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Abstract: Global rapid expansion of the coastal aquaculture industry has made great contributions to
enhance food security, but has also caused a series of ecological and environmental issues. Sustainable
management of coastal areas requires the explicit and efficient mapping of the spatial distribution
of aquaculture ponds. In this study, a Google Earth Engine (GEE) application was developed for
mapping coastal aquaculture ponds at a national scale with a novel classification scheme using
Sentinel-1 time series data. Relevant indices used in the classification mainly include the water index,
texture, and geometric metrics derived from radar backscatter, which were then used to segment
and classify aquaculture ponds. Using this approach, we classified aquaculture ponds for the full
extent of the coastal area in Vietnam with an overall accuracy of 90.16% (based on independent
sample evaluation). The approach, enabling wall-to-wall mapping and area estimation, is essential to
the efficient monitoring and management of aquaculture ponds. The classification results showed
that aquaculture ponds are widely distributed in Vietnam’s coastal area and are concentrated in the
Mekong River Delta and Red River delta (85.14% of the total area), which are facing the increasing
collective risk of climate change (e.g., sea level rise and salinity intrusion). Further investigation of
the classification results also provides significant insights into the stability and deliverability of the
approach. The water index derived from annual median radar backscatter intensity was determined
to be efficient at mapping water bodies, likely due to its strong response to water bodies regardless
of weather. The geometric metrics considering the spatial variation of radar backscatter patterns
were effective at distinguishing aquaculture ponds from other water bodies. The primary use of
GEE in this approach makes it replicable and transferable by other users. Our approach lays a solid
foundation for intelligent monitoring and management of coastal ecosystems.
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1. Introduction

Aquaculture is an important source of food, nutrition, income, and livelihood for hundreds
of millions of people around the world [1,2]. Driven by the increasing human population, the
need to improve social-economic benefits and the escalating protein demands, aquaculture has
been one of the fastest-growing food production sectors in the world over the past decades [3–5].
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While making significant contributions to global food security and social-economic development,
expansion of aquaculture inevitably leads to a series of environmental problems such as natural
habitat destruction [6], ecosystem degradation [7,8], water eutrophication [9–12], and landscape
fragmentation [5,13]. Although other food production sectors (e.g., agriculture, rangeland and forests)
have been extensively studied as a major part of global food systems, the journey with aquaculture
is only now starting. As experience with aquaculture grows worldwide, sustainable management
of aquaculture is required to incorporate accurate monitoring of aquaculture [5,14]. The first and
also fundamental question is where the aquaculture ponds are and how much area has been used for
aquaculture. Thus, an accurate, quantitative, and spatially explicit assessment of the distribution of
aquaculture ponds is crucial to local, regional and global efforts aimed at improving the sustainability
of the aquaculture industry, reducing food insecurity and enhancing ecosystem resilience.

Remote sensing has the ability of repetitive observation and large-scale spatial coverage, which
could meet the requirements of accurate and rapid monitoring of aquaculture ponds, and is suitable
for mapping the spatial distribution of aquaculture ponds at a large scale [15]. Optical sensors have
been widely exploited to map aquaculture ponds at multiple scales such as Landsat TM/ETM+/OLI,
ASTER, Rapid-eye, QuickBird, and WorldView-2 [13,15–28]. Optical satellites have advantages of
long time sequences and can be used for long-time dynamic monitoring. Ren et al. [21] explored the
long-term changes of aquaculture areas in the Yellow River Delta during the past 30 years using Landsat
MSS/TM/OLI. However, the implementation of optical images is limited for areas with frequent cloud
cover such as Southeast Asian areas because optical bands cannot penetrate cloud [5,29,30]. In addition,
aquaculture ponds can be challenging to identify from coarse-resolution images because of their
relatively small size. Nevertheless, high-resolution images providing enough spatial information are
generally lower in temporal resolution and are very expensive, which greatly impedes their application
in aquaculture pond detection at a large scale across time [31]. In summary, reliable retrieval of
aquaculture ponds for a large area with remote sensing techniques requires data with frequent time
series, high resolution, and ability to penetrate cloud cover.

