MgCO2/year); RPI(t) is relative project impact taken from Ty et al. 

[62]. 

2.6.6. Emission Reductions 
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Accordingly, carbon emission reductions can be obtained by: 

��(�) =  ����(�) − ��(�)  (6) 

where ER(t) is annual emission reduction (MgCO2/year) at time t between 2020 and 2030 

2.6.7. Carbon Revenues 

��(�) =  ��(�)  ×  �� (7) 

where: CR is carbon revenues from emission reduction (MgCO2/year) in Siem Reap province between 

2020 and 2030; CP is the carbon price of USD 7 per MgCO2 reported in World Bank and Ecofys [63]. 

3. Results 

3.1. PBTC Land Cover Map Accuracy 

The GEE PBTC maps were shown to be more accurate according to the confusion matrix 

estimated in this study. The details of the forest land cover category’s overall accuracies (OA), Kappa 

coefficients (K), producer’s accuracies (PA) and user accuracies (UA) of the maps are presented in 

Tables 5 and 6. Appendix A (Tables A1–A7) shows the PBTC map accuracy matrix and reference map 

accuracy matrix.  

Table 5. Classification accuracy (%) for PBTC maps using Google Earth high-resolution imagery from 

1990 to 2018. 

 1990 1995 2000 2005 2010 2015 2018 

Land Cover Categories UA PA UA PA UA PA UA PA UA PA UA PA UA PA 

Water 100 100 100 100 100 82 100 77 100 83 100 86 100 100 

Others 78 100 80 50 64 58 45 100 78 93 65 85 64 100 

Croplands 100 95 92 97 90 88 98 97 99 91 94 94 96 94 

Mixed Woods and Shrubs 98 90 91 93 82 84 92 85 84 86 82 61 86 67 

Deciduous Forest 93 95 97 90 95 99 88 97 92 96 77 96 82 96 

Evergreen Forest 84 89 87 85 95 92 98 82 92 91 97 86 92 90 

Semi-Evergreen Forest 91 87 86 98 90 96 91 97 82 89 88 96 86 95 

Rubber Plantation           100 50 50 50 

Bamboo 60 100 100 100 100 67 75 100 67 67 60 60 75 50 

Flooded Forest 100 100 100 100 100 100 100 100 98 100 98 98 96 100 

Overall Accuracy (%)  92.84 92.6 92.12 92.84 91.89 89.5 90.93 

Kappa  0.91 0.91 0.91 0.91 0.90 0.87 0.88 

Note: PA represents producer’s accuracy, UA is user accuracy, OA is overall classification accuracy, 

and K is Kappa coefficients. 

Table 6. Classification accuracy (%) for PBTC maps using reference land cover data in 2000 and 2005. 

Land Cover Categories 
2000 2005 

UA PA UA PA 

Evergreen Forest 92 86 81 76 

Semi-Evergreen Forest 89 75 90 70 

Deciduous Forest 82 73 77 76 

Mixed Woods and Shrubs 80 65 84 58 

Other Forest 65 76 83 86 

Non-Forest 82 96 84 98 

Overall Accuracy (%) 81.38 83.05 

Kappa 0.77 0.78 

The overall classification of accuracy of the GEE PBTC maps for 1990, 1995, 2000, 2005, 2010, 

2015, and 2018 was 92.84%, 92.6%, 92.12%, 92.84%, 91.89%, 89.5% and 90.93%, respectively. The 

overall K statistics were 0.91, 0.91, 0.91, 0.91, 0.90, 0.87 and 0.88 (Table 5). The overall cumulative 

accuracy of this study was 92.1% and its K statistic was 0.9. Generally, the results of PBTC map 
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accuracy are acceptable as suggested by the United States geological survey satellite imagery 

classification schema [64]. K statistics results greater than 0.85 represent stronger agreements between 

the classification made and the Google Earth imagery validation information [65]. By comparison, 

the overall accuracy of the reference maps was 81.38% in 2000 and 83.05% in 2005, and the K statistic 

for 2000 was 0.77, and that for 2005 was 0.78 (Table 6), which is acceptable. 

3.2. Siem Reap Forest Cover Change 

The PBTC maps between 1990, 1995, 2000, 2005 and 2010 (Figure 5A-E) were derived from 

Landsat TM and Landsat OLI from 2015 and 2018 (Figure 5F,G), and show the geographic 

distribution of forest category land cover in Siem Reap Province. The major types of forest are found 

in Siem Reap province: Evergreen forest, Semi-Evergreen forest, Deciduous forest, Mixed woods and 

shrubs, Flooded forest, and Bamboo. Our findings show that the Deciduous forest covers a larger 

area than other forest, followed by Semi-Evergreen and then Evergreen forest. The Evergreen and 

Semi-Evergreen are forests largely found in north and northeastern districts, protected areas and the 

Angkor wat temple surroundings. The Flooded forest was found adjacent to the Tonle Sap lake and 

the southern part of the region. Bamboo distribution was found in elevated regions in the most 

northern part and was mixed with Evergreen and Semi-Evergreen forests in the Banteay Srei, Varin, 

Svay Leu, Angkor Chum, and Chi Kraeng districts. The expansion of Rubber plantations can be seen 

in the Chi Kraeng and Varin districts (Figure 5G). The mixed woods and shrubs category was 

distributed with Deciduous forest and close to Croplands (Figures 5).  
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Figure 5. Land cover in Siem Reap province in 1990 (A), 1995 (B), 2000 (C), and 2005 (D), 2010 (E), 

2015 (F), and 2018 (G), and forest cover change at the district level between 1990 and 2018 (H). The 

graph on the map (Figure 5H) shows the forest cover in 1990 (dark color) and in 2018 (light dark 

color). 
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The Siem Reap province forest area gradually decreased from 1990 to 2000. A significant 

reduction can be seen from 2010 to 2015 (Figure 6). See Appendix A, Table A10 for forest category 

land cover change in Siem Reap province from 1990 to 2018. 

