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Abstract: Stable and efficient ground moving target tracking and refocusing is a hard task in synthetic
aperture radar (SAR) data processing. Since shadows in video-SAR indicate the actual positions of
moving targets at different moments without any displacement, shadow-based methods provide a
new approach for ground moving target processing. This paper constructs a novel framework to
refocus ground moving targets by using shadows in video-SAR. To this end, an automatic-registered
SAR video is first obtained using the video-SAR back-projection (v-BP) algorithm. The shadows of
multiple moving targets are then tracked using a learning-based tracker, and the moving targets
are ultimately refocused via a proposed moving target back-projection (m-BP) algorithm. With this
framework, we can perform detecting, tracking, imaging for multiple moving targets integratedly,
which significantly improves the ability of moving-target surveillance for SAR systems. Furthermore,
a detailed explanation of the shadow of a moving target is presented herein. We find that the shadow
of ground moving targets is affected by a target’s size, radar pitch angle, carrier frequency, synthetic
aperture time, etc. With an elaborate system design, we can obtain a clear shadow of moving targets
even in X or C band. By numerical experiments, we find that a deep network, such as SiamFc, can
easily track shadows and precisely estimate the trajectories that meet the accuracy requirement of the
trajectories for m-BP.

Keywords: synthetic aperture radar (SAR); ground moving target; refocusing; shadow tracking;
video-SAR

1. Introduction

Synthetic Aperture Radars (SAR) that are mounted on aircrafts, satellites or other platforms
are usually used to obtain images of regions of interest for all-weather all-time high-resolution
reconnaissance [1–3]. In recent years, many SAR system such as bi-static (multi-static) SAR, linear
array SAR, three dimension SAR and frequency-modulated continuous-wave (FMCW) SAR have been
designed to obtain SAR data [4–10], and many techniques such as displacement phase center antenna
(DPCA), differential interferometry, along-track interferometry, space time adaptive processing (STAP),
adaptive digital beam forming and phase unwrapping have been employed to process SAR data
[11–17]. However, ground moving target imaging is still a challenging task due to the unknown
target’s trajectory. Since moving targets are always of great interest in reconnaissance and surveillance
tasks, a persistent endeavor has been carried out in the SAR community.

In early moving target imaging problems, a Moving Target Indicator (MTI) radar is utilized to
detect moving targets and estimate the motion parameters under a relatively high signal-to-clutter
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ratio condition. The keystone transform [18] is popular for its capability of eliminating an arbitrary
linear range migration, which might blur the moving target in the SAR image [19].

Video-SAR, a novel SAR imaging technique, is able to achieve dynamic observation via a
sequence of high-frame-rate and high-resolution images of the scenes. It is first presented by Sandia
national laboratories [20] in 2003. From their videos, the shadows of moving targets appear clearly,
which indicates the actual positions of moving targets at different moments without any displacement.

As a consequence, shadow detection and tracking have attracted considerable attention [21–24] in
video-SAR image processing. Raynal et al. from Sandia national laboratories introduced the details of
characteristics and formation of the shadow in the frame of the video-SAR [21]. Xu et al. proposed
a knowledge-aided shadow detection algorithm with an adaptive threshold to improve the shadow
detection performance, which also proved the significance of shadow information in moving target
detection [23]. Liu et al. proposed a local feature analysis method based on single-frame imagery,
which can detect moving target shadows accurately [25].

As an advanced image processing technique, deep neural networks have been used in SAR image
detection [26–28], classification [29–32], and filtering [33,34] in recent years. Since the shadows of
different targets, especially with similar sizes, are similar and difficult to be tracked, deep networks
provide a potential way for shadow tracking for video-SAR. In [35], convolutional neural networks
were applied to extract the shadows of moving targets in video-SAR and the probability graph with the
information of target positions and genres was output, which can be used for detection and tracking
of moving targets. In 2020, Ding et al. in [36] applied Faster-RCNN [37] to detect the shadow of the
ground moving target, and the improved sliding window density clustering algorithm was used to
suppress false alarms in the initial detection.

In this paper, for the task of refocusing the ground moving target in video-SAR, a novel
framework is constructed by combining video-SAR back-projection (v-BP) algorithm, moving target
back-projection (m-BP) and deep neural network for shadow tracking. With this framework, we can
perform detecting, tracking, refocusing (imaging), and classification for multiple moving targets
integratedly, which greatly improves the ability of moving-target surveillance for a SAR system.
The main contributions of this paper can be summarized as follows:

(1) The characteristics of the ground moving target’s shadow are analyzed in detail. Not only the
size of the target, the influence of wavelength, angle of incidence, synthetic aperture time for the
shadow in the SAR video are also discussed in this paper, which is significant for future SAR
system and algorithm design.

(2) To obtain SAR videos quickly and efficiently, a video-SAR imaging method v-BP is designed. With
this method, repeated processing of multiplexed data segments can be avoided to improve the
efficiency of multi-frame imaging and achieve real-time high frame rate monitoring. Furthermore,
due to its fixed projection grid, the imaging results are registered automatically, which is
convenient for estimating the position and velocity of moving targets.

(3) The m-BP algorithm is proposed to refocus the ground moving target, and a deep-learning-based
tracking network SiamFc is introduced to reconstruct the trajectory of the target. Our m-BP can
refocus the ground moving target with rich geometrical features by using the trajectory obtained
by SiamFc.

The remainder of this paper is organized as follows. In Section 2, the signal model and imaging
analysis of the moving target are introduced. In Section 3, the signal model of the shadow is provided
and effects of system parameters are discussed in detail. The video-SAR imaging algorithm and
moving target refocusing algorithm is presented in Section 4. Experimental results and discusion are
provided in Section 5 and 6, and Section 7 ultimately concludes this paper.
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2. Signal Model and Imaging Analysis of the Ground Moving Target

2.1. Signal Model

To analyze the signal characteristics of moving target, we model the geometry of an SAR
system for observing a ground moving target as shown in Figure 1, in which x denotes azimuth
direction, i.e., the direction that the platform moves, y and z denote range and height directions,
respectively. The platform is at position (xn, yn, zn), where n ∈ [−T/2, T/2] is slow time and T is data
acquisition time.

