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Abstract: L-band brightness temperature (Tb) is one of the key remotely-sensed variables that
provides information regarding surface soil moisture conditions. In order to harness the information
in Tb observations, a radiative transfer model (RTM) is investigated for eventual inclusion into a
data assimilation framework. In this study, Tb estimates from the RTM implemented in the NASA
Goddard Earth Observing System (GEOS) were evaluated against the nearly four-year record of daily
Tb observations collected by L-band radiometers onboard the Aquarius satellite. Statistics between
the modeled and observed Tb were computed over North America as a function of soil hydraulic
properties and vegetation types. Overall, statistics showed good agreement between the modeled and
observed Tb with a relatively low, domain-average bias (0.79 K (ascending) and−2.79 K (descending)),
root mean squared error (11.0 K (ascending) and 11.7 K (descending)), and unbiased root mean
squared error (8.14 K (ascending) and 8.28 K (descending)). In terms of soil hydraulic parameters,
large porosity and large wilting point both lead to high uncertainty in modeled Tb due to the large
variability in dielectric constant and surface roughness used by the RTM. The performance of the
RTM as a function of vegetation type suggests better agreement in regions with broadleaf deciduous
and needleleaf forests while grassland regions exhibited the worst accuracy amongst the five different
vegetation types.

Keywords: L-band radiometry; radiative transfer model; soil moisture

1. Introduction

Soil moisture is a crucial component in hydrologic, meteorologic, and land surface processes [1–3].
Soil moisture interacts with the overlying atmosphere via evapotranspiration and precipitation
recycling [4,5] and plays a substantial role in the water and energy balances by acting as a
first-order control on the partitioning of surface energy and precipitation fluxes [6–13]. In addition,
soil moisture–precipitation feedback plays an important role in controlling weather patterns, which is
evident particularly in transitional climate zones [5,14,15].

Soil moisture can be inferred from microwave (MW) measurements collected by passive
microwave radiometers (typically provided as brightness temperature, Tb). The emitted Tb from
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the Earth’s surface is a function of the physical temperature of the land surface times the land surface
emissivity [16,17]. Microwave emissivity of soil is largely dependent on the dielectric constant of the
soil, which is a strong function of the amount of water within the soil matrix [18,19]. The large contrast
between the dielectric constant of water at L-band (about 80) and dry soil (about 3.5) results in a large
difference between the emissivities from wet and dry soil (roughly 0.6 and 0.95, respectively) [20,21],
which fundamentally forms the basis for passive microwave remote sensing of soil moisture.

Several space-based, L-band (1–2 GHz) microwave radiometers have been launched in the past
decade in order to retrieve soil moisture. The European Space Agency launched the Soil Moisture
Ocean Salinity (SMOS) mission in November 2009, which provides global retrievals of surface soil
moisture over land and surface salinity over oceans with an approximate three-day repeat cycle [22–24].
The multi-angular, dual-polarized L-band radiometer on-board SMOS provides Tb observations at
a nominal horizontal resolution of 40 km with a soil moisture retrieval accuracy of 0.04 m3/m3 [24]
yielding reasonable agreement with in-situ soil moisture observations [25–29]. The National
Aeronautics and Space Administration (NASA) launched the Soil Moisture Active–Passive (SMAP)
mission on 31 January 2015 in order to provide observations of surface soil moisture and freeze–thaw
products with a spatial and temporal resolution of ∼40 km and ∼3 days, respectively [30]. The main
difference between the SMOS and SMAP radiometers is that SMAP observes Tb at a single incidence
angle with increased accuracy and improved mitigation of radio frequency interference (RFI) whereas
SMOS observes Tb at multiple incidence angles.

The Aquarius mission, which was launched on 10 June 2011 and ended on 8 June 2015,
also carries three L-band radiometers with its primary design objective to monitor sea surface
salinity [31]. In general, Tb observed from SMOS and Aquarius showed strong correlation and
similar climatology over land [32,33]. Piepmeier et al. [33] compared the concurrent SMOS and
Aquarius Tb observations worldwide with SMOS observations rescaled into the incidence angles and
footprints of Aquarius. Statistical comparison of Aquarius and SMOS Tb revealed strong correlation
(>0.97) over the land across the polarizations and incidence angles with a warmer bias (approximately
8 K and 6 K for horizontal and vertical polarization, respectively) for Aquarius Tb compared to
SMOS Tb. Pablos et al. [32] also revealed a strong correlation between the Aquarius and SMOS Tb
observations with similar seasonal variation over land. However, the relatively coarse temporal and
spatial resolution (i.e., seven-day revisit frequency and 390 km2 of native spatial footprint) impose
some limitations during the application of Aquarius in the estimation of soil moisture [34].