 

Figure 6. Trend of forest land cover change in Siem Reap province from 1990 to 2018. 

Among the seven main forest categories, the annual change in Evergreen forest was 3467 ha. The 

rate of decrease was 1.8% from 1990 to 2018; Semi-Evergreen forest decreased at the rate of 1.3% and 

Deciduous forest decreased at 1.0% over the 28-year period. The Mixed woods and shrubs forest area 

showed the second highest rate of decrease compared to other forest categories (1.7%). Flooded forest 

areas experienced substantial losses of 61,420 ha annually at a rate of 1.6%. The province’s forest area 

decreased by 322,694 ha in all forest types with an average annual rate decline of 1.3% over a 28-year 

period (1990–2018). A rapid decline in forest cover was observed between 2010 and 2018 and a slight 

increase in the Rubber plantation and Bamboo forest cover can be noted during the same period 

(Figure 6 and Appendix A, Table A10). 

3.3. Changes in Carbon Stocks by Forest Category 

Using the GEE PBTC maps, we were able to calculate the forest carbon stocks (MgC) from 1990 

and 2018 (Figure 7).  
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Figure 7. Carbon stock in 1990 and 2018 in Siem Reap province. (A) Map of spatial carbon stock (MgC) 

concentrations in 1990 and (B) map showing the spatial carbon stock concentrations in 2018. The red 

boxes indicate the larger changes of carbon stocks (MgC) in the region. Note: 0 (Mgc) falls within the 

non-forest areas including water and other land cover category. The graph on the map (Figure 7B) 

shows the carbon stock change from 1990 (light green color bars) to 2018 (dark brown color bars) and 

14,000,000 is the scale of the bar graph. 

In 1990, most carbon stocks were concentrated in deciduous forests, totaling 36,030,716 MgC; 

Evergreen forest stocks were 31,037,040 MgC, and Semi-evergreen forest 25,217,307 MgC. In 2018, the 

changes in forest carbon stocks represent the highest concentrations of carbon stocks from the 

Deciduous forest of 25,951,554 MgC. Semi-Evergreen forest was 16,191,616 MgC, Evergreen forest 

15,038,590 MgC, Flooded forest 4,492,959 MgC, and the Rubber plantation carbon stocks increased 

from 215,479 MgC to 1,662,963 MgC between 2010 and 2018. Overall, 39,198,938 MgC of forest carbon 

stocks were lost in the province during the past 28 years (Table 7).  

Table 7. Changes in forest carbon stocks by forest category. 

Forest Categories 

Total Forest Carbon Stocks (MgC) Change 

1990 1995 2000 2005 2010 2015 2018 1990–2018 

Evergreen forest 31,037,040 30,804,960 29,375,355 25,931,242 23,475,922 20,969,205 15,038,590 −15,998,450 

Semi-Evergreen forest 25,217,307 24,642,090 23,440,265 22,372,222 22,184,966 18,007,231 16,191,616 −9,025,690 

Deciduous forest 36,030,716 34,946,363 35,091,036 34,341,517 33,949,707 27,172,999 25,951,554 −10,079,162 

Mixed woods and shrubs 5,163,076 5,024,348 4,803,599 5,367,776 5,776,749 2,665,304 2,713,442 −2,449,634 

Flooded forest 7,957,072 7,914,681 7,355,401 6,345,094 6,069,433 4,510,094 4,492,959 −3,464,113 

Bamboo 353,690 321,444 299,083 445,896 480,099 417,636 508,837 +155,147 

Rubber plantation 0 0 0 0 215,479 500,590 1,662,963 +1,662,963 

Total (MgC) 105,758,901 103,653,886 100,364,739 94,803,748 92,152,354 74,243,060 66,559,963 −39,198,938 

Note (+) represents an increasing trend of Rubber plantation and Bamboo cover and their carbon 

stocks in Siem Reap province. 
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3.4. Forest Cover and Carbon Stock Changes and Carbon Loss 

Chi Kraeng District had the most forest area in the province; however, 35% was deforested 

between 1990 and 2018 (81,548 ha). Svay Leu District was the second most forested district (189,826 

ha in 1990) and it also lost 35% by 2018. Over the same period, Krong Siem Reap lost 38%, Angkor 

Chum 37%, Srei Snam 35%, Soutr Nikom 35% and Angkor Thum 30%. These 12 districts accounted 

for 31% of the total deforestation in Siem Reap province between 1990 and 2018. Fifty-two percent of 

the province remains forested, mostly in Chi Kraeng, Svay Leu, Puok and Varin Districts. Table 8 

presents the district level forest cover changes during the past 28 years. 

