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Abstract: This study aimed to analyze existing microwave surface (Oh, Dubois, Water Cloud
Model “WCM”, Integral Equation Model “IEM”) and canopy (Water Cloud Model “WCM”,
Single Scattering Radiative Transfer “SSRT”) Radiative Transfer (RT) models and assess advantages
and disadvantages of different model combinations in terms of VV polarized radar backscatter
simulation of wheat fields. The models are driven with field measurements acquired in 2017 at a test
site near Munich, Germany. As vegetation descriptor for the canopy models Leaf Area Index (LAI)
was used. The effect of empirical model parameters is evaluated in two different ways: (a) empirical
model parameters are set as static throughout the whole time series of one growing season and
(b) empirical model parameters describing the backscatter attenuation by the canopy are treated as
non-static in time. The model results are compared to a dense Sentinel-1 C-band time series with
observations every 1.5 days. The utilized Sentinel-1 time series comprises images acquired with
different satellite acquisition geometries (different incidence and azimuth angles), which allows us to
evaluate the model performance for different acquisition geometries. Results show that total LAI as
vegetation descriptor in combination with static empirical parameters fit Sentinel-1 radar backscatter
of wheat fields only sufficient within the first half of the vegetation period. With the saturation of
LAI and/or canopy height of the wheat fields, the observed increase in Sentinel-1 radar backscatter
cannot be modeled. Probable cause are effects of changes within the grains (both structure and
water content per leaf area) and their influence on the backscatter. However, model results with
LAI and non-static empirical parameters fit the Sentinel-1 data well for the entire vegetation period.
Limitations regarding different satellite acquisition geometries become apparent for the second half
of the vegetation period. The observed overall increase in backscatter can be modeled, but a trend
mismatch between modeled and observed backscatter values of adjacent time points with different
acquisition geometries is observed.
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1. Introduction

Soil moisture plays an important role in land surface processes, such as water and energy fluxes.
Therefore, soil moisture is a key variable in scientific fields like climatology, hydrology, meteorology,
or agriculture [1,2]. In recent decades, microwave data has proven to be a suitable tool for long-term
soil moisture derivation of large areas and different land cover types [3–9]. The retrieved soil
moisture information is widely used in applications, like climate modeling, precision farming,
water management, flood forecast, and drought monitoring [10–14]. With different available Synthetic
Aperture Radar (SAR) data from different sensors and for different usage in terms of absolute accuracy
and spatial scale, various soil moisture retrieval approaches, like change detection, microwave
data fusion (active and passive), differential Synthetic Aperture Radar (SAR) interferometry, or
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SAR polarimetry, are available [15]. Furthermore, land surface parameters, like soil moisture,
can be also derived by using Radiative Transfer (RT) models. Starting in 1974 [16], with the first
publication examining radar response and soil moisture [17], hundreds of different studies developing
and/or analyzing new or existing RT models have been conducted. RT models try to simulate the
interaction of the radar wave with the soil and the vegetation to derive different soil and vegetation
parameters [18]. Complexities in RT models for surface backscatter calculations range from simple
empirical regression-based models [18–21] and different empirical models based on the Water Cloud
approach (WCM surface part) [22–25], over semi-empirical models from Oh (Oh92, Oh04) [26,27]
or Dubois (Dubois95), [28] to physical-based models, like the Integral Equation Model (IEM) in its
original form [29] or refined versions [30–32]. Common RT models for canopy backscatter calculations
range from empirical models, like Water Cloud Model (WCM canopy part) [22], to more sophisticated
and multi-layered models, like the Michigan Canopy Scattering Model (MIMICS) [33], Tor Vergata
model [34], Single Scattering Radiative Transfer (SSRT) models described by De Roo [35] or Ulaby [17],
or a first order scattering model from Quast [36,37]. Despite the large numbers of existing models, there
is still the need of an algorithm generating soil moisture maps with acceptable accuracy of 3–4% [17].

So far, several studies have been carried out to test and compare pure surface RT models [15,38–42].
Research analyzing radar backscatter calculations and soil moisture retrieval approaches of combined
surface and canopy RT models has been performed. For these studies different test sites,
land cover types, and vegetation descriptors were used [25,43–55]. Investigations on how different
vegetation descriptors, like Leaf Area Index (LAI), Vegetation Water Content (VWC), Leaf Water Area
Index (LWAI), normalized Plant Water Index (PWI), or Normalized Different Water Index (NDWI),
affect soil moisture retrievals have been carried out, as well [25,48,53,54]. In this context, synergistic
retrieval approaches by using vegetation descriptors derived from optical sensors as input data for
microwave RT models have been published more and more in recent years [45,52,56–61].

Despite the existing analyses, a study testing and comparing different surface and canopy RT
model combinations with focus on the interaction between surface and canopy part and advantages
or disadvantages of the model combinations is missing. The launch of Sentinel-1A/B, and, therefore,
the availability of free SAR data with high temporal and spatial coverage, constitutes a suitable basis
for such an analysis. Investigations of the usage of dense Sentinel-1 time series with observations up to
every 1.5 days in terms of future synergistic retrieval approaches of SAR and optical data are needed.
The models and the knowledge gained from this paper shall be used within a newly developed
platform called MULTIPLY, which combines data from different optical and microwave satellites by
using state-of-the-art RT models within a data assimilation framework to consistently acquire and
interpret different land surface parameters.

