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Abstract: The tassel development status and its branch number in maize flowering stage are the
key phenotypic traits to determine the growth process, pollen quantity of different maize varieties,
and detasseling arrangement for seed maize production fields. Rapid and accurate detection of
tassels is of great significance for maize breeding and seed production. However, due to the complex
planting environment in the field, such as unsynchronized growth stage and tassels vary in size
and shape caused by varieties, the detection of maize tassel remains challenging problem, and the
existing methods also cannot distinguish the early tassels. In this study, based on the time series
unmanned aerial vehicle (UAV) RGB images with maize flowering stage, we proposed an algorithm
for automatic detection of maize tassels which is suitable for complex scenes by using random
forest (RF) and VGG16. First, the RF was used to segment UAV images into tassel regions and
non-tassel regions, and then extracted the potential tassel region proposals by morphological method;
afterwards, false positives were removed through VGG16 network with the ratio of training set
to validation set was 7:3. To demonstrate the performance of the proposed method, 50 plots were
selected from UAV images randomly. The precision, recall rate and F1-score were 0.904, 0.979 and
0.94 respectively; 50 plots were divided into early, middle and late tasseling stages according to the
proportion of tasseling plants and the morphology of tassels. The result of tassels detection was
late tasseling stage > middle tasseling stage > early tasseling stage, and the corresponding F1-score
were 0.962, 0.914 and 0.863, respectively. It was found that the model error mainly comes from
the recognition of leaves vein and reflective leaves as tassels. Finally, to show the morphological
characteristics of tassel directly, we proposed an endpoint detection method based on the tassel
skeleton, and further extracted the tassel branch number. The method proposed in this paper can well
detect tassels of different development stages, and support large scale tassels detection and branch
number extraction.

Keywords: maize tassel; tassel branch number; unmanned aerial vehicle; convolution neural network;
VGG16; random forest

1. Introduction

Maize (Zea mays L.) is a monoecious crop, and the tassel is a branched structure atop the plan.
The tassels’ size and shape (branch number, compactness, etc.) have influence on the yield and
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quality of maize through affect the amount of pollen produced, the plant nutrition supply and
the light interception of lower leaves [1,2], and such influence will be more significant with the
increase of planting density [3,4]. In addition, in order to ensure the purity and quality of maize
hybrid seed, cross-pollination should be ensured in the tasseling stage of seed maize production
field, so tassels of female plants have to be removed through artificial or mechanical process to
prevent self-pollination [5–7]. Therefore, tassel development has always been one of the important
phenotypic traits in maize breeding and seed production. Rapid and accurate detection of tassel
development status and branch number during maize flowering stage is of great significant for maize
production management, and it is also of practical value for the arrangement of detasseling.

The complex planting environment in the field, such as uneven illumination conditions,
leaves covered tassels severely and obvious difference between varieties, has brought great challenges
to the automatic detection of maize tassels. Traditional crop phenotype acquisition is dependent on
artificial field measurement, which is labor-intensive and time-consuming [8,9], and moreover, there is
no uniform standard for phenotypical data collection, so the data is subjective. With the improvement
of computer performance and the development of image processing, it is possible to extract crop
phenotypic traits quickly and automatically. According to the different data acquisition platforms,
the tassels detection research in field environment is mainly based on fixed observation tower and
unmanned aerial vehicles (UAVs) high-throughput phenotype platform [10–14].

Compared with platform based on ground vehicles [15], the acquisition of images by cameras
installed on fixed observation tower or cable-suspend platform is not limited by crop types and soil
conditions (for example, the irrigated soil will hinder the mobile vehicle to collect data), which is
suitable for real-time monitoring in the field [16,17]. Lu Hao et al. obtained sequence images of
maize tassels by using a camera installed on an observation tower, and each sequence covered the
tasseling stage to the flowering stage. On this basis, they carried out studies on tassel identification [11],
and maize tassels counting which was based on the local counts regression [18]. In terms of distinguishing
features, Hue component image in Hue-Saturation-Intensity (HSI) color space has been proved to be
able to distinguish tassels from leaves [12,19]. Mao Zhengchong et al. [12] successfully separated the
approximate region of tassels through binarization processing and median filtering of Hue component
image, and then used LVQ neural network to eliminate the false detection regions, with the final detection
accuracy reaching 96.9%. This kind of method can achieve high accuracy, but it is difficult to apply
to large scale breeding field because its data acquisition and processing methods are low throughput,
and equipment is expensive.