(a0, b0)

R(n)

x

y

z
n10  

v

2

(an, bn)

ˆ ( )R n

Figure 1. Geometry of synthetic aperture radar (SAR) system for observing a ground moving target.

The linear frequency modulated (LFM) signal emitted by the radar system can be expressed as:

st(t) = Aej2π fctejπKt2
, t ∈ [−Tp/2, Tp/2], (1)

where A denotes the signal amplitude, fc represents the carrier frequency and K indicates the frequency
sweep rate, t is fast time, and Tp is pulse width of the LFM signal.

The corresponding received signal at different slow times can thus be expressed as:

sr(t, n) = σe−jk2R̂(n)ejπK(t−τ)2
, (2)

in which the first term, σ, represents the target backscattering coefficient, the second term is the
Doppler signal, and the third term denotes fast-time signal. n is slow time, τ represents target echo
delay,

τ =
2R̂(n)

c
, (3)

where c denotes speed of light and R̂(n) is the slant range. Given that the moving target is at position
(an, bn) at time n and the platform is at position (xn, yn, zn), Slant range of the moving target R̂(n) is

R̂(n) =
√
(xn − an)2 + (yn − bn)2 + z2

n. (4)

Ignoring range migration correction and only focusing on azimuth signal, we can write the
moving target azimuth signal model as:

ŝ(n) = e−jk2R̂(n), (5)

where k = 2π/λ represents wave number and λ denotes signal wavelength.
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2.2. Imaging Analysis

Typical SAR imaging algorithms include range Doppler (RD), chirp scaling (CS), back-projection
(BP), etc. The imaging procedures of these algorithms can be considered as the process of matched
filtering [38]. This section briefly reviews the features of moving targets in SAR images based on the
BP algorithm.

The basic idea of BP is to calculate the distance between each pixel in the projection region and the
SAR Antenna Phase Center (APC) in the aperture and coherently accumulate the echoes to reconstruct
the scattering coefficient of each pixel, the procedures of which mainly consist of [38]:

(a) Range compression: range compression is implemented via pulse compression technique on the
received SAR echoes at different times to achieve aggregation of scattering point energy along
the range direction.

(b) Calculating echo delay: calculating echo delay from scattering point p to SAR at different times:

τ =
2R(n, p)

c
, (6)

where R(n, p) is

R(n, p) =
√
(xn − u)2 + (yn − v)2 + (zn − w)2, (7)

(xn, yn, zn) is the position of APC at time n, u, v is the position of p and w is the projected height.
The projection coordinate system is usually a Cartesian coordinate system and w is 0.

(c) Data interpolation/resampling in range: since the range compressed SAR data obtained in (a) is
discrete and the echo delay calculated in (b) is continuous, to acquire echo at time τ, interpolation
is essential to the discrete SAR data after range compression and resampling is necessary at
time τ.

(d) Coherent accumulation: compensate the Doppler phase generated by the scattering point (u, v)
at different times and add the compensated data at different times to obtain the scattering
coefficient of (u, v). The signal with the compensated Doppler phase can be calculated by the
following formula:

s(n) = ejk2R(n), (8)

where R(n) is the slant range of stationary target.

For moving target, the azimuth signal after phase compensation using the standard SAR imaging
algorithm can be obtained by Equations (5) and (8):

∆s(n) = ejk2R(n)e−jk2R̂(n)

= e−j2k∆R(n)
(9)

Due to the serious mismatch between the moving target signal and the reference signal of the
stationary target, there exists offset and defocusing to the moving target in the SAR image.

∆R(n) = R̂(n)− R(n)

= [(xn − an)
2 + (yn − bn)

2 + z2
n]

1/2 − [(xn − a0)
2 + (yn − b0)

2 + z2
n]

1/2.
(10)

Expanding Equation (10) with Taylor expansion, we can obtain:

∆R(n) = 〈αn, v〉 n +
1

R̂(n)

[
〈v, v〉 −

(
〈αn, v〉
R̂(n)

)2
]

n2, (11)
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where

αn =
[xn − a0, yn − b0, zn]

R̂(n)
,

v = [vx, vy, vz],
(12)

αn is the line of sight vector and v is the velocity vector. 〈·, ·〉 represents inner product operation.
While R̂(n) � 1, we can ignore 〈αn ,v〉

R̂(n)
term and Equation (11) can be simplified:

∆R(n) = 〈αn, v〉 n +
‖v‖2

R̂(n)
n2. (13)

It can thus be obtained

∆s(n) = e
−j2k

(
〈αn ,v〉n+ ‖v‖

2

R̂(n)
n2
)

, (14)

where the first term mainly causes distinct offset to moving target in SAR image and the second term
leads to defocusing of moving targets. A lot of literature has quantitatively analyzed the offset and
defocusing of moving targets [39–43].

2.2.1. Defocusing in Azimuth

Substitute Equation (11) to the radar azimuth echo formula and obtain:

∆s(n) = ejk2R(n)e−jk2R̃(n)

= e−j2k∆R(n)

= e
−j2k

(
〈αn ,v〉n+ ‖v‖

2

R̂(n)
n2
)

,

(15)

in which k = 2π/λ is wave number and λ is wavelength. The second term in this equation indicates
azimuth defocusing. The bandwidth should be smaller than the azimuth resolution of the system.
Assume azimuth sampling rate as PRF and accumulated points as Na. The azimuth frequency
resolution (undersampling is not taken into consideration) is:

T = Na/PRF,
∆ f = 1/T = PRF/Na.

