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Abstract: Two different ground-based remote sensing instruments can be used for the near-real-time
monitoring of surface waves and currents, namely the high frequency HF radar and the microwave
X-band radar. The HF system reaches larger offshore distances at lower spatial resolutions and
provides a poorer measurement of the wave-induced currents in very shallow waters. On the other
hand, the X-band system achieves significantly higher spatial resolutions with a smaller offshore
coverage. This study provides a preliminary comparison of the measured surface currents, obtained
by the two different tools where they overlap. The comparison showed a good agreement between
the measures with some discrepancies ascribable to the difference in the characteristics of the two
radar technologies.
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1. Introduction

The observation and monitoring of marine coastal currents is an important task for coastal
protection, erosion control, and flood mitigation as well as near-shore fishing management and marine
operations such as installations of offshore wind farms or oil and gas plants [1].

In recent years, the monitoring of surface currents with remote sensing techniques has greatly
improved, making it possible to even perform real-time observations over sea surface areas of different
extension. Among these techniques, two different ground-based remote sensing instruments can be
deployed for the near-real-time monitoring of surface waves and currents, namely the high frequency
HF radar and the microwave X-band radar. They directly measure the directional wave spectra at
a spatial resolution from 250 m to 15 km, which depends on the specific allocated bandwidth and
antenna design.

The overall spatial coverage of these tools significantly differs, as well does their spatial resolution.
The HF system reaches larger offshore distances at lower spatial resolutions and provides a poorer
measurement of the wave-induced currents in very shallow waters. On the other hand, the X-band
system achieves significantly higher spatial resolutions with a smaller offshore coverage. The inherent
differences of HF and X-band radars open new routes toward an integrated monitoring technique,
which exploits the complementary nature of the output provided separately by the two systems [2,3].

High frequency (HF) coastal radars are very powerful instruments, providing information on
surface velocity in terms of hourly maps over extended regions (range up to 100 km) and with high
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spatial resolution (order of 1–3 km). This information can be used to address several societal needs
such as navigation safety, search and rescue, oil spill or other pollutant tracking, marine protected
areas and fishery management [4,5].

The X-band radar represents a practical remote sensing system for sea waves and current
monitoring in coastal and shallow waters. It is used for the acquisition and the analysis of consecutive
sea surface images [6,7]. The surface current is retrieved from a sequence of these radar images by an
inversion procedure, that accounts for the modulation effects that depend on both the sea state and the
radar parameters as well as on the acquisition geometry [7–11].

This work is devoted to explore whether an integrated monitoring system can be successfully
employed to measure surface currents in near real time across a variety of spatial scales. By blending
HF and X-band radar data such an integrated system aims at reaching a high near-shore spatial
resolution still covering a large off-shore area. This study provides a preliminary comparison of the
measured surface currents, obtained by the two different tools where they overlap. Measurements
taken at a selected study site located in the Ligurian Sea were analyzed.

As the present work focused on comparing two different measuring tools, rather than to study
the local marine dynamics, an analysis of the surface circulation of the Ligurian Sea was beyond our
aim and is already quite a well-covered topic in literature [12].

2. Materials and Methods

2.1. Study Site and Analyzed Sea Conditions

The study site is located within the Eastern Ligurian Sea, in the North West Mediterranean Sea
as depicted in Figure 1, along a 15 km-long coastline in an area situated in front of which bounds an
important Marine Protected Area (Cinque Terre).
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Figure 1. Study area in the Ligurian Sea: red circles indicate the High Frequency (HF) radar stations.
The yellow circle indicate the X-band radar location.

A CNR-ISMAR HF Radar Network has been installed along the coast of Eastern Liguria, near La Spezia
and Cinque Terre, in year 2016 and is composed by two CODAR SeaSonde HF radar stations operating in
the frequency band of 25 MHz. A CONSILIUM/SELESMAR X-band radar was installed at Corniglia (SP)
about 60 meters above sea level. The radar locations are shown in Figure 1.
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At the installation site, the HF radar and the X-band radar both worked from 12 September 2017
to 1 April 2018.