In recent years, UAVs equipped with different sensors have attracted extensive attention from
researchers and breeders due to their advantages such as flexibility, high spatial and temporal
resolution, and relatively low cost [17,20]. UAVs high-throughput phenotype platform can realize
phenotypic analysis on many breeding plots in real time and dynamically, and is regarded as
an indispensable tool for plant breeding [21–23]. Some scholars have studied sorghum heads
detection [24,25], digital counts of crop plants at early stage [26–28], tree canopy identification through
UAV images [29,30], and crop disease monitoring [31,32]. There are two studies on maize tassels
detection based on UAV platform, Zhang Qi [13] divided UAV image into several small objects by
object oriented classification method, and then identified tassels with vegetation index and spectrum
information, with the overall accuracy reaching 85.91%. Yunling Liu et al. [14] used faster region-based
convolutional neural network (Faster R-CNN) with ResNet and VGGNet to detect maize tassels,
founded that the ResNet as the feature extraction network, was better than the VGGNet, and the
detection accuracy can reach 89.96%. Compared with fixed observation tower, UAVs high-throughput
phenotype platform is flexible, low-cost and has the potential to be applied in large scale. However,
the above methods did not identify tassels in different tasseling stages, which causes the detection
scene is single and difficult to meet the demand of dynamic monitoring for tassel development.
Moreover, these methods terminate in the detection stage, without more detailed analysis (such as the
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morphological characteristics of tassels etc.) that made it impossible to show the tassels’ development
to breeders or production managers intuitively.

To know tassels’ development status in maize breeding fields and seed maize production fields in
time, and also provide decision support for varieties selection and the detasseling arrangement, a novel
tassels detection method suitable for complex scenes is urgently needed. Therefore, the objective
of this study is to propose an accurate method for tassels detection that suitable for different maize
varieties and tasseling stages based on time series UAV images (from tasseling begins to ends of all
breeding plots). Considering that maize tassels vary greatly in shape and size as plant grow over time,
and unsynchronized growth stage between the plots, etc. in this study, we first divided images into
tassel regions and non-tassel regions by using random forest (RF), and then extracted the potential
tassel region proposals by morphological method; afterwards, false positives were removed through
VGG16 network, and the influence of different tasseling stages on the model accuracy was analyzed;
finally, we proposed an endpoint detection method to explore how to apply detection results to the
extraction of tassel branch number.

2. Materials and Methods

2.1. Data Acquisition

The field trial was in Juqiao Town, Hebi City, Henan Province, China. The trial area was
approximately 34.5 m from north to south and 72 m from east to west, including 170 breeding
plots with a size of 2.4 m × 5 m. The plant density of these plots was 67500 plants/ha, and the row
spacing was 0.6 m. In this trial, 167 maize varieties of different genetic backgrounds were sown on
17 June 2019, among which Zhengdan958 was repeated 4 times as the check variety, while the others
were not repeated (Figure 1).

Figure 1. The layout of experimental field.
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To improve the image accuracy of UAV in this study, 15 square panels with the size of
50 cm × 50 cm were deployed in the field (Figure 1) to be used as ground control points (GCPs)
and measured by Real-time kinematic (RTK) technology (i80, Shanghai Huace Navigation Technology
Ltd., Shanghai, China) with centimeter-level accuracy. A DJI ZENMUSE X4s camera (resolution:
5472 × 3648, DJI-Innovations, Inc., Shenzhen, China) was installed on the DJI Inspire 2 drone
(DJI-Innovations, Inc.) to record RGB images. The UAV’s flight path was set by DJI GSPro software in
advance, with 85% forward overlap and 85% lateral overlap. To ensure that the model proposed in this
study can realize the tassels detection of different varieties and different tasseling stages, we collected
5 groups of data for 4 days from 7 August 2019 to 12 August 2019 (no image data was collected on
10 and 11 August, due to the strong wind and light rain respectively, and 2 groups of image data were
collected at 9:00 and 14:00 on 8 August). The flight altitude was set to 20 m, and about 500 digital
images were collected for each flight, so a total of about 2500 images were collected.