(16)

The frequency function is obtained by second-order phase derivation:

8π

λ

‖v‖2

R̂n
n = 2π

(
4
λ

‖v‖2

R̂(n)

)
n. (17)

The slope of sweep frequency signal is 4
λ
‖v‖2

R̂(n)
, and the bandwidth of the secondary signal is

B =

(
4
λ

‖v‖2

R̂(n)

)
T. (18)

For example, suppose the target is moving at the speed of 5 m/s, the wavelength is 0.03 m,
the range of action is 12 km, the synthetic aperture time is 5 s and PRF is 2000. The generated
bandwidth by the moving target is thus 1.3889 and the azimuth frequency resolution is 0.2 Hz.
Defocusing happens.
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2.2.2. Offset in Azimuth

Azimuth offset is generated by the first order component

e−j 4π
λ vrn, (19)

and its phase function is

4π
vr

λ
n = 2π

(
2vr

λ

)
n. (20)

The frequency offset generated by the moving target is

2vr

λ
(Hz). (21)

In addition, calculate the physical distance of offset: under squint condition, distance history in
the azimuth of the stationary target is R̂(n) and expand it by Taylor expansion with respect to n, we
have

R̂(n) = R̂(0) +
vp∆y

R
n. (22)

Modulating it on the echo signal, we have

e−j 4π
λ

vp∆y
R n. (23)

Equaling Equations (19)–(23), we have

2
vr

λ
= 2

vp∆y
λR

, (24)

i.e., the offset of moving target is

∆y =
vrR
vp

. (25)

For example, suppose the target radial velocity is 3 m/s, the range of action is 800 km and the
platform speed is 7600 m/s. The target offset is thus 3 × 800 × 1000/7600 = 315.8 m.

From the above analysis we can observe that there exists severe offset and defocusing of the
moving target in the SAR image. Offset and defocusing may lead to the moving target to be located
outside the imaging region and increase the difficulty of moving target detection. In addition, in order
to interpret a moving target, apart from detecting the moving target, refocusing is also needed.

3. Shadow Characteristics of Moving Target

The shadow is crucial to track a moving target on the ground, and we will discuss the influence
of wavelength, angle of incidence, aperture time, target size and speed on the shadows in detail in
this section. It should be noticed that the diffraction effect is ignored in our analysis because the target
size is much larger than the wavelength.

3.1. Size of Shadow

Because of the shielding effect of the target, the scattering point on the ground cannot interact
with the radar electromagnetic wave, which leads to shadowing.

For stationary targets, the SAR image is composed of the target and its shadow. When the target is
moving (i.e., range and azimuth velocity are both not zero), its shadow will separate form its defocused
image significantly due to the deviation phenomenon caused by the Doppler frequency, which makes
the shadow easy to be detected.
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For moving targets, the shadow is composed of two components. One is the coverage area directly
below the target and the other is the sheltered area, as shown in Figure 2, in which the azimuth and
range direction is the same as the directions of the shadow’s length and width, respectively.

It can be observed from the figure that the width of the shadow can be computed by:

Wshadow = W + H tan(90◦ − β) sin α, (26)

where W and H denote the width and height of the target, respectively. β is the pitch angle, α is
the angle between the radar beam direction and the direction of target length. When the object
can be modeled as a cube as illustrated in Figure 2, the length of the target is perpendicular to the
azimuth direction, and the angle is the squint angle θ. The length of the shadow of the target can be
calculated by:

Lshadow = L + H tan(90◦ − β) sin γ, (27)

where L is the length of target and γ equals (90◦ − θ).

β 

H

W

L

azimuth

γ

α 

Figure 2. Schematic illustration of shadow size. The blue box and the gray plane represent the target
and its shadow, respectively.

From the above analysis we can observe that the size of the target shadow is not only related to
the size of target itself, it is also decided by the antennas pitch and squint angles. The larger the target
width is and the taller the height is, the larger the shadow width is; the longer the target is and the
larger the squint angle is, the longer the shadow is.

3.2. Effect of Shadow on Echo

Given a ground scattering point P sheltered by moving target, the sheltered time is decided by
size and speed of target, i.e.,

Tshadow =
Ltarget

vt
, (28)

where vt is the target velocity. Tshadow is the sheltered time and the synthetic aperture time of its
corresponding scattering point is TAper. Given a point target, echo within a synthetic aperture time can
be ideally expressed as:

s(n) = ejkR(n), n ∈
[−TAper

2
,

TAper

2

]
. (29)
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When the target is above the shadow, the scattering point has partial echo sheltered in the synthetic
aperture time and its echo is:

s(n) = U(n)ejkR(n), n ∈
[−TAper

2
,

TAper

2

]
, (30)

where

U(n) =

{
1, n /∈ Tshadow,
0, n ∈ Tshadaw.

(31)

We can find that the generation of shadow needs the scattering point to be sheltered by the target
within synthetic aperture time, i.e.,

Tshadow ≥ TAper. (32)

We define
Tshadow = κTAper, (33)

where κ is the shelter factor. To make the shadow significant, the synthetic aperture time should be
less than or equal to the sheltered time, i.e., κ ≥ 1. At this moment, the scattering point P is completely
sheltered and the echo at this position is 0. When κ ≤ 1, the ground scatterers are partially sheltered,
it can be considered as a sub-aperture imaging problem, and we have a dim and low-resolution image
of these ground scatterers.

3.3. The Degradation of Shadow

Sheltered time is decided by target size and speed. Given a sheltered time, system parameters
also have a significant influence on the shadow. When the size and speed of moving targets are fixed,
Tshadow is fixed. To ensure that all the sheltered areas in the imaging result are shaded, the maximum
synthetic aperture time of SAR is Tshadow. The azimuth resolution of SAR is:

ρazi =
λR

2TShadowvp
, (34)

where R is the distance from target to radar platform, vp is the velocity of radar platform.

3.3.1. Blur Due to Small Aperture

Assume the length of the moving target along the velocity direction is 5 m and the width is 2 m.
The speed of the moving target is 5 m/s, the wavelength of SAR is 0.03 m, the distance from platform to
target is 12 km and vp = 100 m/s. The synthetic aperture time is thus TAper = 1 s. The azimuth resolution
of SAR (side-looking) is 1.8 m. For a target with a length of 5 m, the resolution of 1.8 m causes that the
number of pixel of the shadow in the image is less than 3. Considering the sidelobe effect, the target
is difficult to be detected from the image. When the system resolution increases to 0.2 m, the shadow
occupies 50 pixels in the image, which is easy to be detected. In addition, since the resolution increases,
the target locating accuracy improves, which further increases the speed accuracy of the system.