The analysis was carried out as follows:
- As a first preliminary step, a qualitative snapshot comparison of the spatially-varying

time-averaged surface velocity fields (horizontal components) derived by HF and X-Band is shown as
a time average over a reduced time range. Despite this part has no quantitative aims, it allows us to
show the overlapping points of the two instruments. Due to the different spatial resolutions involved,
a linear interpolation in space was carried out to have measurements on matching grids. HF outputs
were evaluated on the X-Band grid before qualitative comparison of the surface velocity time averaged
field. However, due to the small overlap among them, only a few HF grid points resided within the
X-Band grid. This likely makes the interpolated HF field oversmoothed, and a significant quantitative
comparison at these scales is therefore not significant.

- A quantitative comparison at overlapping points was carried out for the measured time-series
sampled from 12 September 2017 to 1 April 2018. The overlapping points between the HF and X-band
grids, without any spatial interpolation, were identified and selected as comparison sites, namely
A and B. The time-varying zonal (U) and meridional (V) surface velocity components, independently
derived by the HF and X-band, were analyzed and compared at these locations. A comparison between
the HF and X-Band time signatures, means, and standard deviations is given. Root mean square errors
between X-band velocities and HF velocities at A and B were also computed.

2.2. HF Radar Data Collection and Analysis

The HF radar network was designed, implemented, and managed through the efforts of Institute of
Marine Sciences - National Research Council (ISMAR-CNR La Spezia) [13]. HF radar data were collected
and processed by ISMAR-CNR within the Ritmare and Jerico–Next projects [14]. The datasets hereinafter
considered were downloaded from the website http://ritmare.artov.isac.cnr.it/thredds/catalog.html.
Depending on the sea state, estimated errors ranged from 3 to 10 cm·s−1 and explained only part of the
rms difference of 10–20 cm·s−1 found between HF and the in situ current measurements. The rest was
assumed to be due the differences of the quantities measured (e.g., the spatial averaging [15]).

The acquisition settings are listed in Table 1.

Table 1. HF Radar system parameters.

Frequency Band Radial Coverage Radial Range Cutoff Radial Resolution Angular Resolution

(MHz) (km) (km) (km) (deg)

26 35–45 45 1 5

HF radar is appropriate to detect surface ocean currents due to the diffraction grating effects
of the rough sea surface [16,17]. Just when the radar signal scatters off a wave that is exactly half
the transmitted signal wavelength, and that wave is traveling in a radial path either directly away
from or toward the radar, the radar signal will return directly to its source. The scattered radar
electromagnetic waves coherently add up, resulting in a strong energy return at a certain specific
wavelength. The returning signal exhibits a Doppler-frequency shift that would always turn up
at a known position in the frequency spectrum in the absence of ocean currents. Nevertheless,
the observed Doppler-frequency shift does not match up exactly with the theoretical wave speed.
The Doppler-frequency shift includes the information of the principal ocean current on the wave
velocity in a radial pathway, jointly with the theoretical wave speed. Total velocities are derived
using least square fit, which maps radial velocities measured from individual sites on a Cartesian grid.
The final result is a map of the horizontal components of the ocean currents, on a regular grid, in the
area covered by two or more radar stations [14].

http://ritmare.artov.isac.cnr.it/thredds/catalog.html
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2.3. X-Band Radar Data Collection and Analysis

A CONSILIUM SELESMAR marine X-band radar was installed on the roof of the sewage treatment
plant at Corniglia (SP) about 60 meters above sea level. The radar antenna was located at the coordinates
44◦07′10” N, 9◦42′20” E.

The radar system radiates a maximum power of 25 KW, operates in the short pulse mode
(i.e., pulse duration of about 90 ns), and is equipped with an 9-ft (2.7 m) long antenna with horizontal
polarization (HH). These features enable reaching a spatial resolution of about 9m and an angular
resolution of approximately 0.9◦. The signal received by the antenna was converted through an
analog–digital converter and interpolated on a Cartesian grid with a regular spacing of about 10 m to
obtain two-dimensional (2D) sea surface images. The image sequence acquired by the X-band radar
was stored and processed, and each raw data sequence consisted of 64 individual images stored every
2.4 s. The accuracy of the X-band radar in terms of measured velocities was of the order 10 cm s−1 [18].

The acquisition settings are listed in Table 2.

Table 2. X-band radar system parameters.