2.2. Schematic Diagram of Method

Compared to the controllable greenhouse environment, there are many challenges of monitoring
maize tassels in field: (1) complex background (Figure 2a); (2) tassels vary in size, color and shape
caused by light conditions, varieties and unsynchronized growth stage (Figure 2b); (3) other factors,
such as tassel pose variations caused by wind during shooting (Figure 2c); (4) the newly grown tassels
do not have special shape, and the color is similar to the reflective leaves, which further increases the
difficulty of tassels detection.

Figure 2. Challenges of maize tassels detection in field. (a) Complex background: (1) soil background,
(2) green leaf, (3) reflective leaf, (4) shadow. (b) Tassels vary in shape and size: (1) (2) tassels vary in
shape, and (3) size; (c) Tassel pose variations caused by wind.

In view of the problems to be solved and the challenges faced, we proposed an automatic
tassels detection method combining RF and VGG16 network. Figure 3 shows the main process of
this method. First, RF classifier was used to conduct pixel-based supervised classification of UAV
images. The advantage of this process is that we can find tassels of any size, but it would also cause
problems such as interference pixels and unconnected tassel regions; therefore, the morphological
dilation method was used on unconnected regions belongs to tassels and noises, which are called
the potential tassel region proposals; In the process of RF classification, pixels of other categories
may be misidentified as tassels, so the potential region proposals have some wrong connected
regions. To reduce the false positives, we used VGG16 network to re-classify the potential tassel
region proposals and obtain accurate detection results; finally, we explored how to extract branch
number of detected tassels.
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Figure 3. Schematic diagram of method.

2.3. Potential Tassel Region Proposals by RF and Morphological Method

Both the dynamic monitor of tassels development in breeding field, and the detasseling
arrangement of the seed maize all require the detection of tassels to have high timeliness.
Selective search strategy is a common method in the field of object detection and becomes an essential
element for fast detection. It extracts potential bounding boxes based on image segmentation and
sub-region merging [33], which can effectively solve the problems of high computational complexity
and multiple redundant bounding boxes in exhausted search [11]. Referring to the idea of selective
search, we proposed a method for the extraction of potential tassel region proposals that is suitable for
our study. This method consists of two stages, including the tassel regions extraction by RF, and the
potential tassel region proposals through morphological methods.

2.3.1. The Extraction of Tassel Regions by RF

In this study, we not only need to accurately identify the position of maize tassels, but also to
extract the morphological characteristics. We used the RF to separate tassels from the background
environment first. RF is an effective integrated learning technology proposed by Breiman [34] in
2001, it can reduce the correlation between decision trees through random selection of features and
samples. By combining multiple weak classifiers, the model has high precision and good generalization
ability [35], and has been successfully applied to biomedical science, agricultural informatization and
other fields [36–39].

Considering the diversity of light conditions, and tassels vary in size and shape, 4 images were
randomly selected from 5 groups of UAV data, with a total of 20 images were selected to label
samples. To minimize the influence of camera lens distortion, all these images were cropped to 25%
of original size (Figure 4b). A total of 3835 sample points were labeled through generating random
points (Figure 4c, in this way, samples can represent the actual distribution of field environment type),
sample points were divided into 5 categories: leaves, tassels, field path, road (there were hardened
roads in some images), and background shadow. Among them, tassel samples accounted for 6%.
To compare the influence of different tassel sample proportions on the classification results, some tassel
samples were added in the way of artificial labeling.

For each sample, a series of color features were calculated, including R, G, B, H (Hue),
S (Saturation), V (Value), ExG (Equation (1)), ExR (Equation (2)) [40,41]. The ratio of training set
to test set is 2:1, and the proportion of tassel samples (4%, 6%, 10%, 15%, 20%, and 25%) in training set
was adjusted for multiple experiments. From the results of multiple experiments (Table 1), it can be
found that the recall of tassel increased gradually while the precision decreased, as the proportion of
tassel samples increases. This indicates that the classification model tends to categories with a large
number of samples, and the classification results are obviously affected by the sample proportion.
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In this study, after the proportion of tassel samples reaches 10%, the identification performance of
model for tassel tends to be stable, and based on the overall accuracy (OA), the proportion with 15% is
considered to be the best.

ExG = 2g − r − b (1)

ExR = 2r − g − b (2)

The corresponding calculation equation of r, g, and b channel characteristics is as follows:
r = R

R+G+B

g = G
R+G+B

b = B
R+G+B

(3)

Figure 4. Process of sample acquisition. (a) Original image. (b) Cropped image. (c) Random sample
points (white points).

Table 1. Classification results under different proportions of tassel samples.

