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Abstract: Forest management treatments often translate into changes in forest structure. Understanding
and assessing how forests react to these changes is key for forest managers to develop and follow
sustainable practices. A strategy to remotely monitor the development of the canopy after thinning
using satellite imagery time-series data is presented. The aim was to identify optimal remote sensing
Vegetation Indices (VIs) to use as time-sensitive indicators of the early response of vegetation after the
thinning of sweet chestnut (Castanea Sativa Mill.) coppice. For this, the changes produced at the canopy
level by different thinning treatments and their evolution over time (2014–2019) were extracted from
VI values corresponding to two trials involving 33 circular plots (r = 10 m). Plots were subjected to one
of the following forest management treatments: Control with no intervention (2800–3300 stems ha−1),
Treatment 1, one thinning leaving a living stock density of 900–600 stems ha−1 and Treatment 2, a more
intensive thinning, leaving 400 stems ha−1. Time series data from Landsat-8 and Sentinel-2 were
collected to calculate values for different VIs. Canopy development was computed by comparing
the area under curves (AUCs) of different VI time-series annually throughout the study period.
Soil-Line VIs were compared to the Normalized Vegetation Index (NDVI) revealing that the Second
Modified Chlorophyll Absorption Ratio Index (MCARI2) more clearly demonstrated canopy evolution
tendencies over time than the NDVI. MCARI2 data from both L8 and S2 reflected how the influence
of treatment on the canopy cover decreases over the years, providing significant differences in the
thinning year and the year after. Metrics derived from the MCARI2 time-series also demonstrated
the capacity of the canopy to recovery to pretreatment coverage levels. The AUC method generates
a specific V-shaped time-signature, the vertex of which coincides with the thinning event and, as such,
provides forest managers with another tool to assist decision making in the development of sustainable
forest management strategies.
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1. Introduction

Sustainable forest management plays a central role in achieving the 2030 climate targets that were
endorsed by the European Council in 2014. It also secures the survival of forest ecosystems for the
benefit of present and future generations, with managed forests providing functions that may be social,
economic or ecological in nature. Many studies have addressed these different aspects in order to
find strategies to preserve the forest for future generations, taking care of them and the resources
they provide [1,2]. As a fundamental attribute of vegetation, canopy cover is an essential biophysical
variable that is widely used to monitor forest ecosystems in terms of ecology, hydrology, carbon- and
nutrient cycling and global change [3]. One standard quantitative tool used to assess foliage levels that
helps to understand the connection between canopy structure and ecosystem functions is the Leaf
Area Index (LAI) [4], and, indeed, it is defined as an Essential Climate Variable by the Global Climate
Observing System [5].

LAI represents or quantifies the total one-sided green leaf area per unit of ground surface as
a dimensionless quantity [6]. Its importance is due to the fact that it is related to driving ecosystem
functions and the processes involved, such as primary production, water fluxes, energy exchange
and carbon cycle [7–9]. LAI varies around the world depending on the different biome involved.
However, at a regional scale, LAI variation can be impacted by environmental factors such as natural
disturbances, site fertility, phenology, management practices, and interactions among all of these
factors [10]. LAI field measurement methods have been investigated in depth through both direct
and indirect methods (e.g., [11–16]). Direct methods involve estimating LAI from the destructive
sampling of leaves by harvesting trees or through the use of litter traps [14–16]. The indirect methods
can be divided into two different categories: allometric equations and optical methods. The former
estimates LAI based on empirical regression with other forest variables, such as diameter at breast
height (DBH) while the latter uses a logarithmic relationship based on gap fraction measurements or
canopy transmittance [17]. Optical methods (e.g., Canopy Light Analyzer LAI-2000/2200/2200C or
hemispherical cameras) have become the most commonly implemented in field measurements and
a wide range of reviews have covered the devices available for LAI field measurements (e.g., [11,16]).
Although direct estimates provide values that are closer to the true LAI, indirect measurements are
less time consuming and labor intensive than direct methods and thus allow sampling at larger
spatial scales [16,18]. One important limitation of these indirect techniques, however, is the light/sky
conditions under which LAI needs to be measured. The ideal scenario is an overcast sky, otherwise
errors in LAI calculation may occur [11,19]. Also, while indirect methods can be used to cover a larger
area than direct methods, the reality is that the results can only be applied to the scale at which they
were measured. This therefore limits the utility of these methods in terms of spatial coverage, and the
results cannot be applied at the landscape level [20].

In this sense, free access to satellite images has solved the shortcomings of LAI field measurements
allowing for the upscaling of results from the plot level to the landscape level [18], meaning that LAI
estimates have been derived at different temporal and spatial scales as a result of the development
of multispectral satellite sensors [21]. Many satellites create images from solar radiation reflected by
the Earth at different wavelengths. Each satellite has its own set of spectral bands corresponding to
different wavelength domains (i.e., blue, green, red) which is used to measure the spectral response of
vegetation and record the level of “greenness” or absence of vegetation, which are then used as the
basis for vegetation indices (VIs) calculations. VIs are quantitative measurements that maximize the
responses of vegetation parameters and minimize the impact of atmospheric effects and soil background
reflectance [22,23]. Furthermore, a wide variety of VIs can be computed with the information from the
different spectral bands used by the satellites to create images, and VIs are currently the most common
approach for analysing vegetation changes over different time scales [24].