Frequency Band Radial Coverage Time Range Spatial Resolution Angular Resolution

(MHz) (km) (s) (m) (deg)

9200 5.55 2.4 9 0.9

The image processing to extract the inhomogeneous surface current fields from the X-band radar
data were based on the so called “Local Method”, proposed in [19,20] and can be applied to data
acquired in coastal areas, where the presence of coastlines and varying bathymetry cause a spatial
inhomogeneity of the wave motion [3,21–23].

A block diagram of the inversion procedure is presented in Figure 2.
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Figure 2. Block diagram of the current field reconstruction procedure, where 3D FFT is the fast Fourier
transformto obtain the 3D radar sub-spectra and NSP is the normalized scalar product technique.

The partitioning procedure is needed to extract Ns spatially overlapping sub-areas, so it is possible
to assume the waves’ homogeneity and uniformity from the analyzed radar data temporal sequence.
After that, the fast Fourier transform (FFT) is applied to the Ns temporal sub-sequences to obtain the
3D radar sub-spectra.
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Each spectrum is expressed as
{
F j

(
ḱ,ω

)}
j=1,...,Ns

, where ḱ =
(
kx, ky

)
is the wave-number vectorand

ω the angular frequency; spectra are then analyzedby applying the normalized scalar product (NSP)
technique [7], in order to retrieve the local surface current vector through the following estimator:
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ḱ,ω, Ú
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= δ
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ω−

√
gk− ḱ·Ú

)
is the characteristic function based on the dispersion relation;

δ(·) is the Dirac delta distribution; 〈|F|, G〉 represents the scalar product between the functions |F| and G;
and PF and PG are the powers associated with |F| and G, respectively.

Once the local (sub-areas) current vectors have been estimated, it is possible to define the ‘global’
(applied to the whole radar spectrum) band-pass (BP) filter [3,20,21].

3. Results and Discussion

Figure 3 shows a qualitative snapshot of the HF and X-band surface velocity fields, time averaged
over a sample period on the original spatial grids, with the purpose to qualitatively show the coverage
overlaps and the overlapping points. More in detail, red (blue) arrows are located at the HF (X-band)
grid points, whereas colored dots indicate the instruments overlaps.
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Figure 3. Qualitative snapshot of surface currents from X-band (blue arrows) and HF (red arrows),
time averaged from 12 September 2017 to 18 September 2017 on original grids. Overlapping points A
and B are indicated by the black and greed dots respectively.

Due to the very different spatial resolutions, some differences in the spatial velocity patterns may
arise between the HF and X-band, which capture different spatial scales. Strong spatial variability at
the HF sub-grid level may not be completely captured by the low resolution radar, resulting in an
over-smoothed surface circulation, especially in the coastal zone. In order to cover coastal waters with
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HF measurements at a higher spatial resolution, a rather trivial option is to linearly interpolate the
HF-derived currents on a finer grid to compensate for the missing locations. However, it of course
does not improve the quality of data, as the sub-grid processes still remain unresolved. Although the
main large-scale current direction is consistently measured by the two instruments, the HF-derived
circulation pattern does not capture the details of the near-shore spatial variability, especially in the
west–northwest portion of the domain. Here, the X-band measurements revealed the existence of
a cyclonic branch at the western edge of the grid, which was instead missed by the HF-derived data at
the same location.

As clearly visible in Figure 3, at intermediate off-shore distances, an overlapping zone exists
between the HF and X-band grids, where the time-series of surface velocities can be directly compared
without any additional interpolation in space. In such an intermediate zone, X-band and HF derived
data without spatial interpolation are expected to give similar results over time if the X-band surface
currents are correctly derived. Seaward of these overlapping locations, the HF radar has the advantage
of a long distance coverage suitable to capture larger scale circulation structures, whereas the X-band
becomes advantageous shoreward of the overlapping areas, where smaller scale dynamics needs to
be resolved.

Time series of the northward and eastward surface velocity components, derived by HF and X-band
radar at overlapping points A and B, are reported in Figures 4 and 5, respectively, from 12 September 2017
to 1 April 2018. In each panel of Figures 4 and 5, the green line refers to the HF measurements, whereas
the black line shows the X-band ones. Missing data in the time series corresponds to periods where
the X-band radar system did not work or the surface dynamics in the near shore area, covered by the
X-band radar, cannot be measured with enough accuracy due to low sea state or rain that affect the
current field estimation.
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HF derived currents are provided as hourly means, whereas X-band measurements are obtained
as instantaneous values at irregular time steps (multiple time steps per hour). In order to get a clearer
comparison, the X-band data were therefore averaged over time to get hourly means. The HF values
were then linearly interpolated in time in order to match the X-band hourly mean time spacing.