This study was performed on time series data with high temporal and spatial (field scale)
resolution. The surface RT models WCM, Oh92, Oh04, Dubois95, and IEM were coupled with
canopy models WCM or SSRT. With these model combinations, VV polarized backscatter values for
an entire vegetation period of different wheat fields was calculated. The different input variables for
the model combinations, such as soil moisture, canopy height, LAI, or soil properties, were provided
by field measurements. For other parameters, like surface roughness or single scattering albedo,
suitable literature values were chosen. LAI was used as vegetation descriptor because of available
field measurements and its straight forward derivation from optical sensors [62–64]. The remaining
empirical parameters were calibrated by comparing modeled backscatter with Sentinel-1 backscatter
values. In summary, this paper aimed to

• investigate different RT model combinations and asses their advantages and disadvantages;
• evaluate if different radar acquisition geometries are modeled adequately with the used

RT models; and
• serve as preliminary work for future synergistic retrieval approaches of SAR and optical sensors

with a focus on high spatial and temporal resolutions.
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Section 2 presents the used dataset. Section 3 summarizes the used RT models. In Section 4,
calibration and validation results are shown and discussed. Finally, the main conclusions are drawn
in Section 5.

2. Datasets

2.1. Study Area

The study area, Munich North Isar (MNI), is located in southern Germany (Bavaria), near Munich
(48◦13’N–48◦20’N, 11◦39’E–11◦45’E, Figure 1). Since 2014, almost every year from spring until autumn,
different field campaigns targeting agricultural purposes were carried out [65–68]. From March to
September 2017, an intensive field campaign focusing on maize and wheat fields for validation of
soil and vegetation parameter retrievals from Sentinel-1, Sentinel-2 and the future EnMAP satellite
was conducted. MNI is characterized by intensive agriculture with wheat, maize, and grassland
as main crop types. In close vicinity (<10 km) to the test site two meteorological stations, Freising
(470 m a.s.l.) and Eichenried (475 m a.s.l.) managed by the Bavarian State Research Institute (LFL)
and one meteorological station Munich-airport (446 m a.s.l.) managed by the German Meteorological
Service (DWD) are situated. The annual measured mean temperature for 2017 ranges between
9 ◦C (Freising) and 9.3 ◦C (Eichenried). The average annual precipitation for 2017 reached 753 mm
(Munich-airport) to 853 mm (Eichenried). The used data for this study includes field campaign data of
wheat fields from 2017 (Section 2.2) and Sentinel-1 satellite data (Section 2.3).

Figure 1. Overview of study area Munich-North-Isar (MNI) located in southern Germany (Bavaria).
Three wheat test fields—508 (green), 542 (orange), and 301 (blue)—with three measurement points
each of the field campaign in 2017 are highlighted. Reference system: WGS84 (EPSG:4326).

2.2. Field Data

During the MNI field campaign of 2017, weekly field measurements of different biophysical
parameters (Table 1) were conducted. The total LAI was measured with a LI-COR Biosciences
LAI-2200C device (LI-COR Biosciences Inc., Lincoln, NE, USA) as an average of 14 measurements
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from the same area. The measurements were taken within each test field at three different locations
(Figure 1). The accuracy of LAI in terms of mean standard deviation of repeated measurements ranges
within the fields between 0.45 and 0.52. The monitoring period started end of March and ended
shortly before the fields were almost simultaneously harvested in mid of July. Additionally, Decagon
TM5 soil moisture sensors using the capacity method were installed permanently within the first five
centimeters of the soil surface. Soil moisture changes were monitored with a time interval of 10 min.
Information about the soil was provided by earlier campaigns when soil samples were taken from
the fields, and the soil properties were analyzed in the laboratory (Table 2). The soils bulk density
with 1.45 ± 0.13 g/cm3, and the clay content with 7.38 ± 1.8%, show no high variability between the
different fields. The sand content, on the other hand, shows higher variability, with 24.08 ± 10.46%.

Table 1. Acquisition time, time interval, and range of dynamic in-situ measurements.

Variable Acquisition Time Time Interval Range

Canopy height [cm] 03/24–07/17/2017 weekly 7–105
LAI 03/24–07/17/2017 weekly 0.35–6.25

Soil moisture [m3/m3] 03/24–07/17/2017 continues 0.09–0.38

Table 2. Laboratory results for sand, clay, and bulk content of soil surface samples.

Variable Time Interval Mean Std

Soil sand content [%] once (several locations) 24.08 10.46
Soil clay content [%] once (several locations) 7.38 1.80
Bulk density [g/cm3] once (several locations) 1.45 0.13

2.3. Satellite Data

For this study, C-band Sentinel-1 SLC data of Sentinel-1A/B was used. The Sentinel data was
pre-processed with ESA’s SNAP Toolbox Version 7.0.3. An overview of all applied pre-processing
steps is given in Figure 2. For the geometric correction, SRTM data with 1 arc-second resolution
was chosen as digital elevation model input. Afterward, the radiometric correction method of
Kellndorfer et al. [69] was applied. In a second pre-processing step, a multi-temporal Lee-sigma
filter was used for speckle reduction. The temporal filter was applied on each image with information
of 6 other images (three before the target and three after) with a spatial window size of 5 × 5 pixels,
a sigma of 0.9, and a target window size of 3 × 3 pixels. For the period of the field campaign in 2017
(March to July), in total, 78 Sentinel images covering the study area are available. Considering images
with different orbit directions (ascending and descending) and different incidence angles (ranges from
35◦ to 45◦) a revisit time of 1.5 days was archived. The spatial resolution of the processed data was
10 × 10 m. A more detailed overview of the used Sentinel-1 dataset and the image properties is given
in Table 3. The primary acquisition mode of Sentinel-1 provides data with polarization VV and VH.
For our study, the focus was set on polarization VV due to findings that, for retrieving soil moisture,
the usage of VH alone or in addition to VV is not suitable for well-developed vegetation [45,70].