VIs and LAI are inter-related in that LAI is also based on the reflectance characteristics of
vegetation; in other words, linked to spectral measurements [25,26]. There is, consequently, increased
international interest in mapping LAI using satellite sensors to determine trends or monitor vegetation
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behavior, over time, with minimum effort [19,27–30]. Using indirect methods and remote sensing data,
some studies have estimated LAI using data from a particular moment in time, such as the summer
months [9,26,30,31] while others consider the entire vegetation period [28]. A number of different
VIs have been tested, among the most well-known being: Normalized Vegetation Index (NDVI),
Simple Ratio (SR), Soil-Adjusted Vegetation Index (SAVI), Transformed Soil-Adjusted Vegetation
Index (TSAVI), and Global Environment Monitoring Index (GEMI). Not only have VIs been used to
evaluate a particular moment in time, they have also been used with time series data to improve
understanding of how processes change or behave over time [32–34]. To understand the processes and
drivers of disturbances in ecosystem functions, the first step is to detect changes within a time series.
The ecosystem changes that are more commonly observed with remote sensing approaches can be
classified into three groups [35]: (1) seasonal or cyclic changes, (2) gradual trend changes and (3) abrupt
trend changes. The latter can be the result of natural causes such as a drought event or a wind throw,
as well as by human disturbance, including forest management practices. Clearly it is important for
forest managers to know how forests react to this latter type of change in order to develop sustainable
forest management practices. One such forest treatment is thinning (i.e., the removal of a certain
quantity of trees), used to improve spacing and concentrate the resources of a site on a selected set of
trees in a forest stand in order to increase their growth rates. This obviously has a considerable impact
on forest structure and one important application of LAI is its use as an indicator to evaluate such
thinnings. That said, a remote sensing proxy for LAI that is more efficient and cost effective, such as
VIs, would be a valuable tool in monitoring the evolution of managed forest stands. However, to our
knowledge, there are no studies in the literature that focus on the sensitivity of VIs to the temporal
evolution of the canopy following different forest management strategies, and thinning, in particular.

In various European regions, the broadleaf tree sweet chestnut (Castanea Sativa Mill.) has been
subject to human management in terms of both fruit and timber production, specifically and traditionally
coppicing, which in terms of timber production is the production of poles, vineyard-stakes, sticks,
pickets, fuel wood, etc., [36]. However, this traditional management does not include silvicultural
treatments such as thinning, and therefore it fails to exploit the full potential of the sweet chestnut,
which requires this treatment in order to obtain quality sweet chestnut timber [37]. Consequently,
to move from coppice management for ‘traditional’ to ‘quality’ wood, more studies that consider
these aspects are needed. Another important aspect of this species is its high resprouting capacity,
which, from a remote sensing point of view, can make it very challenging to model the canopy structure
accurately in certain species where new sprouts have the same leaf typology.

In the northwest of Spain, although sweet chestnut is common, most traditional coppice stands
have been abandoned or their rotation time has been increased considerably. Nevertheless, local
authorities and various other stakeholders are becoming increasingly interested in the active and
sustainable long-term management of historic chestnut coppice. As such, detailed information is
needed at various levels of forest management. In fact, recently, dynamic tools for this species that
are able to predict future rates of change in various stand characteristics of sweet chestnut, have been
developed [38]. That said, there remains the need to support forest managers through the development
of other new tools that help them to understand how forests evolve following different management
treatments, in order to inform sustainable forest management strategies, and to facilitate the production
of quality wood. Consequently, the general aim of this study was to remotely monitor the evolution of
sweet chestnut coppice in the northwest of Spain in the years after thinning treatments. Specifically,
this paper sought to: (1) study the effect produced by different thinning treatments and the evolution
of forest stands over the years at the canopy level with Landsat-8 and Sentinel-2, (2) identify the
optimal remote sensing Vegetation Indices (VIs) that reflect temporal sensitivity to the early response
of vegetation after thinning treatments and (3) find a VI time-signature that allows past events in forest
sweet chestnut stands to be identified.
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2. Materials and Methods

2.1. Forest and Field Data

The research site is located in Redes Natural Park, in the central eastern part of the Principality
of Asturias in northern Spain (Figure 1). The average annual temperature of the area is 10–11 ◦C,
with an annual rainfall ranging from 1000 to 1350 mm. The two pilot trial sites are located between 600
and 700 metres above sea level and have a northern orientation and a high degree of slope (45–57%).
Both trials were carried out in small stands of similar ages and dominant heights, but of varying
densities due to the intrinsic heterogeneity that the sweet chestnut coppice generates when it sprouts.
A total of three different treatments were analyzed: (1) Control (2800–3300 stems ha−1), (2) Treatment 1
which consisted of a single thinning that left a stock living density of between 900 and 600 stems ha−1,

and (3) Treatment 2, which involved a more intensive thinning that left a living stock density of around
400 stems ha−1. In Trial 1, three areas were established and each was allocated to either Control,
Treatment 1 or Treatment 2 conditions. In Trial 2, the area was divided into two and one area was
left as the control while the other was subject to Treatment 1. Forest inventory data (Table 1) for the
study sites were collected on three occasions: before and after the thinning treatments (after leaf fall)
in winter 2015 (installation year) and in summer 2019. Figure 2 shows example images from areas
subjected to either treatment or control conditions.
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Figure 1. Study area located in the north of Spain and location and distribution of the Leaf Area Index
(LAI) plots for the different treatments in the two trial sites.

Table 1. Summary of forest inventory data for Trial 1 and Trial 2.