Generally, when the azimuth resolution is very low, the shadow of the target will always be
submerged with the background noise, which makes it difficult to reconnoiter the shadow, as illustrated
in Figure 3 (right). The increasing of the azimuth resolution improves the quality of the target shadow,
which makes the shadow clear, as illustrated in Figure 3 (middle). However, when the azimuth
resolution reaches a certain resolution, improving resolution does not help with further improving
the imaging performance of shadow. The accumulated energy of the background in one pixel reduces
with the increasing of the resolution, which reduces the contrast between shadow and background. As
shown in Figure 3 (left), the shadow of the ground moving target may be dim when the resolution
is high.
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Figure 3. Schematic of different system resolutions. The red, blue and green lines in the figure represent
resolution of 6, 1 and 0.1 m, respectively.

3.3.2. Fading Due to Large Aperture

For a target with the length Ltarget of 6 m and width of 3 m, assuming that the target can be
detected while it has 6 pixels, the resolution is 1 m/s. Suppose the system wavelength is 0.03 m,
the platform speed vp is 300 m/s, the distance from the target to the platform is 12 km.

ρazi = λR/2LAper. (35)

According to Equation (35), the synthetic aperture length LAper is 180 m. The synthetic aperture
time is:

TAper = LAper/vp = 0.6s. (36)

The maximum detectable speed is:

vmax = Ltarget/TAper = 10m/s. (37)

If the target moves at the speed of 5 m/s, the shelter factor in (33) is κ = 10/5 = 2 and the echo in
the shadow area is 0.

If we continue to increase azimuth resolution by raising synthetic aperture, the azimuth resolution
is 0.1 m/s while the aperture reaches 1800 m. The synthetic aperture time is 6 s at the moment and the
maximum detectable speed is 1 m/s. If the target speed is still 5 m/s and shelter factor is κ = 1/5 = 0.2,
the echo in the shadow area includes background energy, which leads to target shadow degradation.

From the above analysis we can observe that to detect the moving target the system should be
designed in the following manner: short wavelength, high-speed platform and close range, i.e., shorter
time to achieve greater aperture and resolution. On the target side, the faster the target speed is,
the shorter the aperture time should be; the larger the target size is, the larger the shadow is.

4. Methodology

Our proposed framework for tracking and refocusing the ground moving target in the SAR image
can be regarded as three parts. First, a video-SAR back-projection (v-BP) algorithm is designed to
obtain SAR videos. Then, we employ deep-learning-based tracking network SiamFc to track and
locate the shadows of the ground moving target to reconstruct its trajectory. Finally, the candidate
trajectory is applied to refocus the ground moving target using the moving target back-projection
(m-BP) algorithm newly proposed in this paper.

4.1. Video-Sar Back-Projection

Different from traditional SAR imaging, video-SAR can obtain multi-frame images, which is
helpful for surveillance tasks. Video-SAR algorithms root from the standard SAR imaging algorithms,
such as back-projection algorithm [44–46] or polar format algorithm (PFA) [47]. Compared to the polar
format algorithm, the back-projection-based algorithm projects the echoes to the same projection grid,
i.e., automatic multi-frame registration, which is beneficial to tracking the shadow of moving targets.
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To this end, the video-SAR back-projection algorithm (v-BP) is designed to obtain automatic-registered
SAR videos in this work.

The diagram of the v-BP algorithm is illustrated in Figure 4. The transmitter radiates LFM pulses
into the observation area with a fixed pulse repetition frequency (PRF), and the electromagnetic waves
inspire the scattering electromagnetic fields that arrive at the receiver with some delays. The receiver
acquires the echoes corresponding to the different pulse repetition indices (PRIs) after a specific delay,
and arranges them into a 2-D array, which is known as the SAR raw data. B+ and B− are two buffers
that store the imaging results of the corresponding raw data from the first PRI to the n-th PRI and the
first PRI to the (n− Naper)-th PRI, respectively, in which Naper is the number of PRIs contained in every
synthetic aperture time of video-SAR. Each frame of the video-SAR can be obtained by subtracting B−

with B+.
More details about the v-BP are shown in Algorithm 1, in which P(·) represents the standard BP

imaging processing module that includes range compression, calculating echo delay, data resampling
and coherent accumulation. f denotes frame interval, i.e., the number of f PRI data is added to the
current frame from the previous frame. The number of f and Naper can be adjusted arbitrarily in our
video-SAR imaging algorithm.

As shown in algorithm 1, raw data is fed into P(·) in the form of a data stream to perform imaging
processing and is stored in the B+ buffer. When the number of PRI reaches Naper, the imaging result is
read from B+ buffer and used as initial frame F(0) in video-SAR. Meanwhile, the data in B+ buffer
is imposed on B− buffer. A new frame F(i) is obtained by B+ − B− after each newly-processed the
number of f PRI raw data by BP module P(·), until all the data is processed.

With this method, repeated processing of multiplexed data segments can be avoided to further
improve the efficiency of multi-frame imaging and achieve real-time high frame rate monitoring.
Furthermore, due to its fixed projection grid, the shadow motion has a clear geometric meaning,
which is convenient for estimating the position and velocity of moving targets and provides necessary
information for moving target focusing.

B
-

PRI = nPRI = n-Naper

B+

… … 

azimuth

Imaging area

Frame 1

Frames of 

SAR video

Frame 2 Frame i

Imaging data 

from PRI=0 to 

PRI=n-Naper

Imaging data 

from PRI=0 to 

PRI=Naper

Figure 4. The diagram of video-SAR back-projection algorithm. B+ (B−) is a physical memory storage
used to temporarily store imaging data from pulse repetition indices (PRI) = 0 to PRI = n-Naper
(PRI = n).
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Algorithm 1 Video-SAR back-projection algorithm.

Ensure:
B+ = 0;

B− = 0;

i = 0;
for n in all PRIs do

B+ = B+ + P(n);
if mod(n, f ) == 0 then

if n == Naper then

F(i) = B+;

B− = B+;

i = i + 1;
end if
if n > Naper then

F(i) = B+ − B−;

B− = B+;

i = i + 1;
end if

end if
end for

4.2. Tracking Via Shadow

With the knowledge provided in the last section, a sound SAR system (typically in the spotlight
mode) can be designed and a SAR video with vivid shadows for multiple targets via v-BP can be
obtained. Then, tracking algorithm should be adopted to estimate the trajectories of moving targets.
There are many algorithms for tracking task, including traditional correlation filter based methods
[48,49] and deep learning based methods [50–52].