Table 3. Available Sentinel-1A/B satellite data for MNI field campaign period in 2017 (03/23–07/17/2017).

Asc./Desc. Incidence Angle [◦] Relative Orbit Amount Revisit Time [Days] Acquisition Time

Ascending 36 44 19 6 4:58 p.m.
45 117 19 6 5:06 p.m.

Descending 43 95 20 6 5:17 a.m.
35 168 20 6 5:25 a.m.
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Figure 2. Schematic overview of SNAP pre-processing steps to retrieve geometric and radiometric
corrected images from Sentinel-1 SLC data (left). Pre-processing steps for speckle reduction using a
multi-temporal speckle filter (right).

3. Microwave Radiative Transfer Models

3.1. Surface RT Models

3.1.1. Empirical Water Cloud Model (WCM Surface Part)

The WCM, often referred to as the tau-omega model, was developed by Attema and Ulaby in
1978 [22]. For a given polarization pq (pq = HH, VV, or HV), the surface contribution σ0

spq of WCM to
the backscattered radar signal in dB scale is defined as

σ0
spq = Cpq + Dpq ·mv, (1)

with empirical fitted soil parameters Cpq and Dpq and soil moisture content mv. Cpq is an empirical
calibration constant, whereas Dpq, as a calibration factor, indicates the sensitivity of soil moisture
on the received radar signal. The WCM surface part is a purely empirical model thus no additional
information about surface roughness or incidence angle is needed. Therefore, the empirical parameters
have to be calibrated for each test site separately.

3.1.2. Semi-Empirical Oh Model 1992 (Oh92)

In 1992, Oh et al. [26] developed an approach for the retrieval of soil moisture and soil surface
roughness by empirical determined functions. Based on scatterometer measurements and various

ground measurements of soil moisture and surface roughness, two functions for the co- (p =
σ0

sHH
σ0

sVV
)

and cross-polarized (q =
σ0

sHV
σ0

sVV
) backscatter ratios were fitted. Consequently, p and q are defined as

p =
σ0

sHH

σ0
sVV

=

[
1−

(
2θ

π

) 1
3R0 · e−ks

]2

(2)
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and

q =
σ0

sHV

σ0
sVV

= 0.23
√

R0 (1− e−ks), (3)

with θ as local incidence angle, k as radar wave number (k = 2π/λ), where λ is the wavelength, and s
as rms height. R0 is the Fresnel reflectivity coefficient at nadir given by

R0 =

∣∣∣∣1−√εr

1 +
√

εr

∣∣∣∣2 , (4)

where εr is the relative dielectric constant. The VV polarized backscatter coefficient σ0
sVV

is further
defined as

σ0
sVV

= 0.7
[

1− e−0,65(ks)1.8
]

cos3θ
√

p

[
Rv(θ) + Rh(θ)

]
, (5)

with the Fresnel coefficients for horizontal Rh and vertical Rv polarization

Rh =
µrcosθ −

√
µrεr − sin2θ

µrcosθ +
√

µrεr − sin2θ
, (6)

Rv =
εrcosθ −

√
µrεr − sin2θ

εrcosθ +
√

µrεr − sin2θ
, (7)

where µr is the relative permittivity. Furthermore, the backscatter coefficients σ0
sHH

and σ0
sHV

are given
with respect to σ0

sVV
, p, and q by

σ0
sHH

= p σ0
sVV

, (8)

σ0
sHV

= q σ0
sVV

. (9)

The model in its original form can be applied for the retrieval of soil moisture or soil surface
roughness for bare soil conditions at several frequencies (X- to L-Band) and a broad range of incidence
angles (10–70◦). Because it is a semi-empirical model, the validity range of the model in terms of soil
moisture and soil surface roughness is defined with 0.1 < ks < 6, and 9 Vol.% < mv < 31 Vol.%.

3.1.3. Semi-Empirical Oh Model 2004 (Oh04)

In 2004, Oh [27] revised and simplified his original approach to use only soil moisture (mv) as
an independent variable rather than R0 and εr (Section 3.1.2). Thus, if using mv as input variable,
no additional information about the soil properties (bulk density, sand and clay content) is needed.
The model is defined by

p =
σ0

sHH

σ0
sVV

= 1−
(

2θ

π

)0.35 mv−0.63

· e−0.4 (ks)1.4
, (10)

q =
σ0

sHV

σ0
sVV

= 0.095 (0.13 + sin1.5θ)1.4 [1− e−1.3 (ks)0.9
], (11)

σ0
sHV

= 0.11 mv0.7 (cosθ)2.2 [1− e−0.32 (ks)1.8
]. (12)

Oh04 is optimized for bare soils with 0.13 < ks < 6.98, 4 Vol.% < mv < 29.1 Vol.% and
10◦ < θ < 70◦.