Table 8. District level forest land cover change. 

  Forest Area Cover (ha) Change Forest Area Loss 

District Name 

District 

Area (ha) 

1990 1995 2000 2005 2010 2015 2018 1990–2018 (% of District Area) 

Angkor Chum 47,903 34,695 32,819 30,687 29,479 28,081 17,513 16,794 −17,901 37% 

Angkor Thum 35,725 35,252 35,103 34,504 33,909 33,802 25,782 24,671 −10,581 30% 

Banteay Srei 60,070 58,117 58,031 56,208 55,100 55,487 46,050 46,099 −12,018 20% 

Chi Kraeng 236,236 207,124 203,086 196,058 178,956 177,110 123,162 125,576 −81,548 35% 

Kralanh 56,807 19,060 18,632 15,225 14,492 14,359 11,114 11,323 −7,737 14% 

Puok 101,170 59,837 56,720 52,958 49,897 52,886 37,876 36,267 −23,571 23% 

Prasat Bakong 34,174 18,867 18,753 17,201 16,180 18,169 9,353 9,678 −9,190 27% 

Krong Siem Reab 47,064 39,112 35,005 30,928 28,983 31,442 19,500 21,217 −17,895 38% 

Soutr Nikom 77,961 60,724 59,665 55,646 50,984 48,461 29,465 33,127 −27,598 35% 

Srei Snam 55,757 39,659 39,535 39,182 38,693 37,655 21,500 20,293 −19,366 35% 

Svay Leu 191,769 189,826 188,964 187,312 188,055 183,466 156,980 123,326 −66,499 35% 

Varin 109,833 107,181 105,961 104,995 102,719 96,171 87,372 78,389 −28,792 26% 

Total Forest Area (ha) 869,455 852,274 820,904 787,447 777,091 585,667 546,760 −322,694 31% 

In 1990, total carbon stocks in seven forest categories were estimated to be 105,758,901 MgC and 

in 2018, 66,559,963 MgC, in 12 districts (Table 9). In all districts from 1990 to 2018, the total carbon 

stocks decreased by 39,198,938 MgC and were responsible for annual carbon emissions of 143,729,440 

MgCO2 over the 28-year period. Over the same period, Svay Leu District emitted 39,719,781 MgCO2, 

followed by Chi Kraeng District with 33,792,193 MgCO2. These figures are for four IPCC total carbon 

pools, including above ground, below ground, litter, and deadwood. However, estimated overall 

emissions vary depending on the methods used to calculate them (Table 9). 

Table 9. District level forest carbon stock (MgC) changes and baseline emissions (MgCO2). 

 Carbon Stock (MgC) 

Change 

(MgC) 

Baseline 

Emissions (MgCO2) 

District Name 1990 1995 2000 2005 2010 2015 2018 1990–2018 1990–2018 

Angkor Chum 4,481,724 4,211,397 3,911,139 3,408,585 3,251,072 2,315,103 2,135,163 −2,346,560 8,604,055 

Angkor Thum 4,855,619 4,839,508 4,771,925 4,568,961 4,395,144 3,615,001 3,339,834 −1,515,785 5,557,879 

Banteay Srei 8,262,586 8,249,766 7,905,274 7,303,403 7,115,624 6,364,061 6,184,869 −2,077,717 7,618,294 

Chi Kraeng 24,488,598 23,963,522 22,949,721 20,712,337 20,007,740 15,403,953 15,272,545 −9,216,053 33,792,193 

Kralanh 1,181,106 1,124,929 947,458 865,618 853,668 714,529 777,719 −403,387 1,479,087 

Puok 4,018,699 3,612,435 3,426,130 3,165,192 3,316,049 2,595,245 2,493,081 −1,525,618 5,593,934 

Prasat Bakong 1,315,828 1,299,782 1,186,309 1,092,475 1,317,564 790,736 854,862 −460,965 1,690,207 
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Krong Siem Reab 3,370,934 2,846,418 2,502,309 2,366,718 2,792,187 2,089,725 2,244,190 −1,126,744 4,131,395 

Soutr Nikom 5,558,495 5,500,495 5,246,731 4,834,828 4,530,883 3,004,410 3,466,244 −2,092,251 7,671,587 

Srei Snam 4,902,947 4,923,917 4,817,213 4,436,199 4,308,653 2,783,376 2,469,911 −2,433,036 8,921,130 

Svay Leu 27,432,714 27,341,797 27,124,702 27,075,938 26,315,551 22,401,760 16,600,047 −10,832,667 39,719,781 

Varin 15,889,651 15,739,920 15,575,828 14,973,492 13,948,221 12,165,160 10,721,497 −5,168,154 18,949,900 

Total (MgC) 105,758,901 103,653,886 100,364,739 94,803,748 92,152,354 74,243,060 66,559,963 −39,198,938 143,729,440 

3.5. Carbon Emission, FREL and Emission Reductions 

The total FREL for Siem Reap province was estimated to be 35,303,937 MgCO2 and the project 

emission reduction to be 8,256,746 MgCO2 for the 10-year project period from 2020 to 2030. If REDD+ 

activities are initiated in Siem Reap province to maintain the existing forest, the province has the 

potential to receive carbon revenues of about USD 57.8 million during the project period from 2020 

to 2030 (Appendix A, Table A11). However, the carbon price (USD7/MgCO2) can vary depending on 

international negotiations with emission trading and carbon offset schemes [63]. 