Recent studies have demonstrated the benefit of merging L-band Tb with a land surface model in
order to improve soil moisture estimates [35–42]. Such a merger typically involves a data assimilation
(DA) system that uses a Radiative Transfer Model (RTM) to map the geophysical model states
(e.g., soil moisture) into observation (i.e., Tb) space [43]. For instance, De Lannoy et al. [44] coupled a
zero-order tau–omega model to the GEOS Catchment Land Surface Model (Catchment) in order to
produce global estimates of L-band Tb. Inputs to the GEOS RTM include variable estimates derived
from the Catchment model [45]. The most sensitive parameters in the RTM were calibrated using
SMOS Tb observations [44].

The main objective of this study is to investigate the performance of the GEOS RTM through a
comparison with Tb observations collected by the Aquarius L-band radiometer over North America.
More specifically, multi-year SMOS Tb observations were utilized in the calibration of RTM parameters
because SMOS provides a multi-year record of multi-angular Tb observations with ∼2-day global
repeat frequency at ∼40 km resolution. Further, the utilization of SMOS enables an independent
evaluation of RTM-derived Tb with Aquarius Tb across the entire Aquarius observational record,
as opposed to a direct comparison against SMOS Tb, which is much more limited in spatio-temporal
coverage owing to the limited number of common overpass times and locations. Even though the
Aquarius mission ended in 2015, Aquarius Tb observations are still valuable (along with SMAP and
SMOS Tb observations) to develop a long-term, L-band Tb record, which is helpful to fill spatial
or temporal gaps in the SMOS and SMAP records as well as improve the accuracy of observed Tb
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through calibration with one another. Moreover, such comparisons will help improve the RTM-derived
Tb estimates, and hence, lead to potential improvements in soil moisture estimates using a data
assimilation framework as part of a land surface reanalysis.

The performance of the RTM was investigated as a function of soil type and overlying vegetation
type. Exploring the performance of the RTM as a function of soil hydraulic parameters (SHPs) and
vegetation type helps better understand the RTM’s capability across different portions of the globe.
An eventual goal in the future is to merge Aquarius Tb observations and RTM-derived Tb estimates
within an ensemble-based data assimilation framework. However, prior to conducting L-band Tb
assimilation in a follow-on study, it is critical to first examine and evaluate the observation operator
(i.e., the RTM) in order to assess its capabilities and error characteristics.

2. Microwave Radiative Transfer Theory

Microwave radiative transfer theory applied to soil moisture, in general, provides a framework
to estimate Tb at the top of the atmosphere, Tb,TOA [46]. This consists of upward and downward
atmospheric radiation along with surface and vegetation components. Here, we focus on the
description of Tb at the top of the vegetation, Tb,TOV , as the Aquarius Tb observations have already
undergone atmospheric correction. The tau-omega model simplifies Tb,TOV,p calculation at polarization
p = (H, V) as:

Tb,TOV,p = Ts(1− rp)Ap + Tc(1−ωp)(1− Ap)(1 + rp Ap), (1)

where Ts [K] is the surface soil temperature, and Tc [K] is the canopy temperature that is assumed to
equal Ts [44]. rp [-] is the rough surface soil reflectivity, ωp [-] is the scattering albedo, and Ap [-] is the
vegetation attenuation.

Vegetation attenuation, Ap, is calculated through the vegetation opacity model [47] as:

Ap = exp(−
τveg,p

cos θ
) (2)

τveg,p = bp ×VWC = bp × LEWT × LAI, (3)

where θ [rad] is the incidence angle and τveg,p is the vegetation opacity at nadir. τveg,p is a function of
the vegetation structure parameter, bp [-], and the vegetation water content, VWC [kg m−2]. VWC is
calculated as the product of leaf equivalent water thickness, LEWT [kg m−2], and leaf area index,
LAI [m−2 m−2]. The rough surface reflectivity, rp, in Equation (1) is calculated as a function of smooth
surface reflectivity, Rp, via:

rp = [(1−Q)Rp + QRq] exp(−h) cosN(θ), (4)

where Q [-] is the polarization mixing factor (assumed to be 0 for L-band) due to surface roughness,
N [-] is the angular dependence, and q indicates polarizations (V, H) when p = (H, V). h [-] is the
effective roughness height parameterized as a stepwise function where:

h =

{
hmax SM ≤ wt

hmax +
hmin−hmax
poros−wt (SM− wt), wt < SM ≤ poros

(5)

where poros [m3 m−3] represents porosity and wt [m3 m−3] is the transitional soil moisture calculated
as a function of wilting point [48]. The parameters hmax and hmin represent the roughness height when
soil moisture is less than transitional soil moisture and at saturation, respectively. The smooth surface
reflectivity, Rp, is computed from the Fresnel equations, which is dependent on the soil dielectric
constant that varies with soil moisture [49]. The dielectric constant formulation used in the RTM is
based on Wang and Schmugge [48].
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From Equation (1), the vegetation attenuates the microwave emission from the soil and
simultaneously adds its own contribution to the measured microwave Tb. In addition,
precipitation interception by overlying vegetation and ground litter also affects microwave emission
from the soil [50]. The RTM employed in this study neglects interception and littering effects [44].
Details on the calibration procedure of the GEOS RTM are found in Section 3.2.