Compared with optical sensors, radar imagery such as satellite synthetic aperture radar (SAR)
systems from sensors operating in longer wavelengths has the capability of penetrating cloud and
alleviating the influence of cloud on satellite images [29]. Sentinel-1 satellites, providing open and free
SAR images worldwide at high temporal and spatial resolution [32], have the potential to accurately
map aquaculture ponds at a large scale. SAR images can distinguish water bodies based on the return
strengths of radar waves because SAR backscatters from smooth water surfaces are very low/weak.
At present, Sentinel-1 SAR images have been widely used in water-related applications such as flood
mapping [33–35], water change detection [32,36,37], and soil moisture monitoring [38,39]. Aquaculture
ponds are distinct rectangular shallow water enclosed by dikes or levees and can be detected with radar
imagery based on the high contrast between the smooth water surface (low radar backscatters) and the
rougher non-water surface (high radar backscatters). Some researchers have used radar images to map
aquaculture ponds in tropical areas [29,40]. However, these methods did not pay enough attention to a
series of problems, namely seasonal water bodies, hill shades, discontinuous streams, and isolated
ponds, which may cause the failure of large-scale applications. Currently, the detection of aquaculture
ponds depends largely on single images and ignores the distinct seasonal characteristics, which may
confuse aquaculture ponds with rice fields or salt ponds [41,42]. Additionally, rivers could be blocked
and form discontinuous streams, which can be easily mistaken as aquaculture ponds because of its
geometric features. Furthermore, most existing studies may fail to distinguish aquaculture ponds
with farmland reservoirs or isolated ponds due to their similar spectral and geometrical features [40].
In short, the detection of aquaculture ponds with SAR images still lacks a method for efficient mapping
at a large scale.

In this context, our main objective was to develop an approach for mapping nation-scale coastal
aquaculture ponds. Our approach leverages Sentinel-1 SAR data to extract topographical, geometric,
and texture characteristics of aquaculture ponds, and eventually retrieve their distribution and spatial
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variability in the coastal area of Vietnam. Furthermore, we interpret our results to answer the
following questions: (1) What are the challenges in the accurate detection of aquaculture ponds at a
national scale? (2) How can the presented method settle the challenges to facilitate the monitoring of
aquaculture ponds? (3) How would the mapping of aquaculture ponds contribute to the monitoring
and management of aquaculture in Vietnam by providing the spatial distribution of coastal aquaculture
ponds? Answers to these questions should indicate how our approach contributes a useful tool for
the reliable mapping of aquaculture ponds using remote sensing images, its transferability to other
regions, and its role toward the sustainable management of aquaculture.

2. Materials and Methods

2.1. Study Area

According to the Food and Agriculture Organization (FAO) (Rome, Italy), Vietnam is a major
aquaculture country in the world and its total aquaculture production ranked fourth in the world in
2014 [2]. The aquaculture production of Vietnam is now larger than capture production [43]. Due
to the superior geographical conditions, Vietnam has hundreds of species of fish, shrimp, crab, and
other economic aquatic products. At present, it has developed a variety of aquaculture modes mainly
based on pond culture, supplemented by fish culture in rice fields, animal husbandry, and mangrove
aquaculture. The aquaculture in the coastal zone of Vietnam is predicted to increase as a result of climate
change, and up to 70% of the Mekong Delta’s agricultural land could be subject to saline intrusion this
century, which would switch the current rice fields into shrimp farms [44,45]. While aquaculture ponds
are playing a critical role in feeding Vietnam’s growing population and making billions of dollars
through exporting fish and shrimps, the expansion of aquaculture ponds has diminished Vietnam’s
mangrove forests and caused freshwater and seawater pollution [10,46,47].

Since aquaculture ponds are expanding at an unexpected rate along the coastline and are escalating
the challenges of ecosystem conservation, we focused on the aquaculture ponds within 50 km offshore
from the coastline [13]. Thus, the study area was a 50-km inland buffer zone from Vietnam’s coastline
(8◦10′~21◦57′N, 102◦09′~109◦30′E) and covers a total area of approximately 141,326.53 km2 (about 43%
of Vietnam’s total area; Figure 1). The study area is dominated by lowland and water resources are
abundant, which have created countless lagoons, estuaries, and deltas, making it ideal for developing
aquaculture ponds. Based on the location, the study area was divided into six sub-regions: Northeast
Region (NR), Red River Delta (RRD), Southeast Region (SR), North Central Region (NCR), South
Central Region (SCR), and the Mekong River Delta (MRD).