3.1.4. Semi-Empirical Dubois Model (Dubois95)

Dubois et al. [28] proposed, in 1995, an empirical approach to determine backscatter values for HH
and VV polarizations based on soil moisture, soil surface roughness, and system parameters, like local
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incidence angle, wavelength, and frequency. Two non-linear equations were fitted to measured
backscatter values obtained by a scatterometer for a broad range of frequencies ranging from 2.5 GHz
to 11 GHz and incidence angles ranging from 30◦ to 60◦. The backscatter values can be calculated by

σ0
sHH

= 10−2.75 cos1.5θ

sin5θ
10 0.028 εr tanθ (ks · sinθ)1.4 λ0.7, (13)

σ0
sVV

= 10−2.37 cos3θ

sin3θ
10 0.046 εr tanθ (ks · sinθ)1.1 λ0.7. (14)

The Dubois model was optimized for bare soil conditions and has a validity range for soil moisture
of mv ≤ 35 Vol.% and soil surface roughness of ks ≤ 2.5.

3.1.5. Physical Integral Equation Model (IEM)

The IEM is a theoretical backscattering model and was developed by Fung et al. [29] in 1992.
Since then, Fung and colleagues extended the IEM to bistatic scattering [71]. The general co-polarized
backscatter coefficient σ0

pp for pp = VV or HH is defined as

σ0
spp =

k2

4π
ek2s2cos2θ

∞

∑
n=1
|In

pp|2
Wn (2ksinθ, 0)

n!
, (15)

where In
pp is

In
pp = (2 ks cosθ)n fppe−k2s2cos2θ + (ks cosθ)n Fpp, (16)

with Wn as the Fourier transform of the nth power of the surface correlation function p(x, y).
Furthermore, the backscatter at cross polarization σ0

sHV
is calculated as

σ0
sHV

=
k2

16π
e−2k2s2cos2θ

∞

∑
n=1

∞

∑
m=1

(k2s2cos2θ)n+m

n!m!∫
[|FHV(u, v)|2 + FHV(u, v)F∗HV(−u,−v)] Wn(u− k sinθ, v) Wm(u + k sinθ) dudv.

(17)

The Kirchhoff coefficients fHH , fVV and complementary field coefficients FHH , FVV , FHV are
given as

fHH =
2Rh
cosθ

, (18)

fVV =
2Rv

cosθ
, (19)

FHH = 2
sin2θ

cosθ
[4Rh − (1− 1

εr
(1 + Rh)

2)], (20)

FVV = 2
sin2θ

cosθ
[(1− εcos2θ

µrεr − sin2θ
)(1− Rv)

2 + (1− 1
εr
)(1 + Rv)

2], (21)

FHV(u, c) =
Uv

kcosθ
[

8R2
√

k2 − u2 − v2
+
−2 + 6R2 + (1+R)2

εr
+ εr(1− R)2√

εrk2 − u2 − v2
], (22)

with Fresnel coefficient at horizontal Rh (Equation (6)) and vertical Rv (Equation (7)) polarization thus
R is described by

R =
Rv − Rh

2
. (23)

The Fourier transform of the nth power of the surface correlation coefficient Wn(a, b) is
calculated by

Wn(a, b) =
1

2π

∫ ∫
pn(x, y)e−i(ax+by)dxdy. (24)
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The distribution of surface correlation function p(x, y) can be described for low surface roughness
as exponential and high surface roughness values as Gaussian by

p(x, y) = e−(
|x|+|y|

L ) (exponential), (25)

p(x, y) = e−(
x2+y2

L2 )
(Gaussian), (26)

with L as correlation length.

3.2. Surface and Canopy RT Models

3.2.1. Empirical Water Cloud Model (WCM)

The WCM [22] with respect to surface σ0
spq and canopy σ0

cpq contribution, as well as two-way
attenuation T2

pq, is defined as
σ0

pq = σ0
cpq + T2σ0

spq , (27)

whereas the canopy part σ0
cpq in linear scale and the two-way attenuation T2

pq are written as

σ0
cpq = Apq V1 cosθ (1− T2

pq), (28)

T2
pq = e−2 Bpq V2 secθ , (29)

where θ is the local incidence angle, V1 and V2 are empirical vegetation descriptors, and Apq, as well
as Bpq, are fitted parameters of the model which depend on the vegetation properties and the radar
configuration. For σ0

spq in Equation (27), each of the described surface models in Section 3.1 can be used.

3.2.2. Semi-Empirical Single Scattering Radiative Transfer (SSRT) Model

The SSRT model used by De Roo [35] and Ulaby [17] is a semi-empirical first-order scattering
model. The model is defined as

σ0
pq = σ0

gpq + σ0
cpq + σ0

cgtpq + σ0
gcgpq , (30)

where
σ0

gpq = TpTq σ0
spq , (31)

with Tp and Tq as attenuation of the canopy for different polarizations and σ0
spq describing the

pure surface scattering mechanism. Similar to the definition of WCM in Section 3.2.1, all surface
models described in Section 3.1 can be used for calculating the surface contribution σ0

spq within SSRT.
Furthermore, the p polarized one way transmittivity of the canopy Tp is defined as