3. Data and Methods

3.1. Aquarius Satellite Mission

The Aquarius instrument was part of the Aquarius/Satéllite de Aplicaciones Científicas (SAC-D)
mission, which was launched on 10 June 2011 and ended on 8 June 2015 [31]. The mission is a joint
collaboration between NASA and the Argentinian space agency, Comisión Nacional de Actividades
Espaciales (CONAE), with participation from Brazil, Canada, France, and Italy. The Aquarius
instrument is a combination of an active scatterometer and passive radiometers that measure
L-band (1.4 GHz) radiation. The Tb observations employed in this study are derived only from
the passive radiometers.

Even though the Aquarius mission was launched with the main goal of measuring sea surface
salinity, the L-band Tb observations discussed here are used in the context of soil moisture remote
sensing over non-frozen land. Three passive radiometers provide Tb observations at a spatial
resolution (i.e., approximate field-of-view) of 76 km× 94 km, 84 km× 120 km, and 96 km× 156 km,
with incidence angles of 29.36◦, 38.49◦, and 46.29◦, respectively. These incidence angles are denoted
by beam #1, beam #2, and beam #3, respectively. The minor axis of each beam is in the along-track
direction while the major axis is aligned in the cross-track direction. Each radiometer is directed
toward the night side of the Earth in order to avoid Sun glint. Aquarius is a sun-synchronous,
polar-orbiting satellite with a global repeat interval of ∼7 days. Aquarius underwent pre-launch
and post-launch calibration activities [33]. Pre-launch calibration included receiver and antenna
switch-matrix calibration. Post-launch calibration included the correction of diode noise, antenna
patterns, RFI, and cold-sky calibration [51]. Note that Aquarius Tb observations were not calibrated to
the SMOS Tb observations.

Data provided by the Aquarius mission during the study period from 25 August 2011 to
7 June 2015 were obtained from the NASA Jet Propulsion Laboratory (JPL) in the Hierarchical Data
Format (HDF5) at ftp://podaac.jpl.nasa.gov. Level-2, version-4 Aquarius data products used in this
study provide Tb observations for both ascending (∼6 a.m. local time) and descending (∼6 p.m. local
time) overpasses at both horizontal and vertical polarizations.

3.2. GEOS Radiative Transfer Model Implementation

The GEOS RTM considers several variables (e.g., surface soil moisture, surface soil temperature,
and vegetation water content) from the NASA Catchment Land Surface Model [45] for the purpose
of calibration along with SMOS Tb as well as producing RTM-derived Tb. Among the various RTM
parameters, microwave effective roughness height (h), scattering albedo (ω), and the vegetation
structure parameter (bp) were selected for calibration using multi-angular SMOS observations in order
to compute Tb estimates at the top of vegetation at both horizontal and vertical polarizations [37,38,44].
During the calibration using a particle swarm optimization search algorithm, the difference in the
long-term temporal mean and temporal standard deviation of Tb between SMOS and RTM were
minimized, which helps minimize the climatological difference between the different datasets [44].
Where SMOS observations are unavailable for calibration, these RTM parameters were filled in by using
an average of calibrated parameters for other regions with the same vegetation class. Uncalibrated
RTM parameters (e.g., leaf equivalent water thickness (LEWT) and angular dependence (Nrp )) were
assigned literature-based lookup table values associated with each vegetation class.

ftp://podaac.jpl.nasa.gov
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RTM-derived Tb estimates were generated globally every 3 h on the 36-km Equal Area
Scalable Earth (EASE) grid [52] in terrestrial areas with non-frozen soil conditions. RTM-derived
Tb estimates were locally calibrated using SMOS Level 1 version 504 Tb observations to obtain
climatologically unbiased Tb estimates [44,53]. Prior to calibration, the available SMOS observations
underwent extensive quality control. L-band microwave signals are often prone to contamination
by RFI [54] that arises from a variety of transmitters used in communication applications,
and were masked out accordingly. During the RTM calibration process using SMOS, further
quality control was applied during frozen soil conditions when the model-based land surface
temperature was less than 273.4 K because the tau–omega model used here [44] is only
applicable with non-frozen soils. Furthermore, SMOS observations collected near water bodies,
during intense precipitation events (i.e., precipitation > 10 mm/h), or in the presence of snow cover
(i.e., snow water equivalent > 10−4 kg/m2) were also excluded from calibration. Accordingly, the map
of the calibrated and uncalibrated pixels over the North America study domain as illustrated in Figure 1
showed that most of the northern part of the study domain was not calibrated.

Figure 1. Map of calibrated and uncalibrated areas across the North American study domain.