X-band derived velocity components display a good agreement with the HF counterpart
throughout the sampling. A significant (p value << 0.01) positive correlation among the data
was also indicated by the Pearson’s linear correlation coefficients Pij, here computed. Pij was 0.675
and 0.54 for the U components in A and B, respectively, whereas it had a value of 0.67 and 0.8 for V
in A and B, respectively. The root mean square errors of U at point A and B were 0.14 m/s 0.17 m/s,
respectively, while for the northward components, it assumed the values of 0.14 m/s and 0.13 m/s in A
and B, respectively. Figure 6 shows the resulting time signature of the velocity intensity at overlapping
points A and B as derived by the two instruments; a close up of a shorter timeslot is shown in Figure 7
only for clearer visualization purposes. Figure 8 finally reports a scatter plot of the HF and X-band
surface velocity components in A and B, separately.

As a final step, we show in Figures 9 and 10 a close up on the measured components over a reduced
time range (12 September 2017 to 18 September 2017) characterized by the time-average condition
reported in Figure 3 for that time range. The reported time-series are shown at regular hourly time
spacing. The corresponding root mean square errors, for the shorter set, were 0.1 m/s and 0.12 m/s for U
in A and B, respectively, and 0.07 m/s and 0.05 m/s for V in A and B, respectively. It is interesting to note
the substantial disagreement in northward components at location A, occurring at 15 September and
neighboring times (upper panel of Figure 9). Here, the X-band measurements showed a positive peak
as opposed to the local decrease captured by the HF measurements. The computed spatial standard
deviation of the northward component, at this time (and neighboring times), exceeded the 90% of its
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maximum values, revealing the existence of a high spatial variability that might be not completely
captured by the low resolution grid of the HF radar.
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Figure 10. Time series of the eastward surface velocity components, derived by HF and X-band radar
at overlapping points A and B for a reduced time period (12–18 September 2017).

Similarly, the eastward components at the same time locations were also characterized by a local
overestimation of the velocity intensity by the HF radar compared to the X-band one, at location A
(upper panel of Figure 10). Additionally, in this case, a field spatial standard deviation above 85% of
the maximum level was found. At early times (i.e., between 12–13 September (Figure 9 and upper
panel of Figure 10), discrepancies between HF and X-band data were associated with values of the
spatial standard deviations ranging between 50% and 70% of the maximum value for the northward
component, and around 50% of the maximum value for the eastward component, revealing a quite
significant spatial variability that may affect the HF derived values in the analyzed sea condition.

4. Conclusions

In this work, the surface current fields measured by an X-band radar were compared with those
provided by a HF-band radar. The comparison showed good agreement between the measures,
although some discrepancies were also detected. At this stage, we cannot rigorously explain the
nature of such differences among the data. A possible explanation resides in the different spatial scales
that can be captured by the two tools. The HF radar is likely to over-smooth the small-scale features
typically occurring in coastal waters or complex nearshore bathymetries. The high spatial variability
of such features might not be completely captured by the HF coarse resolution, largely remaining a
not-resolved sub grid process. On the other hand, the higher spatial resolution of the X-band radar
allows for the capture of finer processes that are likely to carry higher sources of field local variance.
The second possible source of differences between the HF and X-band derived currents is the inherent
limitation of the latter, which loses accuracy when estimating surface currents in under-developed sea
conditions. An important aspect that emerges from this work is the possible integrated usage of the two
instruments, which exploits the advantages provided by the individual parts (wider spatial coverage for
the HF band and higher spatial resolution for the X-band). Consequently, more accurate measurements
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of surface currents can be carried out by the combined system on large spatial domains still capturing
smaller scale effects in the nearshore area. The analysis carried out in this study represents a preliminary
assessment for the system performance. Its effective usage aimed at unveiling the physical processes of
oceanographic relevance still remains beyond the target of this work. A physically-oriented application
aiming at enlarging the background of physical oceanography is clearly needed to fully exploit the
system potential, and will be explored in a future study.
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