Trial 1 Trial 2

Control Treatment 1 Treatment 2 Control Treatment 1

BT/AT AT BT AT AT BT AT AT BT/AT AT BT AT AT

Year 2015 2019 2015 2015 2019 2015 2015 2019 2015 2019 2015 2015 2019

t 16 19 16 16 19 16 16 19 13 16 13 13 16
N 2843 2660 4484 933 905 3664 439 439 3338 3169 3756 622 545
G 21.5 22.9 21.2 10.6 11.5 29.8 5.8 7.04 13.9 15.4 21.1 4.7 5.4

Dm 9.5 10.2 9.0 11.9 12.6 9.8 12.7 14.0 7.4 7.9 8.3 10.5 11.8
V 92.5 116.3 - 63.9 71.0 - 36.8 45.4 52.5 66.5 - 19.8 26.5

BT: Before Thinning, AT: After Thinning, t: Stand age (years), N: Stems per hectare (stems ha−1), G: Basal area
(m2 ha−1), Dm: mean diameter at breast height per plot (cm), V: volume (m3 ha−1).
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Figure 2. Examples of Treatment 1 after thinning in 2015 (set up year), and in 2019 when LAIe
measurements in the field were carried out.

2.2. LAI Field Measurements

Field measurements of LAI were conducted in July 2019 in 33 circular plots (r = 10 m) (Figure 1).
The total number of LAI plots per trial was dependent on the size of the trial site, with each plot centre
being located using a differential GNSS (Global Navigation Satellite System) with submetric accuracy
(a similar system and data collection procedure to that described in [39]).

The canopy measurements for LAI estimation were carried out in the field with a LAI-2200C plant
canopy analyzer (Table 2). LAI indirect measurement methods are widely used in similar studies,
and there are several extensive review papers covering the use of this device for LAI field measurements
(e.g., [4,11]). It is a portable instrument that directly provides the LAI value, which is referred to in the
literature as Effective LAI (LAIe) as it describes an indirect measurement of LAI that may include other
parts of the vegetation besides leaves [6]. Hereafter LAIe is used to refer to LAI measurements made
with the LAI-2200C.

Table 2. Mean LAIe field measurements for the different treatments in Trials 1 and 2.

Trial 1 Trial 2

Control Treatment 1 Treatment 2 Control Treatment 1

LAIe 2.78 1.57 1.56 2.75 2.11
n LAI 2 6 8 4 23

n LAI: number of LAI plots, LAIe: Effective leaf area index.

This instrument is composed of five concentric rings with central zenith angles of 7, 23, 38, 53
and 68 degrees in a “fish-eye” optical sensor, which measures light in the blue band (320–490 nm)
under the canopy. Also, the light level that reaches the top of trees is simulated for calibration by
measuring it in clearings without trees under the same circumstances (and close to where the other
measurements are taken), so as to determine the ratio between the two transmittances (above and
below the canopy). Then, the gap fraction is estimated from each sensor ring. Finally, LAI is computed
through the inversion of the Poisson model comparing the transmittances from above and below the
canopy (LI-COR Inc., 2015).
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In this study, data acquisition was performed using an optical sensor equipped with a 90◦ view
restrictor in accordance with the guidance of the LAI-2200C manual, and a control unit that was used to
record readings above and below the canopy. All measurements were performed under uniform
overcast skies to reduce the effect of scattered light in the canopy.

In the forest, LAIe field measurements were made using the plot layout employed in similar
previous studies within circular plots [40]. Briefly, in each plot, one measurement is collected at the
plot centre, and four more are taken at each cardinal point, three metres from the centre. Due to
differences in the canopy, to guarantee low standard error of LAIe, supplementary measurements
were collected at random points within the LAI plot to reach a total of 18 measurements per plot.
Additionally, hemispherical photographs were taken within each plot using a digital camera (Nikon
Coolpix 5400) equipped with a fish-eye lens (FC-E9, Nikon), which was held in place horizontally.
All field measurements with both devices were made 1.5 m above ground in order to avoid ground
vegetation influencing LAI values.

The sampling points with the camera were the same as those used for the LAI-2200C in order to
rule out possible LAIe points where there was a wide range of sweet chestnut sprouts, which might
overestimate LAIe. As a consequence, LAIe was recomputed after field measurements by discarding
the points that, in the hemispherical photographs, showed a high degree of influence of the sweet
chestnut sprouts and those points were considered outliers.