3.3. Aquarius Preprocessing

In order to collocate the GEOS RTM output with the corresponding Aquarius observations
in space and time, the individual Aquarius overpasses were re-gridded (using a nearest neighbor
approach) onto the 36-km Equal-Area Scalable Earth (EASE) grid, which is the same grid used for
the processed SMOS Tb observations as well as for the RTM simulations. For a given orbital track,
the individual Aquarius Tb observations that covered a given set of EASE grid cells were identified
and then used to compute a mean Tb value for that track on the corresponding EASE grid cells. If more
than one Aquarius observation (over a collection period of a few seconds) fell within a single EASE
grid cell, then the arithmetic average was applied to that entire cell. In addition, the value applied at a
single cell center was also applied to the relevant neighboring cells (as a function of look angle) such
that the approximate field-of-view for each of the three beams was correspondingly approximated on
the relatively fine-scale 36-km EASE grid. The process was repeated for each of the three beams for
every Aquarius overpass during the period 25 August 2011 through 7 June 2015, which represents the
entire Aquarius measurement record. After preprocessing was complete, both the RTM-derived Tb
estimates (for all three beams) and the Aquarius Tb observations (for all three beams) were matched in
space and time for subsequent statistical analysis.

For quality assessment and quality control purposes, the time series of the RTM estimates and
Aquarius observations were examined at each grid cell prior to statistical analysis. In order to focus on
land-based estimates, 36-km EASE grid cells with a water fraction greater than 0.05 were excluded
from the analysis because the observed Aquarius Tb’s did not represent the same physical processes as
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the RTM output (i.e., the RTM does not account for microwave emission from open water surfaces).
In addition, grid cells with fewer than 40 pairs of Aquarius and RTM-derived Tb observations collected
over the course of the four-year study period were excluded from the analysis in order to yield
statistically meaningful results.

3.4. Soil Classification and Hydraulic Properties

Soil classification used in this paper was based on the refined soil classification scheme introduced
in De Lannoy et al. [53]. Data from the Harmonized World Soil Database and the State Soil Geographic
Projects were used as a basis to derive the soil hydraulic properties and the soil organic content
with a gridded resolution of 30′′. The classification of De Lannoy et al. [53] contains 253 soil classes,
including 252 classes from three sets of low to moderate organic carbon categories, each with 84
different mineral classes defined from the refined soil texture triangle, plus one additional class
(i.e., peat) with a very high organic content (Figure 2).

Figure 2. Distribution of soil classes across North America for the top 30 cm of soil used in the radiative
transfer model (RTM).

Based on the updated soil classification scheme, soil hydraulic parameters (SHPs) were
determined through the pedotransfer functions suggested by Wosten et al. [55] using the percentage
of clay, silt, and organic matter [53]. Among the SHPs, porosity and wilting point are selected for
investigation in this paper as these parameters directly influence the dielectric constant and surface
roughness variables that are used within the RTM. For the analysis, porosity and wilting point
were divided into four different categories based on the quartile values drawn from the cumulative
distribution function of each variable across the study domain (Figure 3). For example, Category I
collects the value within the range of the zeroth to first quartile (0% to 25%) while Category IV collects
the value from third to fourth quartile (75% to 100%).
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Figure 3. Cumulative Distribution Function of (a) porosity and (b) wilting point within the study
area. Q1 to Q3 represent the end points of the first to third quartile, respectively, and define the four
categories used in Figures 8 and 9.

3.5. Vegetation and Irrigation Data

The vegetation classes utilized in this study are based on the Moderate Resolution Imaging
Spectroradiometer (MODIS: 500 m MOD12Q1V004) International Geosphere–Biosphere Programme
(IGBP) classification scheme [56]. For the analysis represented here, we mapped the 16 global
IGBP classes into six dominant land cover classes across North America (i.e., evergreen and
deciduous needleleaf forests merged into “needleleaf”; open and closed shrublands merged into
“shrublands”) following the land cover schemes used for the Catchment model [57]. As the broadleaf
evergreen forest accounts for less than 5% across the study area, it was excluded from the analysis.
Accordingly, subsequent analyses presented in Section 4 as a function of vegetation type are discretized
based on the five classes shown in Figure 4a and outlined in Table 1.

Figure 4. Distribution of (a) lumped vegetation classes used in Section 4.3 and Table 1 and
(b) irrigation categories based on the percentage of irrigated area relative to the total area based on the
GMIA dataset [58].
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Table 1. Five lumped vegetation classes based on the International Geosphere–Biosphere Programme
(IGBP) classification and used for the analysis in Section 4.3.

# Class Description

1 Broadleaf deciduous Broadleaf deciduous vegetation with height exceeding 2 m.
2 Needleleaf Deciduous and evergreen needleleaf trees with height greater than 2 m.
3 Grassland Covered with herbaceous vegetation with tree cover less than 10%.

This also includes seasonal croplands.
4 Broadleaf shrubs Shrubs less than 2 m height or barren land with no vegetation.
5 Dwarf trees Woody vegetation less than 2 m height and shrub canopy cover between

10% and 60%.