4. Discussions and Implications 

Our study found that the PBTC mapping accuracy (Tables A1–A7) is higher than that of previous 

studies in the region (FREL, 2016) and our results show a significant decrease in forested land in Siem 

Reap province from 1990 to 2018 (Table A10). Although nearly half of the province is still covered in 

forest, the quality and value of forest ecosystems has generally declined by about 31% or 322,694 ha 

in 28 years (Table 8). This decline can be attributed to forest clearing to accommodate an increase in 

population and new households [66], expansion of Croplands [67], and the government’s Economic 

Land Concession program to promote plantations [68]. Other major drivers of deforestation and 

degradation were the expansion of agriculture to grow cassava, orchard plantations, and paddy fields 

[16,47]. Evergreen, semi-evergreen, and deciduous forests have been subjected to logging [59]. The 

flooded forests and floodplains that surround the Tonle Sap fresh water lake provide shelter for fish 

to breed in addition to important feeding areas. The flooded forest area declined from 141,083 ha to 

76,662 ha from 1990 to 2018 (Table A10). The main reason could be the use of smoke to harvest honey, 

burning firewood, and leaving cooking fires unattended. In addition, farmers may have burned 

flooded forests for conversion to rice growing, hunting animals, or setting long fishing nets across 

river channels [69]. Between 2010 and 2018, most districts lost forest cover as a result of rapid 

population growth, tourism, and the need for land for agricultural production [66]. The main factors 

affecting carbon stock changes were deforestation, expansion of croplands, and economic land 

concessions in the region [66]. Chi Kraeng and Svay Leu district forest lands have been converted to 

plantations, croplands, and economic land concessions, which may be the cause of high 

concentrations of emissions (MgCO2) in both districts. Due to forest deforestation, the province lost 

39,198,938 (MgC) carbon stocks over all forest types between 1990 and 2018 or about 143,729,440 

MgCO2 of total carbon emissions over the same period (Table 9). 

Previous studies showed the rate of deforestation in the province to be 2.6% between 2002 and 

2006 [10], which is higher than our result. This could be due to a lack of long-term temporal data, as 

the previous study used activity data from only two time periods (2002 and 2006), during which 

forest cover sharply declined during the same period [66]. It is generally the case that the more time 

series activity data available, the better the resulting relationship for estimating FREL [61]. 

Nevertheless, both of the predicted linear trends show similar fitted values (R² = 0.97) of projected 

FREL from 2020 to 2030. As seen in Figure 8, total FRELs were estimated to be 20,431,376 MgCO2 for 

10 years from 2020 to 2030, which is higher than that projected by Sasaki et al. [10] (Figure 9).  
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Figure 8. Forest reference emission levels and emission reductions in Siem Reap province during a 

10-year project period (2020–2030). See Appendix A, Table A11 for total Forest reference emission 

levels (FREL) for Siem Reap province from 1990 to 2030. 

 

Figure 9. Validation of annual forest reference emission levels. Linear fitted line for this study: y = 

−490.71 * x + 6410.4, R² = 0.9651. Linear fitting line for Sasaki et al. [10]: y = −531.82 * x + 6133.8, R² = 

0.9793. 

REDD+ monetary incentive payments result from the amount of accountable carbon credits and 

the price paid per ton of carbon. Carbon emission reduction prices rose between 2017 and 2018; for 

example, the European Union Allowance fee rose from USD7/MgCO2 to USD16/ MgCO2 between 

2017 and 2018. However, carbon emission reduction prices range widely between initiatives, from 

less than USD1/MgCO2 (Mexico, Poland and Ukraine carbon tax) to a maximum USD 139/MgCO2 

(Sweden carbon tax) [63]. The REDD+ scheme offers financial incentives for reducing emissions or 

increasing removals or carbon sequestration in forest and agricultural lands [70–73]. Carbon revenue 

is dependent on carbon prices. If the carbon price of USD16 is used, the total carbon revenue is 

USD132.11 million. On the other hand, if the price used is the same as that of Sweden, then the total 

revenue would be USD1147.69 million at the time of the Paris Climate Agreement between 2020 and 
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2030. Because the number of sustainability travelers has increased by about 48% [74], the REDD+ 

project site could become a tourist destination, thereby generating more revenue for local people. 

Our study map accuracy shows that the Mixed woods and shrubs category is the main source 

of confusion in the Deciduous forest and Semi-Evergreen forest. The Semi-Evergreen forest is the 

main source of confusion in the Evergreen forest category in all the classified years (1990 to 2018). 

Flooded forest improved the accuracy of PA and UA because the Flooded forest was mapped 

separately by creating the Flooded forest boundary. In contrast, the Water, Bamboo, Rubber and other 

categories were found to have a higher accuracy of PA and UA compared to other land cover  

categories, as the accuracy of samples were minimized for these categories (Appendix A, Tables A1–

A7). 