2.2. Software Tools

The method described in the presented paper was designed and implemented using Google Earth
Engine (GEE). The GEE, a cloud-based geospatial processing computing platform, allows for geospatial
data retrieval, processing, and analysis from local to the planetary scale [48]. It can be accessed using
either the web-based code editor (Earth Engine Code Editor) or the open source python interface
(e.g., Google Colab). GEE has the ability to reduce the technical and infrastructural requirements
for geospatial analysis of large areas and long-time series, which makes it possible to rapidly and
accurately process various amounts of satellite data. We used GEE for remote sensing data retrieval,
preprocessing, classification, accuracy assessment, and to derive a map of aquaculture ponds.

2.3. Methods

Figure 2 illustrates the steps in mapping aquaculture ponds using Sentinel-1 SAR images.
It comprises four major sections: (1) data preparation, (2) extraction of potential aquaculture ponds,
(3) secondary classification, and (4) accuracy assessment.
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Figure 1. An overview of the study area and high-resolution Google Earth true-color images of 
aquaculture ponds in coastal Vietnam. (a) The study area and its six sub-regions. (b) Location of 
Vietnam. (c) Example spot of aquaculture ponds along the coastline in South Central Region. (d) 
Intensive aquaculture ponds in Mekong River Delta. (e) Aquaculture ponds in the intertidal zone in 
Northeast Region. (f) Aquaculture ponds in shallow water in the North Central Region. (g) Extensive 
aquaculture ponds in Mekong River Delta. 

2.3.1. Data Preparation and Enhancement 

Sentinel-1 SAR data 

Using the Google Earth Engine code editor, we retrieved all Sentinel-1 data (C-band Synthetic 
Aperture Radar with a frequency of 5.405 GHz), within 2020 (1 January–30 April), covering the entire 
study area. Sentinel-1 C-band SAR instruments support operations in single-polarization (VV and 
HH) and dual-polarization (VV + VH and HH + HV). In our study, we collected a total of 410 dual-
polarized (VV + VH) images with the Interferometric Wide Swath and Ground Range Detected (GRD) 
format. Sentinel-1 data with the GRD format were detected, multi-looked, and projected to ground 
range using an Earth ellipsoid model, which has a spatial resolution of 5 m by 20 m with a ground 
sampling distance of 10 m [49]. All the Sentinel-1 images were collected by the GEE platform, which 
had been preprocessed using the European Space Agency’s (ESA) Sentinel-1 Toolbox including orbit 
restitution, thermal noise removal, terrain correction, and radiometric calibration [50]. 

Instead of using the original images, the median images of VV and VH were calculated as a median 
value composite using the images from January to April, respectively. Compared with the original 
images, using median images could reduce the impact of speckle noise and enhance the permanent or 
stable low scatters. In addition, median images were able to differentiate aquaculture ponds from seasonal 
regulated water areas because the water level in aquaculture ponds was consistent throughout the year. 

Figure 1. An overview of the study area and high-resolution Google Earth true-color images of
aquaculture ponds in coastal Vietnam. (a) The study area and its six sub-regions. (b) Location
of Vietnam. (c) Example spot of aquaculture ponds along the coastline in South Central Region.
(d) Intensive aquaculture ponds in Mekong River Delta. (e) Aquaculture ponds in the intertidal zone in
Northeast Region. (f) Aquaculture ponds in shallow water in the North Central Region. (g) Extensive
aquaculture ponds in Mekong River Delta.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 19 

 

 
Figure 2. Flowchart of the aquaculture pond extraction procedure. The data (blue boxes) were used 
to produce the map of coastal aquaculture ponds (orange box) through four major steps (green boxes). 
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used to obtain the class features and corresponding thresholds for the decision tree and validation 
point datasets were utilized to assess accuracy. 