Furthermore, as cropland is lumped into the grassland category in the Catchment model,
the Global Map of Irrigation Area (GMIA; Siebert et al. [58]) dataset is used to illustrate the percentage
of area with actual irrigation relative to the total area in order to analyze the influence of irrigation over
the grassland regions in the RTM-derived Tb. As the GMIA dataset has a spatial resolution of 5 arc min
by 5 arc min, it is resampled onto the 36 km EASE grid in order to coincide with the Catchment model.
Further, the GMIA dataset was discretized into three sub-categories (i.e., 0–0.1%, 0.1–10%, 10–100%)
(Figure 4b) based on the derived CDF (figure not shown).

3.6. Statistical Analysis

In this paper, bias and root mean square error (RMSE) are selected to evaluate the RTM-derived
Tb,RTM and are calculated as:

bias =
1
n

n

∑
i=1

(Tb,RTM − Tb,obs) (6)

RMSE =

√
1
n

n

∑
i=1

(Tb,RTM − Tb,obs)2 (7)

where n is the number of colocated (in space and time) brightness temperature observations and
predictions, Tb,RTM [K] is the brightness temperature predicted by the RTM, and Tb,obs [K] is the
brightness temperature observed by Aquarius. In general, bias is a measure of systematic error that
indicates the over- or under-prediction of the observation while RMSE accounts for both systematic
and non-systematic (random) errors [59]. Additionally, unbiased root mean square error (ubRMSE) [60]
was computed, which is the RMSE after first removing the bias.

4. Results and Discussion

4.1. Comparison between RTM, SMOS, and Aquarius Brightness Temperatures

Prior to analyzing the RTM-derived Tb estimates, Aquarius Tb observations were compared to
both SMOS Level 1 version 504 and RTM-derived Tbs colocated in space and time. This analysis is
valuable, in that different Tb behavior, as a function of incidence angle, influences the soil moisture
retrieval as well as the structure of error covariance between the Catchment model and RTM-derived
Tb [37,61]. Figure 5 highlights the angular dependency of the spatiotemporal mean brightness
temperatures across North America from co-located values among SMOS-, RTM-, and Aquarius-based
Tb’s. The SMOS incidence angles that were closest to the corresponding Aquarius incidence angles
were selected for comparison. In general, the mean Tb at horizontal polarization decreases with
increasing incidence angle for the RTM-derived and the observed Tb estimates. Conversely, the mean
Tb at vertical polarization generally increases with increasing incidence angle for all Tb estimates.
However, Tb from both SMOS and Aquarius showed little sensitivity (i.e., less than 1 K) from 40◦ to
45◦ at vertical polarization, in contrast to the corresponding RTM-derived Tb.
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Figure 5. Spatio-temporally averaged Tb across the study period (from 25 August 2011 to 7 June
2015) over North America as a function of incidence angle from Soil Moisture Ocean Salinity (SMOS),
radiative transfer model (RTM), and Aquarius.

Figure 6 highlights the statistical skill of the RTM-derived Tb estimates for beam #1 at horizontal
polarization (relative to Aquarius) using ascending and descending overpasses across North America.
The bias map in Figure 6a,b shows that computed bias (represented to three significant digits) ranged
from −8.13 K to 8.58 K (ascending overpasses) and −11.7 K to 4.55 K (descending overpasses) with
domain-averaged biases of 0.79 K and −2.79 K for ascending and descending overpasses, separately.
The majority of observations in northern Canada were excluded during quality control based on
an insufficient number of available observations during non-frozen soil conditions. This screening
was needed because the RTM only predicts Tb during non-frozen soil conditions (see Section 2).
The same behavior was witnessed for both horizontal and vertical polarizations but only results for
horizontal polarization are presented here. For beam #2 (figure not shown) the bias ranges from
−12.8 K to 8.85 K while for beam #3 (figure not shown), the bias ranges from −14.1 K to 8.40 K
collectively for the ascending and descending overpasses. The results for vertical polarization bias
are comparable to that of horizontal polarization with values ranging predominantly from −9.14 K to
8.96 K (figure not shown). The regions in the northern part of Canada near Lake Winnipeg and Hudson
Bay have a relatively high magnitude of negative bias (i.e., exceeding −13.3 K) across the different
beams and polarization. Locations immediately next to water bodies near Lake Winnipeg, Hudson
Bay, Great Lakes, and the Great Salt Lake have anomalously large, positive biases (approximately
40 K). In addition, some large areas in and around the boreal forest regions in northern Canada show
higher bias (18.6 K and 12.7 K for ascending and descending overpasses, respectively), which is also
likely due to the presence of a significant number of sub-grid scale lakes. These phenomena are further
exacerbated by the resampling of the Aquarius Tb onto a relatively finer scale grid. That is, Aquarius
Tb was rescaled (a.k.a. oversampled) onto the 36-km EASE grid in order to facilitate the comparison
with RTM-derived Tb. However, when the footprint of the Aquarius Tb includes open water bodies
that extend beyond a particular 36-km EASE grid cell, the regridded neighboring pixels will still
contain information partially contaminated by the nearby open water bodies. Additionally, the lack of
a module for open water in the current RTM also resulted in some strongly biased Tb simulation result.
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Figure 6. Statistical maps of bias (a,b), root mean square error (RMSE) (c,d), and unbiased RMSE (e,f)
between Aquarius and RTM-derived Tb during the study period (25 August 2011 to 7 June 2015) over
North America for beam #1 at H-polarization. The Left and right columns represent the ascending and
descending overpasses, respectively.