In this work, a deep learning tracking method, fully-convolutional Siamese network (SiamFc) [50]
is employed to track shadows. SiamFc is a tracking network based on the feature similarity, it is also
an extremely simple tracker that has the advantages of high precision, high speed, etc. It has widely
been used in many computer vision tasks and obtained state-of-the-art tracking results. The network
architecture of SiamFc is shown in Figure 5.

z

x

Extractor(φ)

Search Image

Exemplar

Output

Feature maps

 
CONV

Feature maps

Figure 5. Network architecture of SiamFC.

SiamFc has two branches with two inputs, z and x. Specifically, z is the exemplar image, i.e.,
the object to be tracked, and x is the much larger search image. SiamFc learns a function f (z; x)
that compares z to x and returns a high score if the two images depict the same object and a low
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score otherwise. The output of SiamFc is a scalar-valued score map, the dimension of which depends
on the size of the search image x. Simply speaking, the network aims to locate z in x. To achieve this,
a convolutional embedding function ϕ, working as a feature extractor, is applied to both inputs.
Combining the results of feature maps with a cross-correlation layer, we have

f (z; x) = ϕ(z) ∗ ϕ(x) + b1, (38)

where b1 denotes the value at each position of the score map and ∗ is the convolution operator.
The convolution operation works to extract the part of x that is most similar to z. During tracking,
the score map is calculated from the search image centered on the target position of the previous frame.
The current location of the target can be obtained by multiplying the position of the maximum score
with the stride of the network.

4.3. Moving Target Back-Projection

According to the analysis in Section II, the exist of ∆s(n) in (9) caused by ∆R(n) leads to offset
and defocusing of the moving target in the SAR image [39–43], and the reference signal in (8) needs to
be modified as the form of Equation (5) to refocus the moving target. Thus, we have

∆s(n) = ejk2R̂(n)e−jk2R(n) ≡ 1. (39)

Therefore, to achieve accurate imaging of moving targets, the precise instantaneous positions
within synthetic aperture time are necessary, which is estimated by utilizing the shadows of moving
targets in this paper. With the instantaneous positions, a moving target back-projection (m-BP)
algorithm is then applied for imaging of a moving target.

The flow chart of the m-BP proposed in this paper is shown in Figure 6, where m denotes the
number of moving targets in the scene. Trace 1, Trace 2 and Trace m are the trajectories obtained by
shadow tracking of the targets during imaging. A projection grid is the projection space of BP imaging,
and APC denotes the antenna phase center.

Trace 1

APC

 Projection Grid 

R1

R2

Rm

Image of Target 1

Image of Target 2

Image of Target m

Trace 2

Trace m

SAR Echo after Range 

Compression

…

… …

Figure 6. Flow chart of the moving target back-projection (m-BP) algorithm.

To achieve imaging of moving targets, the projection grid of m-BP takes the moving target as the
reference. When calculating the instantaneous distance, the coordinate of a pixel with respect to the
original point of moving target is added to the current position of the original point. The grid position
at the current moment is obtained, and the instantaneous distance of the grid point is from the grid
position to APC as shown in Equation (4). If there are multiple targets, the distance history of each
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target needs to be calculated by using its respective trajectory, and m-BP needs to be called separately
for imaging.

5. Experiment and Analysis

Our experiment was developed on CUDA C and the hardware platform was Intel i7-8700
CPU, NVIDIA GTX1080 GPU. To analyze effects of SAR platform parameters, such as height, speed,
bandwidth and frequency, on tracking and refocusing results, we have carried out many simulation
experiments. The SAR system works on spotlight mode to achieve continuous observation of the same
area and obtain video-SAR data of this area.

As shown in Figure 7, roads and vehicles are considered as background and moving targets,
respectively. We applied FEKO [53] to construct scattering amplitudes of moving targets and implement
target modeling. Since the problems of convergence, mesh size and frequency sweep analysis
are independent of SAR simulation, surface current can be used as scattering characteristics. A
geometric model of the moving target and a scattering coefficient model are illustrated in Figure 8.
Simulation results of multiple moving targets with different speeds are shown in Figure 7, where shadows
are marked with red rectangles and targets are marked with green rectangles. Azimuth speeds of these
four targets are 0.5, 1.4, 3 and 3 m/s, respectively. Range speeds are the same as azimuth speeds. From
the figure we can observe that, the larger the range speed is, the greater the target offset is. The larger the
azimuth speed is, the more serious the target defocusing is.

Target 1

Target 2

Target 3

Target 4

Azimuth

R
a
n
g

e

Figure 7. Simulation results of moving targets.

(a) (b)

Figure 8. Car model used in experiment. (a) Geometric model. (b) Scattering coefficient model.

When the speed is (3× 3) m/s, the moving target is completely off the road and cannot be located
according to the imaging position directly. No matter how the target speed varies, its shadow position
is fixed relative to the road, and it can thus be applied to locate tracking.
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5.1. Shadow Feature

From the previous analysis we can find that moving target cannot be focused in the imaging
result and offset also exists. However, the location of the shadow is fixed, which is conducive to
interpreting the characteristics of the moving target. In this section, we analyze the influence of
emission electromagnetic wave wavelength, radar platform speed, platform height, target speed and
other factors on moving target shadow by modifying imaging parameters of simulation software.
During simulation, we applied a fixed grid (0.1 m) imaging.

5.1.1. Effect of System Parameters on Shadow

Simulation parameters are as follows: imaging resolution is 0.1 m; PRF is 2000 Hz; platform speed
is 330 m/s; platform height is 10 km; squint angle is 45◦; bandwidth is 2 Ghz; SNR is 40 dB.

Figure 9 gives simulation results with different emission frequencies. From the figure we can
observe that when the frequency is 5 GHz, the imaging effect of the shadow is poor, almost submerged
by the surrounding environment. When the carrier frequency is 10 GHz, the clarity of the target
shadow contour is significantly improved and when the carrier frequency increases to 16 GHz, the
difference between the shadow edge and background is very obvious.