Proportions of Tassel Samples Precision Recall F1-Score OA

4% 0.94 0.70 0.80 0.877
6% 0.93 0.72 0.81 0.881

10% 0.89 0.80 0.84 0.886
15% 0.89 0.80 0.85 0.891
20% 0.86 0.84 0.85 0.888
25% 0.85 0.84 0.84 0.880

According to the characteristics of the RF classifier, the importance of features could be evaluated.
We applied the permutation importance method based on test set, which was evaluated by permuting
the column values of a single feature, rerunning the trained model, and then calculating accuracy
change as importance score [34,42]. This method is more reliable than the Gini importance [43].
The rfpimp package with python was used to complete this, and the feature importance obtained
is shown in Figure 5. It can be found that ExR has the highest importance score, followed by G
(green band), while the B (blue band) has the lowest importance score. Figure 6b shows the classification
results of the UAV image, and tassels’ morphological characteristics are well displayed. After this,
other categories except tassel were selected and integrated together to obtain binary image of tassels
(Figure 6c), called tassel regions.
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Figure 5. Importance derived by permuting each feature and computing change in accuracy.

Figure 6. The extraction of potential tassel region proposals. (a) Original image. (b) Classification
result by RF. (c) Binary image of tassels (white is tassel regions, black is non-tassel regions). (d) Result
of morphological dilation (white is tassel regions, black is non-tassel regions).

2.3.2. Potential Tassel Region Proposals Based on Morphological Processing

In the complex field environment, the mutual occlusion between top leaves and tassels is serious,
leading to the fact that tassels in the binary image obtained in Section 2.3.1 were not connected regions
(Figure 6c), and there is also the problem that other categories’ pixels were misidentified as tassels.

To remove some of noises, we applied morphological remove small objects on binary image,
and then, used morphological dilation on unconnected pixel regions belongs to tassels and noises in
order to obtain potential tassel region proposals (Figure 6d).
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2.4. Fine Detection of Tassels by Using VGG16

To reduce the false positives, the potential tassel region proposals obtained after morphological
processing were labeled, with 0 representing non-tassel connected region and 1 representing
tassel connected region. A total of 2745 samples were labeled, including 1230 positive samples
(tassel connected region) and 1515 negative samples (non-tassel connected region).

We found that many labeled samples contained less surrounding information due to the small area
of the envelope rectangles, making it difficult for human eyes to recognize these samples. As shown
in Figure 7, all the samples were labeled with human recognition attribute (called recognition),
and analyzed the distribution of envelope rectangles’ pixel number. Almost all of (96%) the envelope
rectangles out of unidentifiable samples (recognition = 0) are smaller than 600 pixels, so the envelope
rectangles were expanded to 600 pixels according to the aspect ratio before put into VGG network,
so that more information can be included. Although nearly half of the envelope rectangles out of
identifiable samples (recognition = 1) are less than 600 pixels, after verification, almost all of these
samples are non-tassel regions, which means they could be recognized because of their special color.

Figure 7. The pixel number distribution of envelope rectangles.

The VGG network was proposed by the Visual Geometry Group of Oxford University,
and participated in the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), won the
first and second places in localization and classification tasks. VGG network adopts the superposition
of multiple 3 × 3 convolution filters to replace a large convolution filter, which can increase the network
depth and reduce the number of total parameters at the same time [44]. Therefore, the idea of 3 × 3
convolution filters has become the basis of various subsequent classification models. Two common
structures in VGG networks are VGG16 and VGG19, they are differed in the number of convolutional
layers that VGG16 has 13 convolutional layers while VGG19 has 16.

VGG16 network structure was selected in this paper, and we used the weight parameters
from ImageNet’s pre-training model, to achieve better training results and reduce the running time.
This study deals with binary classification, so replace the activation function of the output layer with
the sigmoid (Figure 8). The ratio of training set to validation set was 7:3. To prevent overfitting due to
limited samples and improve the model’s generalization, data augmentations through small random
transformations with rotate and flip were used. The model’s iteration and batch size were 50 and 64,
respectively, initial learning rate was 0.001 and adopted the learning rate decay strategy. We fine-tuned
the obtained optimal model by releasing the deep network parameters, to make the model parameters
more consistent with the data in this study.
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Figure 8. Architecture of VGG16 network.