The validation of the reference forest cover maps found that the Evergreen and Semi-Evergreen 

PA and US land cover categories had higher accuracy in both 2000 and 2005 (Table 5). In contrast, the 

Mixed woods and shrubs, Other forest and Non-forest categories yielded low UA and PA in both 

assessment years. Most of the confusion regarding Non-forest, Other forest, and Mixed woods and 

shrubs may have resulted from the lower accuracy or pixel difference of the refence maps. The 

distribution of Mixed woods and shrubs in most of the study area was considered as part of the Non-

forest category, whereas Bamboo, Rubber plantation, and Flooded forest were considered as part of 

the other forest category. This could be the reason for the confusion of the Other forest categories 

with the Evergreen Semi-Evergreen and Deciduous categories. However, the overall accuracy of 

Evergreen and Semi-Evergreen improved in both validation maps (Appendix A, Tables A8 and A9). 

There are possible errors in our study due to the resolution of remote sensing data, limited IPCC 

land cover category threshold values and the distribution of forest and non-forest land cover 

categories. One possible source of error is limited ground reference data. Different vegetation types 

at various growing stages show different phenological behavior [75] and their spectral values vary 

during phenological stages [75,76]. More field-based studies are needed to improve the accuracy of 

the PBTC method for the assessment of land use, land-use change, and forestry canopy disturbance, 

and carbon stock changes. If carbon emissions from all land use sectors are included in the 

assessment, the change detection approach would be appropriate [26,41]. 

Since we focused mainly on IPCC forest land cover category (i.e., the seven forest categories as 

shown in Table 7), more categories of land cover should be added to make our methods and results 

consistent with the land cover categories currently used by the Cambodian government for its forest 

resource assessment at the national level [59]. If such categories are added, the level of map accuracy 

might change [59], and so the forest carbon stock would also change. Therefore, future studies will 

need to focus on determining the threshold values for any new cover categories.  

5. Conclusions  

Using a combination of PBTC, GEE, and Landsat 5 and Landsat 8 OLI, we were able to classify 

seven forest cover categories in Siem Reap province, Cambodia over a 28-year period from 1990 to 

2018. These categories are bamboo, plantation (Rubber), evergreen, semi-evergreen, deciduous, 

mixed woods and shrubs, and flooded forests. Evergreen forest suffered rapid loss (−1.8%) while 

rubber plantation increased by 109% annually. On average, 11,525 ha (1.3%) of forest cover were lost 

annually. This loss was responsible for 14,372,944 MgCO2/year of the carbon emissions, of which 28% 

occurred in Svay Leu district alone. Using the retrospective approach, FREL for Siem Reap was 

estimated at 35,303,937 MgCO2 MgCO2/year during the Paris Agreement between 2020 and 2030. If 

REDD+ activities are implemented, 825,674.6 MgCO2 of carbon emissions could be reduced annually 

over the same period. Depending on chosen carbon prices, result-based carbon revenues could be 

USD6 to 115 million annually.  

The overall cumulative accuracy of this study was 92.1% and its cumulative Kappa was 0.9, 

which are sufficiently high to apply the PBTC method to detect forest land cover change. With these 

levels of overall accuracy, it is possible to conclude that PBTC and GEE fast cloud computing can be 

used to assess forest cover and carbon stock changes by category at any scale, quickly and without 

any costs. Such technologies become increasingly important for monitoring, measuring, reporting, 
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and verifying the performance of the REDD+ activities in developing countries as required under the 

UNFCCC REDD+ scheme before they can claim for the result-based payments for their efforts in 

emission reductions or removals. 

Our study demonstrated the capability of using the GEE cloud computing platform in 

combination with the PBTC method, and with the use of Landsat moderate resolution (30 m) remote 

sensing data, for estimating forest cover and carbon stock changes in a tropical developing country 

with limited retrospective data or resources to acquire direct or repeated measurements of forest 

carbon stocks in the field. Our methods, along with GEE and increasingly available satellite imagery, 

make it possible to perform the MRV tasks required under the REDD+ scheme of the UNFCCC and/or 

to detect land cover changes anywhere, at speed and scale.  
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Appendix A 

Table A1. Results of the accuracy assessment of the PBTC land cover map for 1990.  

1990 LULC Categories WA OT CR Mix WS DD SEG EG BB FF User’s Accuracy (%) 

WA 6         100 

OT  7 2      7 78 

CR   59       100 

Mix WS   1 45      98 

DD    5 88 2    93 

SEG     5 62 7   84 

EG      6 59   91 

BB      2  3  60 

FF         60 100 

Producer’s accuracy (%) 100 100 95 90 95 89 87 100 100 Total Accuracy 92.84% 

Kappa 0.91 

Total reference points 419 

Note: The accuracy assessment was validated using the Google Earth very high resolution imagery 

for the PBTC land cover category; Water (WA), Others (OT), Croplands (CR), Mixed Woods and 

Shrubs (Mix WS), Deciduous forest (DD), Semi-evergreen forest (SEG), Evergreen forest (EG), 

Bamboo (BB) and Flooded forest (FF), respectively. We used 419 5 × 5 km systematic reference points 

to validate the GEE PBTC threshold map in 1990. The highlighted gray cells indicate agreement of the 

accuracy matrix. 

Table A2. Results of the accuracy assessment of the PBTC land cover map for 1995. 