Tp = e−τp , (32)

with τp as the p polarized attenuation of the canopy given by

τp = kp
e H secθ, (33)

whereas H represents the canopy height. The extinction coefficient kp
e which accounts for the absorption

and scattering losses of the electromagnetic wave through the canopy is defined as

kp
e = kp

a + kp
s . (34)

In general, a canopy consists of leaves, stalks, and branches with different shapes and orientations,
which do not show a linear distribution in the vertical. However, in the applied SSRT, it is assumed
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that kp
e , kp

a , and kp
s follow a uniform distribution in the vertical as a function of z within the canopy

layer. In addition to the extinction coefficient, the scattering part kp
s of kp

e can be derived by

kp
s = kp

e ω, (35)

where ω represents the single scattering albedo. For the direct backscattering contribution of the
canopy σ0

cpq , Attema and Ulaby’s [22] water cloud approach of identical scatterers, which are uniformly
distributed within the volume, is used. Thus, multiple scattering effects are ignored. As a consequence,
the volume backscattering coefficient σback

Vpq
of the vegetation medium is defined as

σback
Vpq

= Nv σback
pq , (36)

with Nv as the number of scattering particles per unit volume and σback
pq as the pq polarized

backscattering cross section of a single particle. Finally, the pq polarized canopy backscattering
coefficient σ0

cpq within Equation (30) can be obtained from

σ0
cpq =

σback
Vpq

cosθ

kp
e + kq

e
(1− TpTq). (37)

Furthermore, ground/canopy (σ0
gcpq ) and canopy/ground (σ0

cgpq ) scattering contributions are
defined as

σ0
gcpq = σbist

vpq H Rq TpTq, (38)

σ0
cgpq = σbist

vpq H Rp TpTq, (39)

where H is the canopy height, σbist
vpq is the bi-static scattering cross section of a single leaf or stalk, and

Rp describes the p polarized Fresnel reflectivity (Equations (6) and (7)). Thus, the total canopy ground
contribution σ0

cgtpq
within Equation (30) as the sum of σ0

gcpq and σ0
cgpq can be written as

σ0
cgtpq = σbist

vpq H [Rp + Rq] TpTq. (40)

Furthermore, ground canopy ground contribution (σ0
gcgpq ) within Equation (30) is defined as

σ0
gcgpq =

σback
Vpq

cosθ

kp
e + kq

e
(RpRq − TpTq). (41)

3.3. Practical Considerations

Each described model requires a different set of input parameters. A summary for the different
RT models is given in Table 4. For some parameters, field measurements (Section 2.2) or literature
values (s and ω, Table 5) are used, and other site dependent parameters have to be fitted. The analyzed
wheat fields were sown in autumn of 2016. By the starting point of the observation period (end of
March 2017), the soil surface was already smoothed out by rain and the ground was covered by wheat
plants (height > 10 cm). Marzahn et al. [72] showed that, for wheat fields with the above mentioned
state, only minor changes in terms of roughness throughout the vegetation period are observable.
Previous studies regarding periodic features and roughness changes [73,74] found out that changes in
surface roughness due to soil rows as periodic feature within wheat fields are essential if the viewing
angle is nearly perpendicular to the row orientation, but, for other viewing angles, the changes within
surface roughness are negligible. The viewing angle and the row orientation of the wheat fields in
our study are always <75◦. Therefore, changes due to periodic soil rows are assumed to be negligible.
Typical roughness measurements of various winter wheat fields suggest rms values between 1.0 and
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1.3 [72,73,75–78]. With the assumption of only minor roughness changes throughout the vegetation
period, a literature value for surface height s of 1.2 cm was chosen. The value of 1.2 cm was used
due to former field campaign measurements of wheat fields in Germany [72,73]. For single scattering
albedo ω, a common literature value of 0.03 [79] was set. The conversion from soil moisture field
measurements to the required model input of dielectric constant ε for models Oh92, Dubois95, and IEM
was performed by using a dielectric mixing model for soils after Dobson et al. [80]. The required
soil information about sand and clay content, bulk density (Table 2), and soil moisture (Table 1) were
provided by field measurements and laboratory results. Additionally, for some parameters, in their
original form, adjustments were made within this study. In particular, DeRoo et al. [35] used for
parameterizing of the extinction coefficient kp

e a combination of an empirical parameter, vegetation
water mass and vegetation height. In our study, the vegetation water mass, and the vegetation height
were replaced by total LAI. Therefore, kp

e is defined by

kp
e = coe f ∗

√
LAI, (42)

with coef as an empirical parameter. To reduce the required parameters for model IEM,
a well-established approach of Baghdadi et al. [31,45] was used. The correlation length L was replaced
by a fitted parameter Lopt which is dependent on s, θ, and the polarization. Lopt for C-band VV
polarization data and the Gaussian correlation function after Baghdadi et al. [45] is defined as

Lopt(s, θ, VV) = 1.281 + 0.134(sin0.19θ)−1.59s. (43)