In addition, similar to the influence of frequency, with the increasing of synthetic aperture,
the system resolution gradually increases, and the shadow of the target becomes clearer in the
imaging result, as illustrated in Figure 10. Furthermore, the imaging result of the shadow is also
affected by synthetic aperture time when the size of the aperture is fixed. As shown in Figure 11, for
the target with speed of (5× 5) m/s, the shadow barely exists in the imaging result when the synthetic
aperture time is 2 s. The shadow starts to exist in the imaging result but still without shape and contour
information when the synthetic aperture time reduces to 1 s. The contour of the target shadow appears
in the imaging result but with blurry edges when the synthetic aperture time continues decreasing to
0.5 s, and a clear shadow shows up in the imaging result when the synthetic aperture time is 0.3 s.

(a) (b) (c) (d)

Figure 9. Effect of wavelength on shadow (horizontal is azimuth; vertical is range), (a) 5 GHz,
(b) 10 GHz (c) 16 GHz, (d) 35 GHz.

(a) (b) (c) (d)

Figure 10. Effect of aperture on shadow (horizontal is azimuth; vertical is range), (a) 100 m, (b) 200 m
(c) 500 m, (d) 1000 m.
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(a) (b) (c) (d)

Figure 11. Effect of synthetic aperture time on shadow (horizontal is azimuth; vertical is range).
Target speed is (5× 5) m/s, aperture size is 800 m and carrier frequency is 16 GHz; (a)2 s, (b)1 s (c) 0.5 s,
(d) 0.3 s.

Overall, as the frequency increases, the wavelength decreases, the system resolution also increases,
and the shadow of the target becomes clearer. Meanwhile, the increasing of synthetic aperture also
makes the resolution of the system higher, and the shadow of the moving target thus becomes clearer.
When the synthetic aperture time is relatively short, the ground scattering point corresponding to
the shadow can be blocked by the target all the time during imaging and a clearer shadow can thus
be obtained.

5.1.2. Effect of Target Parameters on Shadow

Simulation parameters are as follows: imaging resolution is 0.1 m; frequency is 35 GHz; PRF is
2000 Hz; platform speed is 330 m/s; platform height is 10 km; squint angle is 45◦; bandwidth is 2 GHz;
SNR is 40 dB.

The simulation result is shown in Figure 12. From the figure we can observe that when the target
azimuth speed is 0 and range speed is 1 m/s, the shadow can be prominently displayed in the imaging
result. When range speed increases to 2 m/s, the shadow blurs at the edge of range, but the main
body remains essentially contoured. When azimuth speed increases to 5 m/s, even though the target
shadow can be seen in the imaging result, its edge shape and information of the subject are lost. It is
thus impossible to distinguish the attributes.

From (d) we can find that, when range speed is 0, target imaging result is defocused, but there
barely exists an offset. So that the shadow directly below the target in the imaging result is blocked by
the target itself, and only a small area of the shadow is presented in the imaging result.

From the first row of the figure we can find that, when range speed is not 0, the shadow contours
gradually blur (especially in the azimuth direction) as azimuth speed increases. Comparing (c) with (h)
in the figure we can observe that, the increasing of range and azimuth speeds aggravate the fuzziness
of the shadow in that direction. When the speed is high, the target shadow is mainly submerged in the
clutter background as shown in (k) and (l).

Overall, offset will not exist in the imaging result when target radial velocity is 0 and available
shadow can not be obtained. Offset happens in the target imaging result when radial velocity is not
0 and shadow appears at the actual position of target. When the target speed is small, the shadow
contour is clear and the shape is complete. As the speed of the target increases, the shadow edge
becomes blurred. When the speed is high, the shadow is completely submerged in the imaging scene.
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

Figure 12. Imaging results of moving target shadow with different speeds (horizontal is azimuth;
vertical is range) . The speed of target is (a) (1× 0) m/s (b) (1× 2) m/s (c) (1× 5) m/s (d) (0× 1) m/s (e)
(2× 0) m/s (f) (2× 2) m/s (g) (2× 5) m/s (h) (5× 1) m/s (i) (5× 0) m/s (j) (5× 2) m/s (k) (5× 5) m/s
(l) (10× 1) m/s. The first is range speed and the second is azimuth speed.

5.2. Shadow Tracking

To validate the effectiveness of SiamFc on shadow tracking, we compare our method with two
state-of-the-art traditional tracking methods, Minimum Output Sum of Squared Error (MOSSE) [48]
and kernelized correlation filter (KCF) [49], and a learning based tracking method real-time recurrent
regression network (Re3) [54]. Accuracy, robustness, and center distance error [55] are considered as
evaluation metrics for tracking.

During simulation, to obtain high quality moving target shadow video, we have sacrificed the
SAR azimuth resolution of the video to a certain extent, and its theoretical resolution is less than 0.5 m.
Each aperture contains 2000 PRI data, the number of PRI between frames is 640, and the video frame
rate is 1, which can be adjusted later as demanded.

Ten sets of simulated video data are used for training of the SiamFc network, while five sets of
data are used for testing. Each set of videos consists of 60 images with a size of 1024× 1024. Network
parameters are initialized by Gaussian distribution and gradient descent is adopted to train 2000
epochs with batch size of four. More information about the simulation data is shown in Table 1.
The learning rate is annealed geometrically at each epoch from 0.01 to 0.0005. Figures 13–16 give the
tracking results of partial frames of SAR data in the same video with MOSSE, KCF, Re3 and SiamFc,
respectively.
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Table 1. Details about the simulated data used for testing the algorithms.

Imaging Resolution Carrier Frequency PRF Platform Speed Platform Height

0.125 m 35 GHz 2000 Hz 330 m/s 10 km

squint angle bandwidth image size FPS PRI interval

45◦ 2GH 1024 × 1024 1 640

(a) (b) (c) (d) (e) (f) (g)

Figure 13. Partial tracking results of Minimum Output Sum of Squared Error (MOSSE) of simulated
video-SAR data. Green rectangles are the true trajectories of the target, and red rectangles represent
tracking results. (a–g) are the corresponding results of frame 1, 10, 20, 30, 40, 50 and 60, respectively.