2.3. Satellite Data

Google Earth Engine (GEE) is an online cloud platform of geospatial datasets at the planetary
scale that provides access to historical satellite imagery, and it is continuously updated [41]. Landsat-8
(L8) and Sentinel-2 (S2), a paired satellite, are two medium resolution Earth Observation satellites
that have become popular in the study of forest variables, including LAIe estimates, due to them
having better resolution than other satellites such as MODIS. L8 was launched in 2013 and has a spatial
resolution of 30 m across nine bands with a revisit time of 16 days. S2 satellite, launched in 2015, has 13
spectral bands of 10–30 m spatial resolution, a five-day revisit frequency. For this work, a temporal
imagery dataset from L8 available in GEE were used to analyze the study area from 2014 until the end
of 2019. The thinning treatments were carried out at the end of 2015, after the full leaf fall of the sweet
chestnut coppice, meaning that 2014 and 2015 are considered years without intervention and 2016 to
2019 are the years where the effect of treatments become visible in terms of canopy evolution. The L8
image collection selected was the atmospherically corrected surface reflectance data from the Landsat
8 OLI/TIRS sensors that feed into the USGS Landsat 8 Surface Reflectance Tier 1 with a precision and
terrain correction of level-1TP (for a more detailed explanation of the data, see [42]). These images
contain five visible and near-infrared (VNIR) bands, two short-wave infrared (SWIR) bands and two
thermal infrared (TIR) bands. In order to have a suitable dataset for the time series, the images were
visualized one by one in the GEE in order to select only those not affected by the presence of clouds or
snow. As a result, there were considerable lapses in continuity of the data and, in fact, only 82 out of
a total of 232 images were suitable for the research needs. However, the information is still valuable
because the extensive time frame of the available L8 images allows for the comparison of the situation
before and after thinning. S2 data, in contrast, is only available from 2016 onwards (i.e., after the
study started). Despite this, S2 images from 2016 and 2019 were used in the study so as to compare
them with those from L8 due to their better spatial resolution, as well as to enable valuable tools to
be developed for both satellites to assist in sustainable forest management. The S2 image surface
reflectance collection corresponds to the MultiSpectral Instrument, Level-1C from Copernicus program
(for a more detailed explanation, see [43]). S2 images contain 13 spectral bands representing top of the
atmosphere (TOA)reflectance. Again, all the images were visualized to select only those without snow
and clouds (124 out of 524) to use for the analysis of the canopy evolution over time. Once the L8 and
S2 datasets were debugged, different VIs were calculated. To do this, GEE information related to the
spectral bands necessary to calculate each VI was extracted at the plot level (i.e., using the same 10-m
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radius plots that were established for the LAIe field measurements) weighted in accordance with the
percentage of the pixel involving canopy cover.

The Normalized Difference Vegetation Index (NDVI) is one of the most commonly applied VIs in
forest studies and it is often related to LAI [44,45]. Despite its intensive use, however, NDVI has the
drawback of being sensitive to the reflectivity of the soil in which the plant is rooted, which limits its
potentiality as does the fact that it saturates in situations of dense canopy [45]. Therefore, to account
for changes in soil optical properties and minimize the background effect, a group of Soil-Line VIs
has been developed, such as the Soil-Adjusted Vegetation Index (SAVI), the Modified Soil-Adjusted
Vegetation Index (MSAVI) and the Optimized Soil-Adjusted Vegetation Index (OSAVI), among others.
VIs of this type facilitate improvements in canopy structure estimates and minimize the impact of the
background and the atmosphere (e.g., [46–48]). The authors of [49] designed various new indices:
the First Modified Triangular Vegetation Index (MTVI1), the Second Modified Triangular Vegetation
Index (MTVI2), the First Modified Chlorophyll Absorption Ratio Index (MCARI1) and the Second
Modified Chlorophyll Absorption Ratio Index (MCARI2), all of which are less sensitive to chlorophyll
content variations and are linearly related to LAIe, and also resistant to soil and atmosphere effects.
Thus, in this study apart from NDVI, a group of Soil-Line VIs was also evaluated. Table 3 shows the
group of VIs that were chosen, because of their theoretical sensitivity to canopy structure.

Table 3. Vegetation Indices included in this study and their formulations. R refers to reflectance and
the sub-indices indicate the value of the central wavelength in nanometres.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index NDVI = R800−R670
R800+R670

[50]

Soil adjusted vegetation index SAVI = (1+0.5)(R800−R670)
R800+R670+0.5

[46]

Modified Soil-Adjusted Vegetation Index MSAVI = (1 + L) R800−R670
R800+R670+L

[48]

Optimized Soil-Adjusted Vegetation Index OSAVI = (1 + 0.16) R800−R670
R800+R670+0.16

[47]

First modified triangular
vegetation index

MTVI1 =
1.2[1.2(R800 −R550) − 2.5(R670 −R550)]

[49]

Second modified triangular
vegetation index

MTVI2 =
1.5[1.2(R800−R550)−2.5(R670−R550)√
(2R800+1)2

−(6R800−5
√

R670)−0.5
[49]

First Modified Chlorophyll Absorption Ratio Index MCARI1 =
1.2[2.5(R800 −R670) − 1.3(R800 −R550)]

[49]

Second Modified Chlorophyll Absorption Ratio Index
MCARI2 =

1.5[2.5(R800−R670)−1.3(R800−R550)√
(2R800+1)2

−(6R800−5
√

R670)−0.5

[49]

In order to select the VIs, as proxies of LAIe, that best describe the temporal sensitivity in the
evolution of canopy cover over time after thinning treatments in the sweet chestnut coppice forest,
a simple linear regression between LAIe and the VIs from the most recent available date (Summer
2019) was used. The LAIe-VI relationships were investigated using the coefficient of determination
(R2), which shows the proportion of variation explained by the model, and the root mean square error
(RMSE), which is expressed in the same units as the dependent variable and gives an idea of the mean
error when using the model.

2.4. Comparing Canopy Evolution before and after the Treatments

To compare canopy development and its evolution over a number of years following thinning
treatment, this study used the Area Under the Curve (AUC) (Figure 3) to develop a method which
aims to detect historical changes in the evolution of forests.
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Figure 3. Diagram of the behavior of a Vegetation Index (VI) in a specific plot over three years and
its areas under the curve (AUC) in hypothetical experiment and control plots. AUCD represents the
difference in AUC between control and experiment plots.