1995 LULC Category WA OT CR Mix WS DD SEG EG BB FF User’s Accuracy (%) 

WA 9         100 

OT  4 1       80 

CR  4 69 2      92 

Mix WS   1 42 3     91 

DD    1 98 2    97 

SEG     8 58 1   87 

EG      8 48   86 
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BB        2  100 

FF         58 100 

Producer’s accuracy (%) 100 50 97 93 90 85 98 100 100 Total Accuracy 92.60% 

Kappa 0.91 

Total reference points 419 

Table A3. Results of the accuracy assessment of the PBTC land cover map for 2000. 

2000 LULC Category WA OT CR Mix WS DD SEG EG BB FF User’s Accuracy (%) 

WA 9         100 

OT 2 7 2       64 

CR  5 71 3      90 

Mix WS   8 37      82 

DD    4 99 1    95 

SEG     1 57 2   95 

EG      4 46  1 90 

BB        2  100 

FF         58 100 

Producer’s accuracy (%) 82 58 88 84 99 92 96 67 100 Total Accuracy 92.12% 

Kappa 0.91 

Total reference points 419 

Table A4. Results of the accuracy assessment of the PBTC land cover map for 2005. 

2005 LULC Category  WA OT CR Mix WS DD SEG EG RB BB FF User’s Accuracy (%) 

WA 10          100 

OT 3 5 3        45 

CR   85 2       98 

Mix WS    45 3 1     92 

DD    5 96 8     88 

SEG    1  56     98 

EG      3 32    91 

RB           - 

BB       1  3  75 

FF          57 100 

Producer’s accuracy (%) 77 100 97 85 97 82 97 - 100 100 Total Accuracy 92.84% 

Kappa 0.91 

Total reference points 419 

Table A5. Results of the accuracy assessment of the PBTC land cover map for 2010. 

2010 LULC Category WA OT CR Mix WS DD SEG EG RB BB FF User’s Accuracy (%) 

WA 5          100 

OT 1 14 3        78 

CR  1 86        99 

Mix WS   4 37 3      84 

DD   1 6 95 1     92 

SEG     1 59 3 1   92 

EG      5 31 1 1  82 

RB           - 

BB       1  2  67 

FF   1       56 98 

Producer’s accuracy (%) 83 93 91 86 96 91 89 - 67 100 Total Accuracy 91.89% 

Kappa 0.90 

Total reference points 419 

Table A6. Results of the accuracy assessment of the PBTC land cover map for 2015. 

2015 LULC Category WA OT CR Mix WS DD SEG EG RB BB FF User’s Accuracy (%) 

WA 6          100 

OT 1 11 5        65 

CR  2 150 8       94 

Mix WS   3 23 2      82 

DD   1 7 51 7     77 
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SEG      56  1 1  97 

EG      2 22  1  88 

RB        1   100 

BB       1  3 1 60 

FF   1       52 98 

Producer’s accuracy (%) 86 85 94 61 96 86 96 50 60 98 Total Accuracy 89.50% 

Kappa 0.87 

Total reference points 419 

Table A7. Results of the accuracy assessment of the PBTC land cover map for 2018. 

2018 LULC Category WA OT CR Mix WS DD SEG EG RB BB FF User’s Accuracy (%) 

WA 10          100 

OT  7 4        64 

CR   153 6       96 

Mix WS   3 31 2      86 

DD   1 6 51 4     82 

SEG    3  55  1 1  92 

EG      2 19  1  86 

RB        1 1  50 

BB       1  3  75 

FF   2       51 96 

Producer’s accuracy (%) 100 100 94 67 96 90 95 50 50 100 Total Accuracy 90.93% 

Kappa 0.88 

Total reference points 419 

Table A8. Accuracy of the PBTC land cover map and referenced land cover map for 2000. 

2000 Ref LULC 

Category  
EG SE DD Mix WS OF NF User’s Accuracy (%) 

EG 48 4     92 

SE 3 41 1 1   89 

DD 1 2 54 6 2 1 82 

Mix WS  1 5 36 2 1 80 

OF 2 4 8 4 39 3 65 

NF 2 3 6 8 8 123 82 

Producer’s accuracy (%) 86 75 73 65 76 96 Total Accuracy 81.38% 

Kappa 0.77 

Total reference points 419 

Note: The accuracy assessment was validated for PBTC land cover classes using the referenced land 

cover data by assessing 419 5 × 5 km systematic reference points for land cover classes; Evergreen 

(EG), Semi-Evergreen (SG), Deciduous forest (DD), Mixed Woods and Shrubs (Mix WS), Other forest 

(OF), and Non-Forest (NF). 

 

Table 9. Accuracy assessment of the PBTC land cover map and referenced land cover map for 2005. 