(a) (b) (c) (d) (e) (f) (g)

Figure 14. Partial tracking results of kernelized correlation filter (KCF) of simulated video-SAR data.
Green rectangles are the true trajectory of target, and red rectangles represent tracking results. (a–g) are
the corresponding results of frame 1, 10, 20, 30, 40, 50 and 60, respectively.

(a) (b) (c) (d) (e) (f) (g)

Figure 15. Partial tracking results of Re3 of simulated video-SAR data. Green rectangles are the true
trajectory of target, and red rectangles represent tracking results. (a–g) are the corresponding results of
frame 1, 10, 20, 30, 40, 50 and 60, respectively.

We can observe that these three algorithms can all realize continuously tracking of the shadow of
a moving target, but with different performance. When the initial frame is at frame 0, the prediction
box of MOSSE at the first frame is basically the same as ground truth. However, as time goes by, the
tracking effect gradually gets worse, and the prediction box is offset from the ground truth. At frame
60, the coincidence rate of the two is very low, and the prediction box only covers part of the shadow.
KCF and SiamFc perform much better than MOSSE, the tracking results of these two are not affected
by the shifts of shadow. Nevertheless, we can also find that, SiamFc performs better than KCF since
the prediction boxes of SiamFc are closer to the ground truths.
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(a) (b) (c) (d) (e) (f) (g)

Figure 16. Partial tracking results of SiamFc of simulated video-SAR data. Green rectangles are the
true trajectory of target, and red rectangles represent tracking results. (a–g) are the corresponding
results of frame 1, 10, 20, 30, 40, 50 and 60, respectively.

The comparison results of these three methods with all testing sets are shown in Table 2.
From Table 2 we can observe that the tracking performance of MOSSE is not ideal, the center distance
error of which reaches 16.33. It indicates that the tracking result of MOSSE deviates greatly from the true
position of the target, which is consistent with Figure 13. KCF achieves comparably good tracking result,
accuracy, robustness, and center distance error of which are 0.701, 1, and 7.28, respectively. However, its
accuracy is 0.039 lower than SiamFc and center distance error is 1.24 higher than SiamFc.

Table 2. Tracking results with different methods on the simulated SAR dataset.

Index Accuracy Robustness Distance

MOSSE 0.506 0.81 17.26
KCF 0.721 1.00 6.25
Re3 0.764 0.98 6.01
SiamFc 0.739 1.00 6.13

As a correlation filter-based tracking algorithm, MOSSE directly uses the appearance (pixels)
feature of images to produce correlation peaks for each interested target in the scene while yielding
low responses to the background. To obtain better performance, multi-channel HOG [56] feature is
applied in KCF [57]. Furthermore, the SiamFc employs CNN to extract features of interested targets,
which is extremely effective compared with a HOG feature and appearance (pixels) feature. Therefore,
the SiamFc network has better tracking performance on the shadow of a moving target compared with
traditional algorithms MOSSE and KCF.

Although Re3 has a slightly better accuracy and center distance error, its robustness is worse than
SiamFc. More importantly, Re3 has a more complex structure than SiamFc and many tedious training
tricks cannot be neglected to obtain a good tracking performance.

In addition, we reconstruct the trajectory of a moving target based on the tracking result as
illustrated in Figure 17. The green dots denote the true positions of the simulated target and the red
dots represent the centers of prediction boxes during tracking. Consistent with the previous analysis,
the tracking results of SiamFc and KCF are closer to the true positions of the target, while the tracking
results of MOSSE show a larger deviation.
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(a) (b) (c) (d)

Figure 17. Trajectory reconstruction result on simulated SAR data. Green dots denote true trajectory
of target, and red dots represent tracking results. (a)MOSSE, (b) KCF, (c) Re3, (d) SiamFc.

5.3. Moving Target Refocusing

In this section, we first provide the effects of radar carrier frequency and target speed on
moving target refocusing without estimation error. Then, we give the refocusing result based on the
estimated trajectory. The influence of estimation error on refocusing is ultimately analyzed. The simulation
parameters for moving targets are as follows: imaging resolution is 0.1 m; platform speed is 330 m/s;
squint angle is 45◦; bandwidth is 2 GHz; SNR is 40 dB.

5.3.1. Refocusing Analysis of Moving Target in Precise Compensation

Refocusing results of moving targets with different carrier frequencies and different target speeds
are illustrated in Figures 18 and 19.

(a) (b) (c) (d)

Figure 18. Refocusing results with different carrier frequencies, target speed is (5× 5) m/s; (a) 5 GHz,
(b) 10 GHz (c) 16 GHz, (d) 35 GHz.

(a) (b) (c) (d)

Figure 19. Refocusing results with different target speeds, carrier frequency is 10 GHz; (a) (1× 1) m/s,
(b) (2× 2) m/s (c) (5× 5) m/s, (d) (10× 10) m/s.

By comparison we can find that, the higher the frequency is, the shorter the wavelength is,
the higher the system resolution is and the better the moving target refocusing is. When the carrier



Remote Sens. 2020, 12, 3083 20 of 26

frequency is 5 GHz, the main contour of the target can be presented. The higher the carrier frequency is,
the more obvious the target contour information is. When the carrier frequency is 35 GHz, the imaging
result is able to present the detailed features of the moving target. Furthermore, as shown in Figure 19,
when the system resolution is fixed, the increasing of the target speed causes a worse effect of refocusing.
When the speed is (1× 1) m/s, the target detail features are significant and the refocusing effect is
good. When the speed is (5 × 5) m/s, the moving target can be refocused, but the resolution is
significantly reduced.

5.3.2. Refocusing of Moving Target Based on Tracking Results

Refocusing results based on estimated trajectories of these three tracking methods are shown
in Figure 20. The range and azimuth speeds of the target are both 5 m/s and imaging resolution is
0.1 m. We can observe that since the refocusing algorithm is sensitive to trajectory accuracy, there exists
obvious defocusing phenomenon in the refocusing result by directly applying an estimated trajectory.
However, SiamFc has higher estimation accuracy, and its moving target imaging result is relatively better.
The geometric characteristics of the target can be basically observed. MOSSE on the contrary has low
positioning accuracy of the target and a poor refocusing result, which makes it difficult to distinguish target
contour information.