In the AUC method, the first step is to generate a time sequence for the values of each VI for all
the images available in the study period, as illustrated in Figure 3a. All of these VI values are joined
to form a polyline that represents the dynamics of the canopy’s evolution across the period studied.
Each treatment has its own line, and the data for the Control plots serve to enable the detection of
changes and facilitate comparison with the treatment sites. As a deciduous species, the foliation period
of sweet chestnut is from the end of April to mid-June and leaf-fall occurs in November. Consequently,
all of the evaluated VIs tend to have higher values when there are leaves than when there are none,
meaning that curves will have their highest point in June, and reach values close to zero in the
winter months.

The second step is to calculate the AUC for the corresponding curve (Figure 3b.) using a time
interval of each natural year covered by the study, i.e., 1st January to 31st December. The different AUC
values (see Figure 3) for each treatment with respect to the control plots are then compared to detect
the differences and changes in the evolution of the canopy over the years. Because the VIs used in this
study have different ranges of variation, they were normalized, from 0 to 1, to facilitate comparisons.
In fact, the AUC detects how the VIs change over time and the behavior of the different VIs with and
without treatment.

Lastly, in the third and final step (Figure 3c), the differences in AUC (denoted by AUCD) between
each treatment and the control is calculated. AUCD can mitigate some of the variations in the data,
in our case foliage, in different years, in order to render different time series more easily comparable.
In Figure 4, Year 1 (pale orange) shows the effect of having images missing in or close to winter,
which leads to a potential increase in AUC values, Year 2 (green) reflects when there are missing images
near summer, meaning that the AUC decreases, and Year 3 (blue) represents the situation where there
is a lack of images in both winter and summer, resulting in compensations in AUC values. This method
was applied to all of the LAI plots, treatment plots and control plots, for the period analyzed in this
study, that is, from 2014 to 2019 for L8 and from 2016 to 2019 for S2.
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Figure 4. Method followed to mitigate differences in AUC due to availability or lack of availability of
images. Year 1 (lack of images in winter), Year 2 (lack of images in summer) and Year 3 (lack of images
in both summer and winter).

In addition, to test the statistical significance of the differences between treatments identified
through the graphical analysis, an analysis of variance (ANOVA) comparison between the average
AUC data for each trial in each year and between years was carried out, where p-value < 0.05 was
considered statistically significant.

3. Results

3.1. Regression Between VIs as Proxies of LAIe

The performance of the Soil-Line VIs differs to that of NDVI (Table 4). In the case of the Soil-Line
VIs for predicting LAIe, with both L8 and S2 data, the LAIe-VI linear models performed slightly better
in Trial 1 (R2 values ranging from 0.63 to 0.74) than in Trial 2 (R2 values ranging from 0.54 to 0.75),
but in all cases, more than 50% of the variation was explained. Furthermore, the indices MCARI2 and
MTVI2 showed the highest coefficients of determination with LAIe in both Trials. However, NDVI
models also performed well with S2 data, explaining more than 70% of variation, while in contrast,
with L8 data less than 30% of variation is explained.

Table 4. Relationships between LAIe and the VIs estimated from L8 and S2 for Trial 1 and Trial 2.
Second Modified Chlorophyll Absorption Ratio Index (MCARI2) (the best performance among the
Soil-Line VIs) and NDVI are shown in bold.

Trial1 Trial 2

L8 S2 L8 S2

VI R2 RMSE R2 RMSE R2 RMSE R2 RMSE

MCARI2 0.74 0.20 0.72 0.21 0.61 0.29 0.75 0.24
MTVI2 0.74 0.20 0.72 0.22 0.61 0.29 0.75 0.24
OSAVI 0.69 0.22 0.70 0.22 0.59 0.29 0.77 0.23
SAVI 0.68 0.22 0.63 0.24 0.55 0.31 0.74 0.24

MTVI1 0.67 0.22 0.65 0.23 0.57 0.30 0.71 0.26
MCARI1 0.67 0.22 0.65 0.23 0.57 0.30 0.71 0.26
MSAVI 0.67 0.23 0.63 0.24 0.54 0.31 0.74 0.25
NDVI 0.24 0.34 0.75 0.20 0.26 0.40 0.80 0.22

R2: coefficient of determination and RMSE: root mean square error.
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3.2. Canopy Evolution before and after the Treatments

For both satellites (L8 and S2), the VIs selected as proxies for LAIe were the MCARI2 (given that,
as explained in Section 3.1, of all the Soil-Line VIs it had the best agreement with LAIe) compared with
traditional formulations such as the NDVI (Figures 5–8).
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Remote Sens. 2020, 12, 3068 12 of 19

Figures 5 and 6 show the behavior of the VIs before and after each treatment for L8. Figures 7 and 8
show the canopy regrowth after the thinning treatment for S2. In all these figures for both satellites
(L8 and S2), image availability is indicated by small black dots along the bottom axis, while lack of
images due to cloud or snow is denoted by white spaces. Also, in Figures 5–8 the seasonality that
characterizes the sweet chestnut is clearly visible. At the end of each year, the VIs have a value close to
zero and then the following year the VI values increase until reaching their maximum value in the
summer months, which is when the sweet chestnut reaches its peak in terms of LAIe, indicating the
appropriateness of using VIs as a proxy of LAIe.