Training polygon datasets were acquired by visual interpretation from Sentinel-1 images. We 
first obtained water objects derived from Sentinel-1 images and then attributed their properties 
(aquaculture polygons or non-aquaculture polygons) by referencing the high-resolution optical 
images in Google Earth. Aquaculture ponds are mainly water bodies closed by dams, so they have 
obvious water characteristics. Due to their constituent and distribution characteristics, aquaculture 
ponds have obvious distinctions from other objects in the image including darker colors, regular 
shapes (mainly rectangular), and distribution in rich water areas. Based on the above features, the 
principles and rules used to pick up the training polygons were as follows: (1) the training polygons 
should be distributed evenly in the study area; (2) their sizes and shapes should be representative in 
the whole study area; (3) their locations should be representative such as located in estuaries, 
shorelines, and near rivers. Furthermore, expert experience and knowledge are also very important 
when selecting the training polygons. Based on the above criteria and methods, the training polygons 
sets were collected. 

Moreover, validation datasets were obtained by stratified random sampling on high-resolution 
optical images from Google Earth for the accuracy assessment. 

Figure 2. Flowchart of the aquaculture pond extraction procedure. The data (blue boxes) were used to
produce the map of coastal aquaculture ponds (orange box) through four major steps (green boxes).
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2.3.1. Data Preparation and Enhancement

Sentinel-1 SAR data

Using the Google Earth Engine code editor, we retrieved all Sentinel-1 data (C-band Synthetic
Aperture Radar with a frequency of 5.405 GHz), within 2020 (1 January–30 April), covering the entire
study area. Sentinel-1 C-band SAR instruments support operations in single-polarization (VV and HH)
and dual-polarization (VV + VH and HH + HV). In our study, we collected a total of 410 dual-polarized
(VV + VH) images with the Interferometric Wide Swath and Ground Range Detected (GRD) format.
Sentinel-1 data with the GRD format were detected, multi-looked, and projected to ground range
using an Earth ellipsoid model, which has a spatial resolution of 5 m by 20 m with a ground sampling
distance of 10 m [49]. All the Sentinel-1 images were collected by the GEE platform, which had been
preprocessed using the European Space Agency’s (ESA) Sentinel-1 Toolbox including orbit restitution,
thermal noise removal, terrain correction, and radiometric calibration [50].

Instead of using the original images, the median images of VV and VH were calculated as a
median value composite using the images from January to April, respectively. Compared with the
original images, using median images could reduce the impact of speckle noise and enhance the
permanent or stable low scatters. In addition, median images were able to differentiate aquaculture
ponds from seasonal regulated water areas because the water level in aquaculture ponds was consistent
throughout the year.

Training and validation datasets

We constructed two independent datasets including 3500 training polygons (i.e., 1200 aquaculture
polygons and 1000 non-aquaculture polygons) and 1200 validation points (i.e., 600 aquaculture points
and 600 non-aquaculture points) (Figure 3a,b). Training polygon datasets were used to obtain the class
features and corresponding thresholds for the decision tree and validation point datasets were utilized
to assess accuracy.
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Training polygon datasets were acquired by visual interpretation from Sentinel-1 images. We first
obtained water objects derived from Sentinel-1 images and then attributed their properties (aquaculture
polygons or non-aquaculture polygons) by referencing the high-resolution optical images in Google
Earth. Aquaculture ponds are mainly water bodies closed by dams, so they have obvious water
characteristics. Due to their constituent and distribution characteristics, aquaculture ponds have
obvious distinctions from other objects in the image including darker colors, regular shapes (mainly
rectangular), and distribution in rich water areas. Based on the above features, the principles and rules
used to pick up the training polygons were as follows: (1) the training polygons should be distributed
evenly in the study area; (2) their sizes and shapes should be representative in the whole study area;
(3) their locations should be representative such as located in estuaries, shorelines, and near rivers.
Furthermore, expert experience and knowledge are also very important when selecting the training
polygons. Based on the above criteria and methods, the training polygons sets were collected.

Moreover, validation datasets were obtained by stratified random sampling on high-resolution
optical images from Google Earth for the accuracy assessment.