On the other hand, since this paper only discusses the case of uniform linear motion, the target
trajectory can be smoothed by linear fitting. The refocusing result of moving target using linear
smoothed trajectory is shown in Figure 21. It can be seen that after smoothing, the three methods all
perform well in refocusing, and the difference in performance is also small.

(a) (b) (c)

Figure 20. Refocusing results based on target trajectory (horizontal is azimuth; vertical is range).
(a) MOSSE, (b) KCF, (c) SiamFc.

(a) (b) (c)

Figure 21. Refocusing results after smoothing the target trajectory (horizontal is azimuth; vertical
is range). (a) MOSSE, (b) KCF, (c) SiamFc.
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It can be seen from the above analysis that for linear motion, due to its simple and regular motion,
most trajectory estimation error can be eliminated by smoothing technology, and the accuracy
required for shadow tracking is low. However, the ground target always performs non-uniform
linear motion. At this time, the smoothing order is high, and the trajectory estimation error may not be
completely eliminated. Therefore, for general moving targets, a high-precision trajectory estimation
method is necessary.

5.3.3. Effect of Motion Parameters on Refocusing

When the target moves linearly with a uniform speed, only the target speed needs to be estimated
to reconstruct the target trajectory and refocus image. In this section, by adjusting the actual speed
of the moving target and the estimated speed during refocusing, we analyze the effect of speed error
on refocusing.

As analyzed previously, azimuth speed leads to target offset in the imaging result. In the same
way, the estimation error of range speed leads to deviation of the azimuth position of the target when
the target is refocused.

a∼e in Figure 22 give different azimuth speed errors when speed is (10 × 10) m/s.
The corresponding target speeds of f∼h are (10× 5) m/s, (10× 2) m/s and (10× 1) m/s. It can
be found that when speed error is less than 0.5 m/s, the existence of error causes the target to be
unable to be fully focused, resulting in blurry imaging results. However, the basic shape and scattering
properties of the target can still be preserved, which provide the basis for detection and identification
of further targets. When the estimated speed error continues to increase, target defocusing after image
refocusing is serious, the shape and electromagnetic scattering characteristics of the target mainly
disappear. Meanwhile, from e∼h in the figure we can observe that, when range speed is fixed, the
focusing result is only related to the absolute speed error. The azimuth speed is different, but the
absolute error is the same, the focusing result is still the same.

(a) (b) (c) (d) 

(e) (f)  (g)  (h) 

Figure 22. Refocusing results with different speed errors. Target speed in (a–d) is (10× 10) m/s;
azimuth speed errors are 0, 0.3, 0.8 and 1 m/s, respectively. Target range speed in (e–h) is 10 m/s and
azimuth speeds are 10, 5, 2 and 1 m/s; speed errors are all 0.3 m/s.
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6. Discussion

Runtime is one significant evaluation index to measure the efficiency and feasibility of algorithms.
This section will give the statistics of the run time of different parts of our refocusing framework based
on the Intel i7-8700 CPU, NVIDIA GTX1080 GPU hardware platform.

For video-SAR, when the size of the image is 1024× 1024 and the frame interval is 320 PRI,
the imaging time per frame is 0.6655 s, and when the video-SAR frame interval is 640 PRI, the imaging
time per frame is 1.1438 s. For SiamFc, the tracking time of each frame is less than 0.01 s for a single
target. m-BP has the same efficiency as the standard BP. When the aperture size is 20,000 PRI and the
number of sampling points in the range is 20,000, the focusing time of the moving target is about 32 s.

It can be observed from the analysis above, video-SAR imaging and tracking steps basically
satisfy the real-time processing, especially the SiamFc, which can track shadows with the speed
of 100 frames per second. As shown in Algorithm 2 to obtain high quality imaging results of the
moving targets, the m-BP algorithm calculates the slant ranges of all the pixels in the imaging plane
for the whole synthetic aperture time and then compensates the Doppler phase of each pixel at
different times for further coherent accumulation operation, which are time-consuming and bring in
computational burden. Therefore, optimization is needed for the m-BP framework in future work to
realize real-time processing of moving target refocusing.

Algorithm 2 Moving Target Back-projection (m-BP).

Require:

SAR echo after range compression, antenna phrase center (APC) and trajectory of moving target.
Ensure:

1: Determine the image area.

Select the imaging plane and its pixel interval. The imaging plane takes the moving target as the

reference system. The pixel interval should be a little smaller than the theoretical resolution.
2: Select a pixel and calculate its slant range.

Use the instantaneous position of the moving target as a reference coordinate to calculate the slant

range between the pixel in the imaging space and the APC at time n. For the pixel p, its slant range

at time n can be calculated as

R(n, p) =
∥∥P(n)− Pp

∥∥
2 . (40)

where P(n) denotes the position of the APC at time n, Pp is the position of pixel p in imaging

plane, which is obtained by adding the coordinate of the pixel with respect to the original point of

moving target and the current position of the original point.
3: Calculate echo delay and get the echo data.

The echo delay of pixel p at time n can be calculated as

τ(p, n) =
2R(n, p)

c
. (41)

And then the echo data can be obtained according to the relationship between the echo delay and

the range compression data.
4: Coherent accumulation. Compensate the Doppler phase of pixel p at different times, and add the

data after compensation.
5: Repeat steps 2∼4 until all of the pixels in the image plane are processed.

7. Conclusions

This paper constructs a framework to track and refocus the ground moving target in video-SAR
by combining v-BP, m-BP and shadow-detection deep network. We find that: (1) The shadow of
ground moving target is affected by the target’s dimension, radar pitch angle, carrier frequency,
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synthetic aperture duration, etc; typically, higher carrier frequency, higher platform speed and smaller
synthetic aperture duration tend to result in a distinct shadow. (2) By adjusting the synthetic aperture
duration, we can obtain a SAR video with distinct shadow by video BP in a well-defined coordinate
system, which is necessary for shadow tracking and trajectory estimation. (3) By using the detection
network with a distance-based target association algorithm, we can easily track multiple shadows and
precisely estimate the trajectories; the velocity error is less than 0.1 m/s in our numerical experiments,
which validates the accuracy of our target-refocusing method by using moving-target BP.

In future work, we will continue work on the tracking of multiple targets with complicated
motion trajectories.
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