2.5. Extraction of Tassel Branch Number

As an important factor determining tassel size and pollen quantity, the tassel branch number is
one of the most important indicators in maize breeding. Some researchers placed tassels collected
in the field in a portable photo boxes for taking pictures. Branch number was estimated by a series
of circular arcs from the lowest branch node, the number of intersections between each circle and
binary object was calculated, and the greatest value was taken as branch number [4]. However,
the data acquisition of this method is low throughput, which is not suitable for large scale application.
Moreover, this calculation method of branch number is also not suitable for the UAV images.

In this paper, the tassel branch number was extracted from the result of morphological dilatation
(which can be extracted from Section 2.3.2). Skeleton extraction was performed first, and then
an endpoint detection method suitable for tassels’ shape were proposed based on this (Figure 9).
This method abstracts tassel skeleton into a matrix composed of 0 and 1 (0 is the background pixel and
1 represents the skeleton pixel). Based on the principle of most background pixels around the tassel
endpoint, the number of background pixels in the window (3 × 3) with skeleton point as center was
calculated. The tassels’ endpoints are those skeleton points that have the most background pixels.

Figure 9. Endpoint detection of tassels. (a) 0, 1 matrix of tassel skeleton. (b) Matrix after applied
padding, the blue box is a 3 × 3 window. (c) Pixel with the deepest color are the endpoints of tassel.

2.6. Model Evaluation

To evaluate performance of the proposed method, accuracy, recall rate and F1-score were
selected [45]. Precision refers to the proportion of correctly detected in all positive results returned
by our model, with a ratio of 1.0 being perfect; recall (1.0 is perfect) indicates for all relevant samples,
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how many are correctly detected, and F1-score indicates the harmonic average of the precision and
recall. The metrics were calculated as follows:

Precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 − score =
2 × Precision × recall

Precision + recall
(6)

where TP, FP, and FN are the number of true positives, false positives and false negatives, respectively.

3. Results

3.1. Influence of the Envelope Rectangles’ Size on Model Accuracy

According to the description in Section 2.4, we have trained both the enlarged of envelope
rectangles (for samples with envelope rectangle less than 600 pixels, we expanded them to 600 pixels
according to the aspect ratio) and the direct use of original envelope rectangles. The iterations of model
was set as 50. Figure 10 shows the loss and accuracy curve during model training after the expansion
of envelope rectangles.

Figure 10. Loss and accuracy curve.

We fixed the shallow network parameters of the optimal model obtained during iteration,
and released different number of deep networks for fine-tuning (Table 2). It can be found that
no matter how many several layers of deep network were released, the recognition performance of
the enlarged of envelope rectangles is better than original envelope rectangles. This is because the
more surrounding information was included in samples, the more comprehensive model can learn
(especially for the samples whose real category is small part of leaf, after the enlarged of envelope
rectangles, it will be found that the surrounding scenes are different from the real tassels). Moreover,
when the envelope rectangles were enlarged, the model obtained by releasing networks that are behind
the eighth convolution layer has the highest validation accuracy, which is 0.954.
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Table 2. Validation accuracy of model under fine-tuning.

Envelope Rectangles’ Size
Validation
Accuracy_6

Validation
Accuracy_8

Validation
Accuracy_10

original envelope rectangles 0.944 0.935 0.935
600 pixels 0.952 0.954 0.940

Validation accuracy_6 represents the validation accuracy of model obtained by
releasing deep networks that are after the sixth convolution layer.

3.2. Influence of Different Tasseling Stages on Detection Accuracy

To demonstrate the performance of the proposed method, 50 plots were selected from the
series UAV images randomly. The detection results of this method is shown in Figure 11. The red
boxes, blue boxes, and yellow boxes in the figure represent automatically detection, absent detection,
and incorrect detection by proposed method, respectively. It can be found that different shapes,
sizes and even tassels that can just be observed by human eyes could be well detected (Figure 12).
The precision, recall rate and F1-score were 0.904, 0.979 and 0.94, respectively (Table 3). It should be
noted that some of tassels were covered by leaves severely, leading to the failure to connect these
tassels through dilation processing of Section 2.3.2. Therefore, a small part of tassels’ branches were
also marked in the final detection results, which were regarded as false positives by us. In addition,
the model error mainly comes from the recognition of leaves vein and reflective leaves as tassels
(Figure 12).