Ancillary datasets

We used some ancillary datasets to define our study sites and assist the classification. For example,
we implemented a high spatial resolution (30 m) map (Credit: Laboratory of Digital Earth Sciences,
Aerospace Information Research Institute, Chine Academy of Sciences) with a detailed coastline to
mask sea and regions not included in the study area. We also used the digital elevation model (DEM)
(acquired by the Shuttle Radar Topography Mission with 30 m spatial resolution) to remove the effects
of hillshade, which may very likely lead to misclassification of aquaculture ponds because hillshade
can induce similar returns as ponds in Sentinel-1 images.

2.3.2. Extraction of Potential Aquaculture Ponds

Since aquaculture ponds are mainly shallow water bodies, they can be easily confused with
other water bodies including lakes, reservoirs, and rivers. Therefore, we conducted the mapping
of aquaculture ponds by two steps: retrieving potential aquaculture ponds and then secondary
classification to catch the “true” aquaculture ponds.

To find the potential aquaculture ponds from satellite images, we adopted the integration of
object-based segmentation and decision tree classification. A water index specifically developed for
Sentinel-1 dual-polarized bands (Sentinel-1 Dual-Polarized Water Index, SDWI [51]) was utilized to
capture shallow water. Fully considering the signal difference between water and other objects in
dual-polarized bands, SDWI can enhance the water body information and simultaneously eliminate
the effect of soil and vegetation. SDWI (Equation (1)) can efficiently extract low-backscatter water
bodies under complex conditions [51], and thus can be used to map aquaculture ponds. We computed
a threshold on SDWI to define shallow water bodies. Since water and the other ground objects can
create two distinct modes on the histogram of SDWI, we used the valley (SDWI = 0.3) between the two
peaks in the histogram of training polygons as the threshold to separate water and the other objects.
The pixels were classified as water body when SDWI was greater than 0.3

SDWI = ln(10×VV×VH) − 8 (1)

where VV and VH represent the pixel value in VV median images and VH median images. The
logarithmic function is used to make the value of VV and VH more manageable and comparable for
different ground objects.

The connected component segmentation (CCS) algorithm was chosen for obtaining the objects of
water bodies. The CCS algorithm approach detects objects by considering the connectivity of focal
pixels with neighboring pixels (e.g., eight neighbors), where the connected pixels are merged into
the same objects [52]. We then generated a total of six metrics for segmented objects representing the
geometric and texture features (Table 1). Among the six metrics, five of them have been widely used to
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measure the geometry of objects including area, perimeter, shape index (SI), compactness, and extent
ratio (ER) [53–55]. Since seasonal water bodies including paddy fields and salt ponds are generally
characterized by rough surface with distinctive high backscatters in the dry season, the pixels of
seasonal water bodies are normally coarser than that of aquaculture ponds. To distinguish aquaculture
ponds from seasonal water bodies, we constructed and adopted the seasonal water sensitivity index
(SWSI) computed with gray level co-occurrence matrix (GLCM) to enhance the seasonal features [56–58].
We used the (ee.glcmTexture) function in the GEE to obtain texture features. In this step, the kernel is a
3 × 3 square, resulting in four GLCMs with offsets (−1, −1), (0, −1), (1, −1), and (−1, 0). Next, the four
directional bands for each feature were averaged to one band. Based on the function, the GLCMs of
the median composition of the VV image and VH image were calculated. Finally, the sum average
(Savg) of each GLCM was selected to construct the SWSI.

Table 1. Geometric and texture features derived from water body objects.

Feature/Metric Description References

Area Number of pixels per object [53]

Perimeter Approximates the contour as a line through the centers of
border pixels using a 4-connectivity [53]

Extent ratio Ratio of pixels in the object to pixels in the total bounding box [53]

Shape index Border length feature of image object divided by four times
the square root of its area [54]

Compactness Degree to which an object is compact [55]

SWSI The sum of the sum average of VV and VH median images [58]

Finally, the features in Table 1 were used as input variables to classify potential aquaculture ponds
with a decision tree (Figure 4). The thresholds in the decision tree were obtained by training polygons
(Table 2).
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Table 2. Statistical parameters of the features derived from the training polygons.