2005 Ref LULC 

Category 
EG SE DD Mix WS OF NF User’s Accuracy (%) 

EG 39 6 1 1  1 81 

SE 2 37 1 1   90 

DD 2 1 44 5 5  77 

Mix WS 1 1 2 21   84 

OF 2 4 4 1 65 2 83 

NF 5 4 6 7 6 142 84 

Producer’s accuracy (%) 76 70 76 58 86 98 Total Accuracy 83.05% 

Kappa 0.78 

Total reference points 419 

 

Table A10. Changes in forest cover by forest category in Siem Reap Province from 1990 to 2018. 
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Forest 

Category 
Forest Category Area Cover (ha) Forest Area Change (ha) 

 1990 1995 2000 2005 2010 2015 2018 1990–2018 
Annual 

Change 

Rate 

(%) 

Evergreen 

Forest 
188,332 186,923 178,249 157,350 142,451 127,240 91,254 97,078 3467 −1.8 

Semi-

Evergreen 

Forest 

162,797 159,084 151,325 144,430 143,221 116,251 104,529 58,268 2081 −1.3 

Deciduous 

Forest 
240,205 232,976 233,940 228,943 226,331 181,153 173,010 67,194 2400 −1.0 

Mixed 

Woods and 

Shrubs 

130,876 127,360 121,764 136,065 146,432 67,562 68,782 62,095 2218 −1.7 

Flooded 

Forest 
141,083 140,331 130,415 112,502 107,614 79,966 79,662 61,420 2194 −1.6 

Bamboo 6162 5600 5211 7768 8364 7276 8865 2703 97 +1.6 

Rubber 

Plantation 
0 0 0 388 2677 6219 20,658 20,658 738 

+109

.0 

All forest 

Area (ha) 
869,455 852,274 820,904 787,447 777,091 585,667 546,760 322,694 11,525 

−1.3 
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Table A11. Carbon emissions, FREL, Project Emission, Reductions, and Carbon revenues in Siem Reap province from 1990 to 2030. 

t Year EG (ha) EG MgC SEG (ha) SEG MgC DD (ha) DD MgC MiXWS (ha)MiXWS MgC FF (ha) FF MgC 
Total  

(ha) 

Total 

(MgC) 

Loss 

(MgC) 

Emissions/FREL 

(MgCO2) 

PE (t) 

(MgCO2) 
Reduction (MgCO2)  CR (USD million) 

- 1990 209,324 34,496,535 253,342 39,217,345 253,342 38,026,637 151,202 5,972,473 153,748 8,671,386 1,020,958 126,384,376 1,966,196 7,209,387    

1 1991 204,546 33,709,257 250,535 38,782,850 250,535 37,605,335 147,916 5,842,667 150,320 8,478,071 1,003,853 124,418,180 1,931,617 7,082,595    

2 1992 199,878 32,939,945 247,759 38,353,169 247,759 37,188,700 144,701 5,715,684 146,969 8,289,066 987,067 122,486,563 1,897,710 6,958,269    

3 1993 195,317 32,188,191 245,015 37,928,249 245,015 36,776,680 141,556 5,591,459 143,693 8,104,274 970,594 120,588,854 1,864,461 6,836,357    

4 1994 190,859 31,453,593 242,300 37,508,036 242,300 36,369,226 138,479 5,469,935 140,489 7,923,601 954,428 118,724,393 1,831,857 6,716,810    

5 1995 186,503 30,735,761 239,615 37,092,479 239,615 35,966,286 135,470 5,351,052 137,357 7,746,957 938,561 116,892,535 1,799,885 6,599,578    

6 1996 182,247 30,034,310 236,961 36,681,526 236,961 35,567,810 132,525 5,234,753 134,295 7,574,250 922,989 115,092,650 1,768,531 6,484,613    

7 1997 178,088 29,348,868 234,335 36,275,126 234,335 35,173,750 129,645 5,120,982 131,301 7,405,394 907,705 113,324,120 1,737,782 6,371,868    

8 1998 174,023 28,679,070 231,739 35,873,229 231,739 34,784,054 126,827 5,009,683 128,374 7,240,302 892,703 111,586,338 1,707,626 6,261,297    

9 1999 170,052 28,024,557 229,172 35,475,784 229,172 34,398,677 124,071 4,900,803 125,512 7,078,891 877,979 109,878,711 1,678,051 6,152,855    

10 2000 166,171 27,384,981 226,633 35,082,742 226,633 34,017,569 121,374 4,794,289 122,714 6,921,078 863,525 108,200,660 1,649,045 6,046,498    

11 2001 162,379 26,760,002 224,122 34,694,056 224,122 33,640,683 118,736 4,690,091 119,978 6,766,783 849,337 106,551,615 1,620,595 5,942,183    

12 2002 158,673 26,149,287 221,639 34,309,675 221,639 33,267,973 116,156 4,588,157 117,304 6,615,928 835,410 104,931,020 1,592,691 5,839,868    

13 2003 155,052 25,552,509 219,183 33,929,553 219,183 32,899,392 113,631 4,488,438 114,689 6,468,436 821,738 103,338,328 1,565,321 5,739,511    

14 2004 151,513 24,969,350 216,755 33,553,643 216,755 32,534,895 111,162 4,390,887 112,132 6,324,232 808,316 101,773,007 1,538,474 5,641,072    

15 2005 148,055 24,399,501 214,353 33,181,897 214,353 32,174,436 108,746 4,295,456 109,632 6,183,243 795,140 100,234,533 1,512,140 5,544,513    

16 2006 144,676 23,842,656 211,978 32,814,270 211,978 31,817,971 106,382 4,202,099 107,188 6,045,397 782,203 98,722,393 1,486,307 5,449,793    

17 2007 141,375 23,298,520 209,630 32,450,716 209,630 31,465,455 104,070 4,110,771 104,798 5,910,625 769,503 97,236,086 1,460,966 5,356,875    