It was found that the detection effect was related to the tasseling stage of breeding plots,
when analyzed the detection accuracy. Therefore, the tasseling stage of breeding plots were divided
into early, middle and late tasseling stages according to the proportion of tasseling plants and whether
the tassels have complete morphological characteristics. The definition of tasseling stages are as follows:
tasseling proportion is less than half is early tasseling stage (Figure 11a,b); tasseling proportion is more
than half, but most of them do not have complete morphological characteristics is middle tasseling
stages (Figure 11c,d); tasseling proportion is more than half and tassels have complete morphological
characteristics is late tasseling stage (Figure 11e,f).

According to Table 3, the detection effects of three different tasseling stages are as follows: late
tasseling stage > middle tasseling stage > early tasseling stage, and the corresponding F1-score are
0.962, 0.914 and 0.863 respectively. The effect of early and middle tasseling stage was worse than that
in the late stage, mainly reflected in the low precision. This is because the top leaves of maize plants in
these two stages were not fully unfolded, and the high flexibility leads to the large inclination angle.
Under the same light condition, the reflection phenomenon of such leaves would be more significant,
which is easy to be misidentified as tassels. Moreover, no matter at which tasseling stage, the recall
rate was always higher than precision, which indicates that there were fewer tassels missed by the
proposed method, but have the phenomenon of other objects (mainly leaves vein and the reflective
leaves, Figure 12) were identified as tassels.

Table 3. Evaluation of tassels detection results.

Tasseling Stage TP FP FN Precision Recall F1-Score

Early tasseling stage (include 11 breeding plots) 58 45 5 0.778 0.969 0.863
Middle tasseling stage (include 13 breeding plots) 585 86 24 0.872 0.961 0.914

Late tasseling stage (include 26 breeding plots) 1347 90 15 0.937 0.989 0.962
Overall (include 50 breeding plots) 2090 221 44 0.904 0.979 0.940
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Figure 11. Detection results of tassels. The red boxes, blue boxes, and yellow boxes in the
figure automatically represent detection, absent detection, and incorrect detection by proposed
method respectively.

Figure 12. Detailed diagram of detection results. Red boxes represent automatically detection by
proposed method, (1) the newly grown tassels; (2) reflective leaf was misidentified as tassel; (3) and (4)
leaves vein were misidentified as tassels.

3.3. The Calculation of Tassel Branch Number

Before extracting the tassel skeleton, we found that the envelope rectangles of detected tassels
may contain partial branches of other tassels caused by the high planting density in the field, leading
to some interference connected regions (the red boxes at the Figure 13b) in the result of morphological
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dilatation (which can be extracted from Section 2.3.2). Therefore, before skeleton extraction and
endpoint detection, interference connected regions should be removed first.

The tassel branch number was calculated as follows (Figure 13c,d). The uppermost branch of
tassel cannot be detected because our image is taken from orthographic angle. Therefore, the final
branch number needs to add 1 to the endpoint detection result. In this example, the tassel branch is
7 endpoints plus the uppermost branch, making a total of 8 branches.

Figure 13. The calculation of tassel branch number. (a) Original image. (b) Binary image after
morphological dilatation. (c) Tassel skeleton. (d) Endpoint detection.

4. Discussion

4.1. Comparison of the Generation Method of Detection Boxes

The detection of tassels carried out in this paper can be regarded as a common object detection
problem in the field of computer vision. Yunling Liu et al. [14] have realized the detection of tassels by
using the Faster R-CNN. Faster R-CNN is a two-stage object detection algorithm proposed by Ren
Shaoqing et al. [46], which changed the generation method of detection boxes based on Fast R-CNN
and proposed the Region Proposal Networks (RPN) strategy. RPN has become a mainstream method,
it form a series anchor boxes as initial region proposals by setting different anchor ratios and scales for
each pixel on the feature map, which was obtained by the convolution neural network. RPN could
improve the generation speed of region proposals, but the smallest anchor box (1282 pixels) in RPN
is also bigger than most of tassels, which will affect the detection accuracy of model [47]. Yunling
Liu et al. [14] also payed attention to this problem, so the anchor size was adjusted from [1282, 2562,
5122] to [852, 1282, 2562], and the final prediction accuracy of tassels increased from 87.27% to 89.96%.