The thinning treatments were carried out after leaf fall at the end of 2015, so 2014 and 2015 provide
pretreatment data. It can be seen in Figures 5 and 6 that for this period of nonmanagement there is very
little differentiation between the lines in the graphs relating to the VI data for the control and treatments,
unlike in 2016 (the year immediately after the thinning) where the effects of the thinning treatments are
clearly shown. In Figures 5–8, plots with thinnings are shown in different colors: gray for Control
plots, orange for Treatment 1 and blue for Treatment 2 (only in Trial 1).

For L8 in Trial 1 and 2, the VI data throughout the time series is shown in the top of Figures 5 and 6,
respectively. The MCARI2 values demonstrate the progressive decrease in the visible effects of the
thinning in terms of canopy cover (in the satellite images) over time, particularly in the third and fourth
year after the thinnings (2018 and 2019). However, at the end of the time series, the differentiation
can still be seen but the difference is less than the previous years: the lines intermingle, and control
and treatments have similar values. In the case of NDVI, however, the thinning effect can only be
seen in the year after the thinning (2016), while in subsequent years, the thinning effect seems to
have disappeared since the lines for the control (green lines) and the treatments (orange and purple
lines) show similar values, particularly Control and Treatment 1, in both trials. In winter months,
however, the graphic relating to NDVI shows some anomalies (winter peaks), as this is when the
sweet chestnut loses its leaves, so the values of the VIs are the lowest of the year. For S2 the VI data
(top of Figures 7 and 8) results show the same tendency as described for L8 just after the thinning,
and, once again, the behavior is different for MCARI2 and NDVI. In Trial 1, MCARI2 reflects how the
influence of treatment decreases over the subsequent years, whereas for NDVI, the effect of the thinning
is only visible in the summer months for the two subsequent years, but from 2017 this tendency
changes and the differences are apparent in winter months. In Trial 2, both indices have the same
behavior as in Trial 1. For both satellites the configuration of the lines for each treatment that describes
the canopy behavior is impacted by image availability. For example, in 2019 for MCARI2 in the case
of L8 (Figures 5 and 6), the canopy behaves differently in comparison with the years before: 2019 is
characterized by the truncation of the summer peak. However, this effect disappears in 2019 for S2
(Figures 7 and 8).

Looking at the AUC data (central area of figure) in Figures 5–8, the effect of the lack of images
can be seen. For example, for L8 (Figure 5) in the year 2018 the lack of images over winter led to
an increase in the AUC value. Conversely, in 2019 there was a lack of images during summer, and as
a consequence, the AUC decreased. However, for S2, this phenomenon hardly ever occurs due to the
greater availability of valid images.

The average AUC data reveal a complementary vision of the canopy behavior compared to that
of the VI data without further processing. With AUC, the behavior of the VIs throughout the time
series is always easily seen. In these AUCs, for L8 and S2 and in both trials, the greatest difference
between treatments is in 2016. However, yet again, the various VIs behave differently. For both
satellites (L8 and S2), using MCARI2 the AUC values once again showed how the effect of the thinning
diminishes over time to the extent that AUC is similar for control and treatment plots at the end
of the time series (2018 and 2019). However, the behavior of the treatments in 2019 is clearer in
the S2 data (Figures 7 and 8) due the greater availability of images previously mentioned. In fact,
in Figure 7 Treatment 1 has a higher value for MCARI2 than for the other two treatments. In the case
of NDVI, on the other hand, for L8 in Trial 1 for 2018 (Figure 5) both treatments demonstrate only
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slight differences in values, while in 2019 and in Trial 2, this difference was not evident at all (Figure 6).
For S2, in Figure 7 NDVI again showed greater differences between the control plots and treatment
plots than did MCARI2. The AUC shows that for Trial 1 after 2017, Treatment 2 has higher values than
either Treatment 1 or the Control, the opposite of the results for MCARI2. For Trial 2 (Figure 8), on the
other hand, the difference between the Control and Treatment 1 is maintained until the end of the time
series data, the same as the MCARI2 data.

The results of the ANOVA conducted on the AUC data (Table 5) provide a complementary
evaluation of the differences between treatments. They reveal the same tendencies shown in Figures 5–8.
Differences between AUCs for the year 2016 were significant (p-value < 0.05) for both satellites and all
VIs, except for NDVI (L8 and Trial 1). For MCARI2, in Trial 1 significant differences were maintained
for longer between Treatment 2 and Control than between Treatment 1 and Control. In terms of satellite
differences for Trial 1, both satellites behave the same, but in Trial 2, the significant difference between
treatments for S2 is maintained until the end of the period analyzed.

Table 5. ANOVA data comparing AUCs for MCARI2 and NDVI for both satellites (L8: Landsat 8;
S2: Sentinel 2), for all treatments in both trials. X indicates where the difference between treatments
(C: Control; T1: treatment 1; T2: treatment 2) is significant (p < 0.05), and the dash (-)., where it is not.

Trial 1 Trial 2

T1-C T2-C T1-T2 T1-C

L8 S2 L8 S2 L8 S2 L8 S2

MCARI2

2016 X X X X X X X X
2017 -. -. X X X X X X
2018 -. -. X X -. -. -. X
2019 -. -. -. -. -. -. -. X

NDVI

2016 -. X X X X -. X X
2017 X -. X -. -. -. X X
2018 X -. X -. -. -. -. X
2019 - - - - - - - X

Figures 5 and 6 also show that, in the case of L8, the values of the VIs in the years before the
thinning (2014 and 2015) are similar to when LAIe field measurements were made (2019), indicating
the recovery of the canopy to previous levels of cover. The AUCD (bottom of Figures 5–8) shows the
magnitude of the change in Control compared to Treatment plots through minimizing the impact of
the lack of images and showing how the canopy develops over the years. For L8 (Figure 5), MCARI2
detects a greater difference between treatments 1 and 2 with respect to the control than NDVI (12.8%
and 6.9%, respectively for Trial 1, and 21.09% and 7.55% respectively for Trial 2). This is a trend that
continues until 2019 when the effect of treatments becomes barely discernible. However, this trend
occurs faster with NDVI, where from 2018 there is no difference between Treatment 1 and Treatment 2
with respect to the Control. In terms of S2 data, the difference between treatments and control levels
out in 2018 for both indices.