18 2008 138,148 22,766,802 207,307 32,091,190 207,307 31,116,845 101,808 4,021,428 102,462 5,778,856 757,033 95,775,120 1,436,106 5,265,723    

19 2009 134,995 22,247,219 205,011 31,735,647 205,011 30,772,097 99,596 3,934,027 100,178 5,650,026 744,790 94,339,014 1,411,718 5,176,299    

20 2010 131,914 21,739,494 202,739 31,384,043 202,739 30,431,168 97,431 3,848,525 97,944 5,524,067 732,768 92,927,296 1,387,792 5,088,570    

21 2011 128,904 21,243,356 200,493 31,036,334 200,493 30,094,017 95,313 3,764,881 95,761 5,400,916 720,964 91,539,504 1,364,318 5,002,499    

22 2012 125,962 20,758,541 198,272 30,692,478 198,272 29,760,601 93,242 3,683,056 93,626 5,280,511 709,374 90,175,186 1,341,287 4,918,053    

23 2013 123,087 20,284,790 196,075 30,352,432 196,075 29,430,879 91,215 3,603,009 91,539 5,162,790 697,992 88,833,899 1,318,691 4,835,199    

24 2014 120,278 19,821,851 193,903 30,016,153 193,903 29,104,810 89,233 3,524,701 89,498 5,047,694 686,815 87,515,209 1,296,519 4,753,905    

25 2015 117,533 19,369,478 191,755 29,683,599 191,755 28,782,353 87,294 3,448,096 87,503 4,935,163 675,839 86,218,689 1,274,765 4,674,138    

26 2016 114,851 18,927,428 189,630 29,354,730 189,630 28,463,469 85,396 3,373,155 85,552 4,825,141 665,059 84,943,924 1,253,418 4,595,867    

27 2017 112,230 18,495,467 187,529 29,029,505 187,529 28,148,118 83,540 3,299,843 83,645 4,717,572 654,473 83,690,506 1,232,472 4,519,063    

28 2018 109,668 18,073,364 185,451 28,707,883 185,451 27,836,261 81,725 3,228,125 81,780 4,612,401 644,076 82,458,034 1,211,917 4,443,694    

29 2019 107,166 17,660,894 183,397 28,389,824 183,397 27,527,859 79,948 3,157,965 79,957 4,509,575 633,865 81,246,118 1,191,745 4,369,733    

30 2020 104,720 17,257,838 181,365 28,075,289 181,365 27,222,874 78,211 3,089,330 78,174 4,409,041 623,835 80,054,372 1,171,950 4,297,151 4,297,151 - - 

31 2021 102,330 16,863,980 179,356 27,764,239 179,356 26,921,268 76,511 3,022,187 76,432 4,310,748 613,984 78,882,422 1,152,523 4,225,919 4,177,059 48,860 342,021 

32 2022 99,995 16,479,111 177,368 27,456,635 177,368 26,623,003 74,848 2,956,503 74,728 4,214,647 604,307 77,729,899 1,133,457 4,156,010 3,999,842 156,168 1,093,178 

33 2023 97,713 16,103,026 175,403 27,152,439 175,403 26,328,043 73,221 2,892,247 73,062 4,120,688 594,803 76,596,442 1,114,745 4,087,398 3,260,374 827,024 5,789,166 

34 2024 95,483 15,735,523 173,460 26,851,613 173,460 26,036,351 71,630 2,829,387 71,433 4,028,823 585,466 75,481,697 1,096,379 4,020,056 3,078,839 941,218 6,588,525 

35 2025 93,303 15,376,407 171,538 26,554,120 171,538 25,747,890 70,073 2,767,894 69,841 3,939,007 576,294 74,385,318 1,078,353 3,953,960 2,891,070 1,062,890 7,440,227 

36 2026 91,174 15,025,488 169,638 26,259,923 169,638 25,462,625 68,550 2,707,737 68,284 3,851,193 567,283 73,306,965 1,060,659 3,889,083 2,832,392 1,056,691 7,396,837 

37 2027 89,093 14,682,576 167,758 25,968,985 167,758 25,180,521 67,060 2,648,887 66,761 3,765,336 558,432 72,246,306 1,043,291 3,825,401 2,774,955 1,050,445 7,353,118 

38 2028 87,060 14,347,491 165,900 25,681,271 165,900 24,901,543 65,603 2,591,316 65,273 3,681,394 549,735 71,203,015 1,026,243 3,762,890 2,718,733 1,044,157 7,309,098 

39 2029 85,073 14,020,053 164,062 25,396,745 164,062 24,625,655 64,177 2,534,997 63,818 3,599,323 541,191 70,176,772 1,009,507 3,701,527 2,663,698 1,037,829 7,264,800 

40 2030 83,132 13,700,088 162,244 25,115,370 162,244 24,352,823 62,782 2,479,901 62,395 3,519,081 532,797 69,167,265 993,079 3,641,289 2,609,824 1,031,464 7,220,249 

Total: Project emissions, Reductions and Carbon credits over a 10-year project from 2020 to 2030     35,303,937 8,256,746 57,797,219 
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Note: Forest reference emission levels (FREL) are equivalent to carbon emissions starting from 2020 through 2030. Emission reductions and carbon revenues were 

estimated only for the 2020–2030 period. 
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