The refined version of Baghdadi is hereinafter referred to as IEM_B. A schematic illustration
of the RT model calibration approach is shown in Figure 3. All RT model combinations (surface +
canopy) are driven by field measurements and the required empirical parameters (Table 4). The fitting
of the empirical parameters was carried out by minimizing the sum of the squared error between
modeled and measured (Sentinel-1) radar backscatter values. For the measured Sentinel-1 backscatter
value of each measurement point shown in Figure 1, the mean backscatter of 5 × 5 pixel (50 × 50 m)
around the measurement location was chosen. In a first fitting approach, all parameters shown in
Table 4 were defined to be static for the entire vegetation period. In a second fitting approach, WCM
parameters C, D, and A were set to be static; therefore, the mean (Table 5) of all model results of
the static approach was used. The used values for the different parameters for validation are shown
in Table 5. Additionally, the attenuation of the backscatter through the canopy was defined to be
variable throughout the time series. More specifically, parameters coe f within SSRT and B within WCM
were fitted for each time step individually by taking three observations before and after into account.
By making only coe f or B variable, changes within the results can then clearly related to changes of
the attenuation of the radar backscatter signal by the canopy. Field measurements used as model
input parameters show multidimensionally unstructured inter- and intra-field correlations. Therefore,
measurement point independency is assumed, and a validation of the parametrized RT models is
performed using a leave-one-out cross-validation approach. Hereby, the parameter mean of the
calibration results of eight measurement points is validated with the remaining measurement point.
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Table 4. Overview of differences of surface models Water Cloud Model (WCM surface), Oh models
Oh92 and Oh04, Dubois95, and Integral Equation Model refined version of Baghdadi (IEM_B), as well
as canopy models Single Scattering Radiative Transfer (SSRT) and WCM canopy, in terms of type,
validity range, site dependency, required input parameters, and polarization. Separation of used input
parameter of the analyzed Radiative Transfer (RT) models in fitted parameters and parameters where
field measurements or literature values were used as input data.

Type Validity Range Site
Dependent

Required Parameters
Pol.Fitted Field Measurements

or Literature Values

WCM
surface empi. 10◦ < θ < 70◦ Yes C, D θ, mv HH, VV

VH

Oh92 semi-empi.
10◦ < θ < 70◦

No s, k, θ, ε
(clay, sand, bulk, mv)

HH, VV
VH0.1 < ks < 6

9 < mv < 31Vol.%

Oh04 semi-empi.
10◦ < θ < 70◦

No s, k, θ, mv HH, VV
VH0.13 < ks < 6.98

4 < mv < 29.1Vol.%

Dubois95 semi-empi.
30◦ < θ < 60◦

No s, k, θ, ε
(clay, sand, bulk, mv) HH, VVks ≤ 2.5

mv ≤ 35Vol.%

IEM_B theoretical 10◦ < θ < 70◦ No s, k, l, θ, ε
(clay, sand, bulk, mv)

HH, VV
VHks ≤ 3

SSRT semi-empi. Yes ke (coe f ) H, LAI, θ, ω
HH, VV

VH

WCM
canopy empi. Yes A, B V1 (LAI), V2 (LAI), θ

HH, VV
VH

Table 5. Used model input parameters for validation.

k s ω C D A
[cm−1] [cm] [dB] [dB]

1.13 1.2 0.03 −14.61 12.88 0.0029

Figure 3. Schematic illustration of RT model calibration approach.

3.4. Differences Between Applied Models

WCM is a purely empirical model and depends, therefore, only on the calibrated empirical
coefficients. It is applicable under almost all surface/vegetation conditions, but it has to be calibrated
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for different test sites separately. The transferability to other test sites and or other surface/vegetation
conditions is not possible. Surface models, like Oh92, Oh04, Dubois95, and IEM, were originally
only developed for bare soil and or sparse vegetation conditions. Nevertheless, different studies
replaced the surface component within WCM and SSRT with Oh [17,35,43,47], Dubois95 [51,54,55],
or IEM/IEM_B [17,45,53] models. One key advantage of the semi-empirical-based (Oh92, Oh04,
Dubois95) or theoretical-based (IEM/IEM_B) surface models in comparison to WCM is their better
transferability to other test sites and surface/vegetation conditions. Models, like Oh92, Oh04, or
Dubois95, are based on a hybrid construction with experimental data guided by trends predicted by
theoretical models [17]. Theoretical models, like IEM/IEM_B, on the other hand, have a theoretical
foundation, whereas, for used mathematical approximations within the model, various assumptions
to retrieve a analytical solution are made [17]. The Oh model of 1992 was developed based on a single
experiment with information about only four different soil surfaces [26]. For the model version of
2004, Oh used information of approximately 40 bare soil fields conducted over seven experiments [27].
Furthermore, the usage of ε and R in model Oh92 was refined to the usage of mv in model Oh04.
Model Dubois95 is the only model which was developed only for co-polarized backscatter data (HH or
VV), whereas the other models can calculate co- and cross-polarized backscatter values (HH, VH, VV).
Differences between vegetation models WCM and SSRT exists in the form of their simplicity. WCM
calculates only the volume backscattering component, whereas, within SSRT, additional backscatter
components, such as plant-ground and ground-plant interaction, as well as ground-plant-ground
scattering contributions, are considered. In our implementation, the vegetation descriptor of WCM
is LAI, whereas the vegetation descriptor of SSRT consists of LAI and canopy height. In general,
the computational time and the required additional input parameters are increasing from empirical to
semi-empirical and theoretical models. A summary of the different models with information about
type, validity range, site dependency, required parameters, and used polarization are given in Table 4.