4. Discussion

The satellites Landsat-8 [51] and Sentinel-2A/B [52] are continuously acquiring and recording
huge amounts of image data, with different revisit times, which is valuable for monitoring the changing
earth surface. In this study, L8 and S2 satellite data were used for estimating different VIs for use as
proxies of LAIe in order to detect changes over time in canopy regrowth after thinning treatments.

In the north of Spain, only 35% of the L8 images and 30% of the S2 images available for the
time period analyzed could be used, as the remainder were severely affected by cloud or snow.
As a result, there are long stretches of time with no images. For instance, with the L8 data (as shown
in Figures 5 and 6) in 2019, the expected peak in summer is truncated by the absence of images.
This limitation is, to a great extent, related to the revisit time of 16 days for this satellite. However,
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with S2 data, the problem of not being able to see the peak generated in 2019 did not happen
(Figures 7 and 8) because S2 has a shorter revisit period, meaning the number of usable images in
the summer of 2019 was 44 for S2, in contrast to 15 for L8. As a result, in the study of the canopy
evolution of the sweet chestnut, the time in the season when a lack of images occurs, has differing
implications, i.e., it is less serious a problem in winter when the tree has no leaves than it is in summer,
at the maximum point of the species’ ‘greenness’. These two satellites have been compared in a number
of other studies, which have confirmed the capacity of S2 to provide comparable data with L8 data
because of their use of similar spectral bands [26,30].

The best prediction models for Soil-Line VIs as proxies of LAIe were obtained using S2
(R2 0.63–0.72 in Trial 1 and 0.71–0.75 in Trial 2), albeit that there are only small differences with
the L8 data (R2 0.67–0.72 in Trial 1 and 0.54–0.64 in Trial 2). In contrast, NDVI showed good prediction
for S2 (R2 0.75 and 0.80 in Trial 1 and 2, respectively), but not so good for L8 (R2 0.24 and 0.26).
Among the tested VIs, the study findings here are in accordance with several other studies that have
reported that introducing the properties of the underlying soil in a VI minimizes the effects of the soil
background on the vegetation signal [45,48,49,53]. Although NDVI is also a strong indicator of forest
greenness and biomass [54–57] and it is often related to LAI [44], it has some problems in estimating the
vegetation cover. NDVI at moderate values of LAI has difficulties distinguishing canopy from green
understory, which causes noncontrasting background reflectance [58,59], while, contrastingly, it lacks
sensitivity to green in situations of low vegetation cover. For this reason, it can over- or underestimate
vegetation cover [60]. However, although there is a wide range of studies focused on the behavior of
different VIs, there is a lack of VI research data related to forest management and temporal sensitivity
in the early response of vegetation after thinning.

The change caused by the thinning is clearly detectable using L8 data, which covers a two-year
period before the thinning treatment as well as four years after it, while the available S2 time series
only starts a few months before the thinning, so the direct changes produced cannot be analyzed from
these data, although it does allow for the complete analysis of the evolution of the canopy after the
event. The sensitivity of MCARI2 and NDVI to forest management has, however, shown behavioral
differences in monitoring forest canopy changes. MCARI2 data from both L8 and S2 reflect the trend of
how the influence of treatment on the canopy cover decreases over the years, to the point that in 2019,
it shows similar values to those before the treatment. Soil line indices, such as MCARI2, considerably
reduce the influence of soil, especially for homogeneous plant canopies [61] such as in our study site,
where all of the new sprouts of the sweet chestnut have the same type of leaves as the big trees left
after the thinning. In contrast, NDVI showed some irregularities. In L8 (Figures 5 and 6), in winter
when there are no leaves, the NDVI has some peaks for the time data series analyzed (i.e., it behaves
as if there were some leaves remaining) and in S2 the differences between treatments can mainly be
seen in the winter months rather than the summer, again simulating the presence of leaves in the
trees. Sweet chestnut is a late foliation species so in spring or autumn the understory can influence the
dynamics perceived by the NDVI. These anomalies support the previously mentioned issue of NDVI
not performing as well as some Soil–Line VIs when there are low levels of vegetation canopy.

This work demonstrates that the AUC method for analyzing satellite imaging time series data
with respect to annual or seasonal changes is useful for monitoring annual or seasonal changes in the
canopy of sweet chestnut coppice in the climatic zone of the study area. Such events generate a time
signature that indicates a past event in the forest stand. The change considered in the study (i.e., thinning)
is identified in the graphical representation of the time series data by a V-shaped dip (e.g., Figures 5 and 6
in 2016). The VIs tested in this study demonstrate that Soil-Line VIs (such as MCARI2) seem to be more
explicative than NDVI, with MCARI2 tending to exhibit the V-shaped dip, while NDVI shows some
anomalies (Figures 5–8). In addition, MCARI2 clearly shows the tendency of LAIe recovery in terms of
canopy regrowth (comparing the values of the VI before and after the thinning for both trials using
L8 data), but there is no clear pattern in the NDVI time signature. The ANOVA results support the
differences found between treatments using MCARI2 and NDVI throughout the study, especially in
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2016, the year after the thinnings. However, while analyzing statistical differences between treatments
is essential, in this case study it is also important to remember that new sprouts influence VI values.
Consequently, graphical analysis is also necessary, as in the case of the MCARI2 data, where, despite
the ANOVA not being significant, the graph showed clear differences in forest canopy.