Similar patterns are seen in the RMSE (Figure 6c,d) and ubRMSE (Figure 6e,f) statistics for
ascending and descending overpasses for beam #1 at horizontal polarization. Nearly identical patterns
are witnessed for the other beam and polarization combinations (not shown). The computed RMSEs
are within the range of 4.13 K to 18.9 K for both ascending and descending overpasses across the
study domain for all three beams at horizontal polarization. However, vertical polarization RMSE
results are, in general, smaller than their horizontal polarization counterparts with RMSE values
generally ranging from 3.99 K to 16.4 K, 4.14 K to 15.2 K, and 3.83 K to 14.8 K for beams #1, #2, and
#3, respectively (not shown). Large RMSE values are found in the northern part of Canada and near
large water bodies associated with correspondingly large bias values (see Figure 6a,b) Unbiased RMSE
results are shown in Figure 6e,f for beam #1 at horizontal polarization, and typically range from 0 K to
14.2 K, except in the central United States and Canada, where values typically range from 12.0 K to
17.7 K for both ascending and descending overpasses. Similar ranges of unbiased RMSE were found
for beams #2 and #3 at horizontal polarization. The ubRMSE values are slightly smaller at vertical
polarization and typically range between 10.1 K to 15.2 K in the Central United States and between
1.39 K to 5.43 K everywhere else.

Statistical performance of calibrated and uncalibrated pixels with ascending overpasses are
shown in Figure 7. Note that the majority of the northern portion of the study domain was not
selected for calibration as discussed in Section 3.2. The overall results confirmed that calibrated pixels
showed better performance than uncalibrated pixels. Computed bias ranged from −7.03 K to 4.00 K
(calibrated pixels) and −7.48 K to 8.33 K (uncalibrated pixels) with domain-averaged bias of 0.79 K
and 2.17 K for calibrated and uncalibrated pixels, respectively. The descending overpasses also showed
similar behavior as the ascending overpasses with the calculated bias ranging from −10.1 K to 0.92 K
and −9.73 to 3.43 K for calibrated and uncalibrated pixels, respectively. Similar behavior was observed



Remote Sens. 2020, 12, 3098 11 of 19

for RMSE and ubRMSE in that calibrated pixels fall within the range of 3.31 K to 18.2 K (RMSE) and
2.45 K to 14.3 K (ubRMSE) while uncalibrated pixels yielded a RMSE range from 3.77 K to 20.1 K and
ubRMSE range from 2.86 K to 15.1 K across the combination of ascending and descending overpasses.
As most of the regions near the water bodies and the northern boreal forest were excluded from
the calibration (Figure 1), they exhibited a relatively high magnitude of bias, RMSE, and ubRMSE
as compared to other regions. Focusing on the middle part of the study area where there is a high
percentage of irrigation (Figure 4b), both calibrated and uncalibrated pixels showed relatively high
bias, RMSE, and ubRMSE (Figure 7). Detailed discussion about RTM performance over irrigated areas
is further discussed in Section 4.3.

Figure 7. Statistical maps of bias (top row), RMSE (middle row), and unbiased RMSE (bottom row)
between Aquarius and RTM-derived Tb during the study period (25 August 2011 to 7 June 2015) over
North America for beam #1 at H-polarization. The Left and right columns represent the calibrated and
uncalibrated pixels, respectively. Note that the majority of the northern portions of the study domain
were excluded from the calibration exercise due to significant periods of time with frozen surface soil
conditions and/or the presence of significant amounts of sub-grid scale lakes (Section 3.2).

4.2. Performance as a Function of Soil Hydraulic Parameters

Figures 8 and 9 show the statistical results of the comparison of RTM and Aquarius Tb as
a function of porosity and wilting point, respectively. The whisker ranges from the 5th to 95th
percentiles of the computed statistics whereas the boxplot highlights the 75th, 50th, and 25th percentiles.
Figure 8 suggests that the highest porosity (Category IV) corresponds to the poorest agreement
between the RTM-derived Tb estimates and the Aquarius Tb observations for both ascending (−2.62 K)
and descending (−5.94 K) overpasses. The median bias (i.e., 50th percentile of the boxes shown in the
leftmost column of the subplots) is lowest in Category III for ascending overpasses with a value of
−0.05 K and Category II for descending overpasses with a value of −1.58 K. RMSE and ubRMSE plots
presented in the second and third columns of Figure 8 also revealed that the highest porosity category
showed the highest median values of 11.9 K (RMSE) and 9.83 K (ubRMSE) for ascending overpasses
and 13.0 K (RMSE) and 9.31 K (ubRMSE) for descending overpasses. Similar to the behavior of porosity,
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a higher wilting point, in general, corresponds to a weaker agreement between the RTM-derived Tb
estimates and the Aquarius Tb observations (Figure 9). Median bias for the four wilting point categories
are 1.41 K, 0.50 K, −0.40 K, and −2.67 K for ascending overpasses and −1.98 K, −2.89 K, −4.29 K,
and −5.80 K for descending overpasses, respectively. RMSE and ubRMSE for the different wilting
point categories also suggest more RTM uncertainty in the highest wilting point category (Category
IV) with values of 11.7 K (RMSE) and 9.32 K (ubRMSE) for ascending overpasses and 12.7 K (RMSE)
and 9.15 K (ubRMSE) for descending overpasses, respectively.