4. Results and Discussion

4.1. Model Calibration Results

4.1.1. Static Empirical Parameters

In a first calibration approach, the empirical parameters for the different models were treated as
static throughout the entire time series. The modeled backscatter was then compared to the measured
backscatter from Sentinel-1. Table 6 shows the mean of RMSE and R2 of all analyzed sample points
(Figure 1) for different surface and canopy model combinations. The retrieved RMSE of the calibration
results ranges from 1.92 to 2.25 dB with R2 of 0.08 to 0.34, respectively. A more detailed picture
regarding differences between modeled and Sentinel-1 backscatter during the time series is shown
for field 508 in Figure 4. While, for the first half of the vegetation period, all model combinations
show a relatively good fit to Sentinel-1 backscatter data, in the second half, deviations are obvious.
Furthermore, from the beginning of June where LAI reaches its saturation point and the maximum
plant height is almost reached, no significant change over time within the modeled backscatter can
be observed. The analyzed soil models (different colors) show small differences, whereas a clear
separation between analyzed canopy models (solid vs dashed lines), especially for later vegetation
stages, is noticeable. As described in Section 2.3, Sentinel-1 data of four different overpasses, and
therefore with different incidence and azimuth angles, were used for this analysis. In Figure 4,
every fourth point (same icon) of the Sentinel-1 backscatter time series represents the same satellite
acquisition geometry (same incidence and azimuth angle). The incidence angle is implemented within
the used RT models, whereas the models do not account for difference azimuth angles. The black line
(Sentinel-1 backscatter) in Figure 4 shows that the observed backscatter values differ with varying
incidence angles and changes in soil moisture. The model predictions (different colors) illustrates that
the models can account for varying incidence angles and changes in soil moisture only until the end
of May. Furthermore, the good correlation of modeled and Sentinel-1 backscatter values suggests
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that the effect of different azimuth angles on backscatter values seems to be negligible until the end
of May. The main change within the wheat fields in June and July in terms of phenology are the
flowering, the development of the fruit, and, later on, the ripening [75,81]. For these phenology stages,
the increase in backscatter is caused by higher sensitivity of the radar signal to the ground contribution
due to water loss within the vegetation [81]. Mattia et al. [76] identified the heading period as turning
point where the sensitivity of the radar backscatter to above-ground biomass decreases, whereas the
sensitivity to soil surface increases. The temporal evolution of modeled ground contribution to the
total backscatter for different model combinations (different colors) with the observed Sentinel-1 total
backscatter (black line) is shown in Figure 5 (top part). Until the increase in canopy height at the
beginning of May (Table 4), the modeled ground scattering part seems to be the main contributor
to the total backscatter, whereas the canopy part is negligible. With increase, especially in canopy
height, the ground contribution drops significantly. The expected decrease in backscatter of the
ground contribution due to a bigger canopy layer (increase of canopy height and LAI) can be more
clearly observed for SSRT than WCM. The differences between SSRT and WCM might be found
by using different canopy descriptors (SSRT: LAI and canopy height; WCM: LAI). Differences in
ground contributions between Dubois95 and the other surface models are related to differences in the
modeled attenuation through the canopy T (Figure 4, bottom part). T is regulating the contribution
intensity of the ground and canopy part for the total backscatter calculation. The temporal evolution
of T with a value range from 0 (dominant canopy contribution) to 1 (dominant ground contribution)
is shown in Figure 5 (bottom part). All model combinations show a similar temporal shape with
slightly higher values for model Dubois95. T decreases from April (dominant ground contribution)
to mid-May (dominant canopy contribution) and stays at its minimum after mid-May. The expected
increase [76,81] of the modeled ground contribution due to higher ground sensitivity in June and July
(phenology: flowering, development of the fruit, and ripening) is not observed within the modeled
data. In our case, T is mainly driven by static empirical parameter B (WCM) and coe f (SSRT), as well
as non-static vegetation descriptors LAI and/or canopy height. Therefore, with almost no changes
in LAI and canopy height in June and July (Figure 4, middle part), the two-way attenuation T stays
near zero, which indicates a dominant canopy model contribution to the total backscatter calculation.
By definition, LAI is defined as the one-sided leaf area per measured ground unit [82]. By the time
wheat plants reach their maximum height, the leaves are fully developed. Changes within the wheat
plants, especially during vegetation stages of flowering, fruit development, or ripening (Figure 4), are
based mainly on increasing biomass within grains and stems, as well as changes of the vegetation
water content. However, biomass changes in grains and stems, as well as vegetation water content loss,
especially during the ripening stage, are not reflected within the LAI. Therefore, almost no information
about the increased biomass and the water loss due to ripening of the plants is given within this
model configuration. Plant moisture reduction affects the attenuation of the radar signal by the
canopy in a way that the canopy is more transparent for the radar wave [83]. Therefore, the sensitivity
of the radar signal to the canopy should decrease, whereas the sensitivity to the surface increases.
The almost non-existent deviation between Sentinel-1 and modeled backscatter in early vegetation
stages suggests that the interaction between surface and canopy model, and therefore the attenuation
of the backscatter signal by the canopy, described by static empirical parameters and LAI, can be
modeled sufficiently only in early vegetation stages. For good backscatter model results during later
vegetation stages, the backscatter changes due to water loss within the plants have to be considered.
The effects of utilizing non-static empirical parameters to account for these shortcomings are discussed
in the next sections.
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Table 6. Calibration results of different model combinations with static empirical parameters. Mean
RMSE, ubRMSE, and R2 of all analyzed field measurement points.