Classes
Area ER Compactness SI SWSI

M SD M SD M SD M SD M SD

Aquaculture ponds
(2500) 819 215 0.56 0.13 0.88 0.86 1.06 0.36 −72.9 3.5

Non-aquaculture
(1000) 14000 504 0.69 0.18 1.96 1.29 0.57 0.21 −78.2 6.3

2.3.3. Secondary Classification

Based on the potential aquaculture ponds, we employed a secondary classification to exclude
non-aquaculture objects including hillshade, discontinuous rivers, and isolated ponds, which have
similar geometric and texture characteristics as aquaculture ponds.

First, we identified and excluded hillshade objects from potential aquaculture ponds (Figure 5).
Hillshade information was acquired using the hillshade function (ee.Terrain.hillshade) in the GEE. The
input of function was DEM provided by the global SRTM Version 3.0 dataset with a spatial resolution
of 30 m. The default of 270 degrees and 45 degrees were set as the input of azimuth and elevation,
respectively. The final hillshade map was obtained by threshold segmentation. In order to obtain the
optimal threshold, a histogram was obtained by selecting some regions of interest (Figure 6). The
histogram showed an obvious unimodal feature, with a mean value (M) of 176.70 and a standard
deviation (SD) of 33.76. Therefore, the threshold for extracting the hillshade map was determined by
M ± 0.5SD (i.e., pixels with gray values between 159.82 and 193.58 were not hillshade, but the others
with gray > 193.58 and gray < 159.82 were hillshade). We then used the hillshade map to remove
hillshade from potential aquaculture ponds.
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In the process of the decision tree classification above, some discontinuous streams could be
misclassified as aquaculture ponds due to their similar shape and spectral characteristics in SAR
images (like A and B in Figure 7a). A morphological technique was then chosen to remove the
discontinuous streams (Figure 7). First, all potential stream objects were dilated to fill the gaps between
subsections of streams by creating an inside and outside buffer for each object (Figure 7b). Then, we
eroded the dilation objects by creating an inside buffer for each object (Figure 7c) and obtained the
continuous streams (Figure 7d). The continuous streams could be easily excluded because of their
specific geometric characteristics using geometric features such as the shape index.

The last step was to remove regular lakes, farm reservoirs, and impounding reservoirs from the
potential aquaculture pond layer. Aquaculture ponds bisected by narrow and glittering dams or roads
generally present an agglomeration distribution (e.g., A in Figure 8a), while most of the lakes and
reservoirs are isolated (e.g., B and C in Figure 8a). Therefore, a step searching neighborhood features
was used to remove the non-aquaculture objects from potential aquaculture pond objects because
aquaculture ponds are generally located close to each other (Figure 8).
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Figure 8. Schematic flowchart of isolated patch deletion. (a) Schematic diagram of the distribution
of aquaculture ponds (A) and isolated ponds (B and C) (b) buffer all ponds with 50 m; (c) examine
whether there are ponds within the buffer zone; (d) remove ponds with no other ponds falling in its
buffer zone.

2.3.4. Accuracy Assessment

Accuracy assessment for aquaculture ponds was performed based on the validation sets.
A confusion matrix was calculated and standard performance measures (i.e., overall accuracy,
producer’s and user’s accuracy) were derived from the matrix [59].
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3. Results

3.1. Mapping and Validation of Aquaculture Ponds

Based on the validation sample sets, the user’s, producer’s accuracy (UA and PA) and the overall
accuracy (OA) were obtained (Table 3). The OA and Kappa coefficient were 90.16% and 0.8, respectively.

Table 3. Accuracy assessment for the two classes including aquaculture and non-aquaculture.
Producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and Kappa.