Figure 8. Statistical comparison for different porosity categories based on the CDF (Figure 3a) for beam
#1 at H-polarization. The different rows show the results for ascending and descending overpasses.
The different columns represent the results of bias, RMSE, and unbiased RMSE. The upper and lower
whiskers represent 95th and 5th percentiles, respectively, whereas the boxes show the median line
along with 75th and 25th percentiles. The number over the boxes in the first column indicates the
number of samples for each category.

High values of uncertainty for soils with large porosity or large wilting point can be explained
through their influence on the surface roughness and dielectric constant. Soils with higher porosity or
wilting point tend to have a higher fraction of clay [48]. As clay has a large surface-to-volume ratio
(relative to other soil types), it has an affinity for binding a greater percentage of water molecules,
which causes a variation in the dielectric constant [18]. Additionally, an increase in wilting point
or porosity will influence the calculation of surface roughness in the RTM when the soil moisture
falls between the transition point and porosity [44]. Another reason is related to the lack of SMOS
observations for use during calibration over regions parameterized as peat, which features high
porosity values (approximately 0.8). Because peatlands are typically also water-rich, the screening
of SMOS data for open water fractions less than 0.05 yielded a limited number of observations in
these areas.
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Figure 9. Statistical comparison for different wilting point categories based on the CDF (Figure 3b) for
beam #1 at H-polarization. The different rows show results for ascending and descending overpasses.
The different columns represent the results of bias, RMSE, and unbiased RMSE. The upper and lower
whiskers represent 95th and 5th percentiles, respectively, whereas the boxes show the median line
along with 75th and 25th percentiles. The number over the boxes in the first column indicates the
number of samples for each category.

4.3. Performance as a Function of Vegetation Type

In a similar manner as conducted for soil hydraulic parameters, a statistical evaluation of
predicted Tb performance was conducted as a function of vegetation type separately over ascending
and descending overpasses. Statistical comparisons for horizontal polarization are shown in
Figure 10. Broadleaf deciduous and needleleaf forest suggest better agreement (i.e., lower median
bias, RMSE, and ubRMSE) between the RTM and the observations relative to other vegetation classes.
Median bias, RMSE, and ubRMSE ranged from −2.63 K to 1.37 K, 5.84 K to 7.82 K, and 4.29 K to
5.16 K, respectively, for broadleaf deciduous and needleleaf forest classes for beam #1 at H-polarization.
In terms of the range between the 5th and 95th percentile values of bias and RMSE, the grassland
and shrub vegetation types showed a narrower range than dwarf vegetation. However, the RMSE
and ubRMSE plots showed poor performance in Tb estimation in grasslands (median RMSE between
6.40 K to 14.8 K and median ubRMSE between 6.80 K to 11.7 K) across the different overpasses at
both polarizations.

De Lannoy et al. [44] also revealed similar behavior in that Tb estimates from the RTM
exhibited low uncertainties over dense vegetation while large uncertainties were observed over
regions with grassland vegetation type. Poor performance in grassland regions might result from
poorly parameterized agricultural croplands, which is included in the category of grassland (Table 1).
Statistical comparison of Aquarius and RTM-derived Tb in accordance with the different percentages
of irrigated areas within a pixel revealed that pixels with more than 10% of the irrigated area
showed the most negative bias for ascending and descending overpasses (Table 2). Moreover,
according to Figure 4, irrigation-dominated regions including parts of Nebraska, the Lower Mississippi
River Basin, and the California Central Valley [62] are classified as grassland even though they
are intensively irrigated croplands. De Lannoy and Reichle [37] and Rains et al. [63] showed the
potential capability of SMOS observations to reflect irrigation. This result suggests that predicted
Tb will likely be less accurate due to a lack of an explicit irrigation scheme in the land surface model
(and hence not considered in the RTM) [64].
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Figure 10. Statistical comparisons over the dominant vegetation classes (Table 1 and Figure 4a) for
beam #1 at H-polarization. The different rows show the results of bias, RMSE, and unbiased RMSE.
The different columns show results for ascending and descending overpasses. The upper and lower
whiskers represent 95th and 5th percentiles, respectively, whereas the boxes show the median line
along with 75th and 25th percentiles.