In summary, the size setting of anchor boxes is particularly important in RPN, especially for the
tassels detection problem in this paper that including different tasseling stages (tassel size changes
significantly) and different shapes. The ratio of the width to height of the tassel samples was used to
represent the tassel morphology, and Figure 14 shows the distribution of tassels morphology and size in
this paper (tassel samples labeled in Section 2.4). We found that the width to height ratio (Figure 14b)
is concentrated in (0.2, 2.0), and the default anchor ratios in RPN are 0.5, 1, 2, which can satisfy the
requirements of different shape of tassels; the distributions of pixel width and height of tassel samples
(Figure 14a) are mostly within the range of (11, 100), so the default size [1282, 2562, 5122] in anchor
parameter cannot cover tassels in our dataset. To better identify tassels, we can adjust the size of anchor
and add additional anchor boxes while keeping the default anchor ratios. However, there is just a simple
discussion, the optimal parameter setting needs to go through a series of experimental analysis.

Actually, in our proposed method, we divided the images into tassel regions and non-tassel
regions by using random forest, and then extracted the potential tassel region proposals through
morphological method is also an operation of forming detection boxes. This method can find the
detection boxes of tassels at different tasseling stages, even including newly grown tassels (Figure 12),
and there is no problem like RPN applied to small size objects. However, it spent more time in labeling
samples compared with the object detection method, because we also need a large number of samples
when training the random forest classifier.
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Figure 14. (a) The distributions of pixel width and height of tassels. (b) The distribution of
tassels morphology.

4.2. Comparison of VGG16 and RF in Fine Detection

In the classification of the potential tassel region proposals, we compared the effect of RF and
VGG16. The potential tassel region proposals extracted in Section 2.3 was selected, and RF classifier
was used. The number of samples, training set and validation set were consistent with the input
of VGG16 network, and the Histogram of Oriented Gradient (HOG) method was applied to extract
features of each sample.

The results are shown in Table 4, the OA of RF classifier is 0.796, while VGG16 network is 0.954
(Table 2, validation accuracy was calculated in the same way as OA in RF), indicating that VGG16
performs significantly better than RF. The recall rate of tassel obtained by RF is very low, indicating
that there are many tassels were missed, which is not suitable for our application scene. This may be
caused by the small number of training sets; however, under the same sample size, VGG16 network
performs better because we used the ImageNet’s pre-training model. This also reflects the advantage
of deep learning to transfer existing model on the problem to be solved; moreover, we all know that it
does not require feature engineering construction and feature optimization.

Table 4. The result of RF in fine detection of tassels.

Categories OA Precision Recall F1-Score

tassel
0.796

0.823 0.694 0.753
non-tassel 0.780 0.879 0.826

5. Conclusions

The extraction of tassels development in maize breeding fields and seed maize production fields
rapidly and accurately can provide decision support for varieties selection and detasseling arrangement.
However, due to the complex planting environment in the field, such as unsynchronized growth stage
and tassels vary in size and shape caused by varieties, the detection of maize tassels remains challenging
problem. In this paper, based on the time series UAV images of maize flowering stage, we proposed a
detection method of maize tassels in complex scenes (different varieties, different tasseling stages) by
combining RF and VGG16 network. The main conclusions are as follows:

(1) The potential tassel region proposals with different sizes and shapes could be found by using RF
and morphological methods, which is the key point to realize tassels detection in complex scenes.
In addition, also the VGG16 network after fine-tuning can distinguish the false positives in the
potential tassel region proposals well.

(2) We divided breeding plots into early, middle and late tasseling stages according to the proportion
of tasseling plants and whether the tassels have complete morphological characteristics,
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and found that the detection effect of tassels was highly correlated with the tasseling stages
and the detection effect in late tasseling stage was better than that in middle and early stages.

(3) According to the special morphological characteristics of maize tassels, the endpoint detection
method based on tassel skeleton can extract the tassel branch number well.

(4) Moreover, the model performance can be effectively improved after enlarged envelope rectangles
of potential tassel region proposals (the threshold value determination needs to consider the
actual situation of samples).

The detection method of maize tassels proposed in this paper has the advantages of high precision
and fast data acquisition speed, which can be applied to large area of maize breeding fields and
seed maize production fields. In the future research, we will carry out experiments on UAV images
that collected at different periods of the day, flight heights and other sensors (like multispectral and
hyperspectral sensors), and reduce the number of samples to propose a more efficient detection method
for maize tassels. As for the problem of unsuccessful photogrammetric processing caused by high
similarity of acquired images, we will also look for a solution to this problem, and then replace single
images with orthophoto mosaics in the later work.
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