Aquaculture Non-Aquaculture PA (%) UA (%) OA (%) Kappa

Aquaculture 549 51 91.5 89.12
90.16 0.8Non-Aquaculture 67 533 88.83 91.27

Figure 9 shows an example of the result of each step including processed images, segmentation,
and classification results. Compared with the original SAR image (Figure 9a), the median image
(Figure 9b) can largely improve the representation of water because noise on single images has been
removed. Based on median images, the water index SDWI was calculated (Figure 9c) and has the
capability to enhance the difference between water (high values) and other objects (low values), which
corresponded to the two modes in the histogram (Figure 9d). Then, through a simple dip test, the
threshold was obtained from the histogram of SDWI (SDWI > 0.3) to get the water body pixels. We then
conducted the CCS algorithm to obtain the objects of water bodies (Figure 9e). Finally, through
rule construction derived from training polygons (Figure 3a) and decision tree execution, potential
aquaculture ponds were extracted (Figure 9f).
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Figure 9. Resultant maps of the extraction process for some potential aquaculture ponds. (a) Original
VV image (data acquired by 1/4/2020); (b) median image of VV band; (c) SDWI image; (d) Histogram of
SDWI, a threshold was obtained to differentiate. (e) The segmentation result of water bodies (colors);
(f) potential aquaculture ponds (white).
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Aquaculture ponds were then classified with a secondary classification based on the above results
of potential aquaculture ponds. As shown in Figure 10, aquaculture ponds were largely clustered and
occupied the water-rich areas along the rivers or the coast. Seasonal water bodies such as rice farms
were much smaller in size and located away from rivers and coastal areas. Isolated water bodies such
as lakes, reservoirs, and farmland reservoirs were also identified and distributed randomly.
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Figure 10. Two examples (A,B) of classification results of aquaculture ponds and other water bodies in
the Red River Delta.

3.2. Spatial Distribution of Coastal Aquaculture Ponds

The distribution of coastal aquaculture ponds in Vietnam in 2020 showed very high spatial
variability concentrated in the north and south (e.g., MRD and RRD) and very few in central regions
(e.g., SCR) (Figure 11). The total area of aquaculture ponds was 4262.94 km2, with the largest area
in the MRD (3405.05 km2), followed by SCR (257.89 km2), RRD (224.33 km2), NCR (177.94 km2), SR
(132.67 km2), and NR (65.08 km2). The proportional area of aquaculture ponds in each region is shown
in Figure 12b. Aquaculture ponds concentrated most of the landscape in MRD and RRD, accounting
for about 85.14% of total area, while they covered a small proportion (less than 10%) in other regions.
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Among the six sub-regions, MRD had the largest area and density of aquaculture ponds
(7.95 ha/km2), and NCR had a minimum density of 0.42 ha/km2 (Figure 12a). The density of NR, RRD,
SCR, and SR was also small, about 0.63 ha/km2, 2.02 ha/km2, 0.54 ha/km2 and 1.28 ha/km2, respectively.

We also examined the spatial distribution of aquaculture ponds along their distance to the coastline
by computing the area of ponds in every 1 km buffer zone of the coastline (Figure 12c). Aquaculture
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ponds were mostly distributed within 15 km from the coastline, accounting for 70.88% of the total
area, with highly varied pond area ranging from 701.22 km2 to 63.79 km2. Between the distance of
15 km and 35 km from the coastline, the area of aquaculture ponds rapidly decreased and only covered
26.13% of the total area with an average pond area of 47.74 km2. In regions away from the coastline
(distance greater than 35 km), aquaculture ponds were very few and the mean area of aquaculture
ponds was only 7.26 km2, accounting for only 2.99% of the total area.

4. Discussion

In this study, we proposed an approach for mapping aquaculture ponds at a national scale using
Sentinel-1 SAR images with the Google Earth Engine (GEE) platform. The application in mapping
aquaculture ponds in Vietnam showed high accuracy. Our result of aquaculture ponds showed the
spatial heterogeneity of aquaculture ponds and provides significant information for monitoring and
managing aquaculture and coastal ecosystems.

4.1. A Transferable Approach

Our classification framework could be generalized to map aquaculture ponds at a large scale in
other areas. Our approach identified aquaculture ponds as objects with low radar backscatter values
and a clustering pattern in space. Through capturing the surface roughness, radar backscatter images
are efficient at recognizing water bodies. However, other water bodies can be easily misclassified as
aquaculture ponds with only the backscatter information [41]. Through a refined process incorporating
the geometric and texture metrics, our approach can exclude seasonal water bodies such as rice farms,
river segmentations, lakes, and reservoirs. With the high spatial resolution of Sentinel−1 SAR images,
we were able to identify very small ponds that had been neglected using coarser resolution images such
as Landsat [5,14]. Our results can enhance the feasibility and application of SAR images for mapping
aquaculture farms with a better understanding of the role of temporal images and the geometric
features of radar backscatters. The approach presented is available via GEE code application and can
be easily transferred to map aquaculture ponds in other regions, making it possible to map aquaculture
ponds at regional and even global scales.