Table 2. Statistical comparison of RTM-derived Tb for beam #1 horizontal polarization as a function
of the percentage of pixel area with irrigation (I) as estimated by the GMIA dataset. Units for bias,
RMSE, and ubRMSE are K.

(a) Ascending I ≥ 10% 0.1% ≤ I < 10% I < 0.1%

# of samples 138 521 202

bias −4.95 −3.29 −2.80

RMSE 14.3 14.0 13.8

ubRMSE 12.0 11.8 12.5

(b) Descending I ≥ 10% 0.1% ≤ I < 10% I < 0.1%

# of samples 192 494 159

bias −7.81 −6.06 −6.03

RMSE 16.7 15.4 13.5

ubRMSE 11.8 11.6 11.0

Irrigation, in general, makes soil wetter and lowers the physical temperature via adding relatively
cool water to warm soil, in conjunction with evaporative cooling, which leads to a lower Tb.
RTM-derived Tb accounts for microwave emission from the soil surface as well as the overlying
vegetation (Equation (1)). Since the Catchment model lacks an explicit irrigation module and
generally underestimates soil moisture in irrigated regions, the effective microwave roughness height
(Equation (5)) and surface reflectivity (Equation (4)) tend to be overestimated, which, in turn, results in
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an overestimation of the microwave emission from the soil surface (or a warm bias in Tb). At the same
time, however, the lack of an irrigation scheme along with the misclassification of cropland vegetation
as grassland vegetation, also leads to errors in the modeled vegetation properties. For example,
vegetation-related RTM parameters (e.g., vegetation structure parameter, vegetation attenuation,
and vegetation water content) tend to be underestimated, which in turn, results in an underestimation
of microwave emission from the vegetation (or a cold bias in Tb). Additionally, the monthly-varying,
climatological LAI estimates utilized in the Catchment model do not reflect inter-annual crop rotations.
The combination of these different factors can result in the underestimation of RTM-derived Tb
estimates when compared against Aquarius Tb observations.

5. Conclusions

L-band Tb estimates from an RTM calibrated using SMOS Tb observations were evaluated against
Aquarius Tb observations in order to examine the applicability of multi-year SMOS Tb, which exhibited
similar climatology as Aquarius Tb [32,33], in order to simulate Aquarius Tb. This experimental
setting allows for an independent evaluation of RTM-derived Tb against the Aquarius Tb observations.
The evaluation process was conducted across a range of soil hydraulic parameters and vegetation types
for the period from 25 August 2011 to 7 June 2015. Analyses were performed at all three incidence
angles (29.36◦, 38.49◦, and 46.29◦, a.k.a., beams #1, #2, and #3) from Aquarius at both horizontal and
vertical polarizations, and for ascending and descending overpasses.

Bias, RMSE, and ubRMSE were calculated to investigate the degree of agreement between
the RTM and Aquarius Tb. Areas near to, or with, dynamic ponding or static lakes exhibited
relatively large uncertainties due to the oversampling of Aquarius Tb as well as lack of an open
water module in the current RTM. Statistics computed over different soil hydraulic parameters
(e.g., porosity and wilting point) revealed that higher porosity and higher wilting point corresponded
to poorer performance due to the variation in surface roughness and dielectric constant.

Among the vegetation classes, broadleaf deciduous and needleleaf forest yielded the best statistics
in terms of bias, RMSE, and ubRMSE. The RTM exhibited better performance in regions of dwarf
vegetation as compared to the shrub land and grassland vegetation types. The RTM exhibited the
lowest accuracy in the grassland class among the five different vegetation classes, which is largely
attributed to regions of agricultural irrigation and a lack of local irrigation schemes as well as a lack of
inter-annual crop rotations in the land surface model that serves as the input to the RTM.

In summary, it was shown that SMOS Tb observations serve as an effective calibration dataset
for the RTM-derived estimates of Aquarius Tb. RTM-derived Tb as evaluated in this study does a
reasonable job reproducing Tb observations from Aquarius over different soil hydraulic properties
and vegetation types across North America. Better agreement between the RTM-derived Tb estimates
and the Aquarius-derived Tb observations was witnessed at lower porosity and wilting point values.
The RTM-derived Tb yielded reasonable statistics for most vegetation types while further consideration
of cropland (which is classified as grasslands in this study) could improve the accuracy of the RTM.
These findings can be leveraged for the eventual inclusion of Aquarius L-band Tb in a follow-on study
using a data assimilation framework for the purpose of improving model-derived estimates of soil
moisture. For example, as most of the northern portions of the study domain were not calibrated due
to the presence of abundant sub-grid scale lakes, relaxing the constraints of SMOS Tb with regards to
the distance to open water bodies could assure more SMOS observations for use during calibration.
Furthermore, an update of the current RTM by including a module for open water should also be
considered. In terms of error characterization, larger observation errors need to be assigned for
grassland areas as well as for regions with high porosity soil and high wilting points.
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