The AUCD helps to describe what happened in the evolution of each treatment with respect
to the control plots. The same tendency for the MCARI2 to demonstrate apparently logical canopy
evolution is once again shown in Figures 5–8. Canopy cover seems to recover, and the difference in
the AUCD lines between the treatment and the control becomes smaller over the period analyzed,
especially in 2018 and 2019. In other words, LAIe in these years is similar to that before the thinning.
Also, in general the AUCD eliminates the part of the variation that is due to the availability or lack of
availability of images, thereby stabilizing the value of the control, and the slope of AUCD becomes
more homogeneous after the treatment.

LAIe field measurements were made four years after the thinning. However, as shown in Figures 5
and 6, the value of the VIs in this year (2019) is almost the same as before the thinning treatment,
although the forest distribution is different. This finding was visually verified in the field, where it
was seen that sweet chestnuts that had been cut down in the thinning operation resprouted and
their growth filled the gaps between the trees between the trees that had been left standing after the
thinning. Each thinning operation results in an increase in the diameter growth of the remaining
trees, which is compensated for after a few years by the trend of growth decreasing as trees age [2].
In the cases in this study, in Trial 1 for Treatment 1 the diameter increase was almost 2.5 cm more
than the Control, and for Treatment 2 almost 4 cm, while in Trial 2, the growth associated with
Treatment 1 was almost 4 cm. The extent to which the remaining growing stock increases is largely
determined by the intensity of thinning [62]. It is important to know which VIs are most effective
in monitoring the impact of forest management treatments. Thinning interventions provide better
quality roundwood at final harvesting [37], which can be used for long-term products [63], it is
a costly operation, although using the most effective monitoring system can offset some of the costs of
thinning operations. Also, [64] showed a positive influence on the quantity of carbon stored in long-
and medium-term products, which store carbon for a long time and have more and better market
possibilities than the short-term products that are usually obtained from unmanaged sweet chestnut
sites. As such, this study presents a tool for the sustainable management of forests, which can assess
the recovery of the sweet chestnut forest stand following thinning operations.

5. Conclusions

This study presents useful information for forest managers of sweet chestnut coppice by providing an
approach for detecting and monitoring changes in this particular forest ecosystem. In this case, the forest
change analyzed is directly related to forest management, i.e., thinning treatments. Two different thinning
intensities were considered with respect to a control site in two trials using time series data from L8 and S2
satellites. Different VIs were used as indicators of canopy regrowth-rate for the monitoring of the impact
of thinning treatments.

The L8 data allowed for the comparison of the performance of the VIs both before and after
thinning, and the change brought about by the treatment is clearly observable: the impact is far greater
in the years immediately following the treatment, then the effect becomes less, to the extent that, at the
end of the time series, the difference between treatment and control plots is relatively small, with VI
values being similar to those before the thinning treatment. In addition, the frequent revisit time of S2
helped to better describe the behavior of the canopy in periods of the year where there was a lack of
images from L8 due to cloud or snow. The images from both satellites evidenced that the effect of the
thinning treatment is clearly detectable the following year, but not so much four to five years later,
once yearly images do not allow past thinning events to be detected, therefore stressing the need to use
time series to identify and analyze the effects of such events.
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Of the Soil-Line VIs considered, MCARI2 was found to be a better predictor and proxy of LAIe

than NDVI. The behavior of MCARI2 is logical given the species involved and treatments carried out,
unlike NDVI, which showed some anomalies (for example, in winter it shows a difference in canopy
cover between treatments even though this is not logical because the sweet chestnut has no leaves).
MCARI2 data from both L8 and S2 reflect the trend for the influence of thinning on canopy cover to
decrease over the years, with significant differences between Control and treatments being evident in
both 2016 and 2017 (the degree of difference depending on the treatment and trial). This is to the point
that in 2019, it shows similar values to those before the treatment. For NDVI, however, the thinning
effect can only be seen in the year after the thinning (2016).

The results of this study reveal that the AUC method used for testing time-series of remote sensing
data is a useful tool for monitoring changes in sweet chestnut coppice stands. It generates a specific
V-shaped time-signature, the vertex of which coincides with the thinning event. MCARI2 detects
a greater difference between treatments 1 and 2 with respect to the control. In fact, MCARI2 data
tended to exhibit the logical V-shaped tendency, but in the case of NDVI, once again, some anomalies
appeared. As such, this AUC method for characterizing past events such as the one analyzed in this
study helps to monitor canopy development over the years, thus providing forest managers with
another tool to assist decision making in the development of sustainable forest management strategies.
In this sense, this tool, by monitoring time-series, allows forest managers to detect when thinning
interventions took place in the past, by finding the V-shaped dip in the data curve. As a result, it will
help forestry managers to develop strategies for sweet chestnut coppice on the basis of the timing of
previous management interventions, information that, in many cases, would otherwise be impossible
to ascertain.
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