Several uncertainties should be considered when applying our approach to other regions. First,
a longer time series data frame should be considered such as data covering the entire year from January
to December. In this study, we only had access to the data from January to April in 2020 because
most of the aquaculture ponds in coastal zones covered by water all year round in Southeast Asia
such as Vietnam. Therefore, our datasets did not affect the mapping accuracy. Although most rice
farms only conserve water part of the year, some irrigation reservoirs have water year-round and
are easily misclassified as aquaculture ponds. Additionally, the misclassification could also lie in
the temporal change that rice farms may have been converted to aquaculture ponds when the SAR
data were acquired. In addition, the method for removing discontinuous rivers might fail where
aquaculture ponds with loss of dividing dam clusters. Therefore, specific thresholds need to be changed
in some special places. There might exist some other circumstances leading to the misidentification of
aquaculture ponds that were not presented in this study.

4.2. Implications for Sustainable Management of Aquaculture and Ecosystem Conservation

We have witnessed the spatial heterogeneity of aquaculture ponds along Vietnam’s coastal regions
through the application of our approach. Further exploration of our mapping results can provide
significant insights into the sustainable development of aquaculture, coastal area management, and
protection of the coastal ecosystems. Current programs focus on global fisheries, for example, the
FAO provides statistical data on the yield and export rate. However, limited attention is paid to the
sustainable planning and management of the aquaculture ponds, likely due to the lack of statistical
standards and methods. The explicit spatial distribution of aquaculture ponds at a large scale is a first
crucial step toward supporting better decision-making for aquaculture management and ecosystem
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conservation. For example, our maps could provide the status of aquaculture along the coastal
area. Aquaculture ponds have taken the space of the near coastal region in Vietnam, especially in
the northern and southern coast (Figure 12), by replacing rice fields, mangroves, and natural water
bodies [7,28,60]. Shifting from rice fields to aquaculture ponds (e.g., shrimp farms) could be a way to
mitigate the risk of sea level rise and salinity intrusion. With the increasing demand of human nutrients
and the government’s hope to improve social and economic benefits, aquaculture is predicted to
increase continuously. In this context, the untreated waste from aquaculture [9,60] and the damage on
natural ecosystems such as replacing mangroves may push the coastal environment to its sustainable
limitation and lead the ecosystem to another state that may be difficult to reverse, for example, harmful
algal blooms and dead zones. Figure 13 shows that along the coastal line of Vietnam, the water
quality is poor where there is a large area of aquaculture ponds. Therefore, the spatial distribution of
aquaculture ponds is fundamental for the investigation of environmental problems and ecosystem
conservation [5,12,27,61,62].
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fluorescence line height.

5. Conclusions

Since sustainable and efficient aquaculture management is one of the most important challenges
for coastal ecosystem conservation, the accurate mapping of aquaculture ponds is a crucial first step
toward understanding the spatial heterogeneity and supporting better decision-making for ecosystem
conservation and aquaculture management. In this paper, we presented an approach to efficiently and
accurately map aquaculture ponds over the coastal region of Vietnam. The approach relied on the use
of radar backscatters from Sentinel-1 SAR images with a novel classification scheme. The workflow
was implemented entirely on the Google Earth Engine platform to leverage the computation power
and the ease of data-access. This application, based on Google Earth Engine, can be easily transferred
and applied by potential users to other regions for the same purpose.

With this approach, we were able to map the aquaculture ponds with very high accuracy along
the coastal region of Vietnam. The successful implementation of our approach indicates that median
radar backscatter with the dual-polarized (VV + VH) is efficient for extracting water bodies. However,
the accurate mapping of aquaculture ponds needs more information such as geometry and texture to



Remote Sens. 2020, 12, 3086 15 of 18

remove other objects with a similar return on the radar backscatter. Our approach is designed to fill
the need for accurate mapping of aquaculture ponds and can be applied from a local to regional scale.
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