Model Calibration
Surface + Canopy RMSE [dB] R2

Oh92 + SSRT 2.11 0.20
Oh92 + WCM 1.97 0.26
Oh04 + SSRT 2.02 0.18
Oh04 + WCM 1.92 0.23

Dubois95 + SSRT 2.09 0.08
Dubois95 + WCM 2.03 0.08

WCM + SSRT 2.25 0.22
WCM + WCM 2.08 0.34
IEM_B + SSRT 2.24 0.15
IEM_B + WCM 2.13 0.24

Figure 4. Measured and modeled data (static parameters) of wheat field 508 for vegetation period 2017.
VV-polarized backscatter comparison of different model combinations (surface + canopy) with static
empirical parameters and Sentinel-1 data. Different icons represent different acquisition geometries of
Sentinel-1 (top). Field measurements of Leaf Area Index (LAI), canopy height, and soil moisture, as well
as precipitation data from meteorological station Freising (middle). Observed vegetation phenology
according to BBCH scale [84] (bottom).

Figure 5. Model results (wheat field 508, static parameter) of ground contribution to total backscatter
for different model combinations (different colors) with Sentinel-1 VV polarized total backscatter
(black line) as reference (top). Temporal evolution of model component two way attenuation by the
canopy T (bottom).
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4.1.2. Non-Static Empirical Parameters

Due to the results in Section 4.1.1, which showed that LAI and height cannot account for the
observed backscatter changes in June and July (increase of Sentinel-1 backscatter), a second calibration
approach with non-static empirical parameter where chosen. As already mentioned, the observed
increase in backscatter is caused by a higher sensitivity of the radar signal to the ground contribution.
The attenuation of the backscatter T, more precisely B, for WCM and coe f for SSRT were identified
as the main drivers for the increase or decrease of the ground contribution; therefore, a non-static
approach for these parameters was tried. The other empirical parameters of WCM (surface: C, D;
canopy: A) were set as static values (mean of the retrieved static values during the calibration approach
shown in Section 4.1.1) to clearly relate the observed changes to the attenuation of the backscatter.
The modeled backscatter was compared to Sentinel-1 observations and the statistics for different
model combinations are shown in form of mean RMSE and R2 of all analyzed field measurement
points in Table 7. The retrieved RMSE ranges from 1.13 to 1.60dB with R2 of 0.45 to 0.82, respectively.
By comparing different model combinations, almost no differences between the two analyzed canopy
models can be observed. A different picture is shown by comparing surface models only. WCM
seems to outperform all others, whereas differences between WCM and Oh92, Oh04, and IEM_B are
smaller than differences of these models to Dubois95. Similar to the approach with static empirical
parameters, the evolution over time of modeled and Sentinel-1 backscatter is shown in Figure 6 for
one measurement point of field 508. Like the results in Section 4.1.1, modeled backscatter results of
the first half of the vegetation period fit well to the observed Sentinel-1 backscatter data. Contrary
to the static parameter approach, the second half of the vegetation period shows high correlations
between Sentinel-1 and modeled backscatter. Unlike the results of the static approach (Figure 5, top
part), the expected increase of the ground contribution at the end of the vegetation period can be
observed in Figure 7 (top part). The increase of the ground contribution to the total backscatter is also
reflected within the two-way attenuation by the canopy T shown in Figure 7 (bottom part). Compared
to the static approach (Figure 5, bottom part), the values of T from April to the beginning of June
are very similar for all model combinations, except Dubois95. The temporal changes of non-static
parameters B and coe f are shown for the validation results in Figures 8 and 9 and will be further
discussed in the validation Section 4.2. Besides the modeled backscatter increase for the second half
of the vegetation period, different trends between Sentinel-1 and modeled backscatter for individual
time steps are observed. This mismatch might occur for several reasons. As already mentioned in
Section 4.1.1, Sentinel-1 data with different incidence and azimuth angles were used. A closer look
at every fourth modeled point (same incidence and azimuth angle) in Figure 6 (same icon) shows
a steady increase of modeled backscatter values at the end of the vegetation period. Therefore, an
overall trend of an increasing backscatter can be seen for Sentinel-1 and modeled data. Due to non
contradictory trends during the first half of the vegetation period, it seems that the influence on
backscatter due to incidence and azimuth angles increases for the second half of the vegetation period.
Thus, higher canopy heights and LAI values may also increase the impact of different incidence and
azimuth angles on the backscatter behavior. In addition, the acquisition time (Table 3) of the Sentinel-1
images might play another role for different attenuation effects by the canopy [81]. The acquisition
time of the satellite differs for different overpasses. For the MNI test site, Sentinel-1 data was acquired
during early morning or late afternoon (Table 3). This might lead to differences in the observations
due to dew [85,86] or different plant alignments towards the sun which, in theory, leads to different
backscatter attenuations through the canopy [87–89], which are not accounted for within the models.
Despite the different trends during the temporal evolution of modeled and Sentinel-1 backscatter for
the second half of the vegetation period, the observed overall increase in backscatter at the end of the
vegetation period can be modeled well.
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Table 7. Calibration and validation results of different model combinations with non-static empirical
parameters. Mean RMSE, ubRMSE, and R2 of all analyzed field measurement points.

Model Calibration Validation
Surface + Canopy RMSE [dB] R2 RMSE [dB] ubRMSE [dB] R2

Oh92 + SSRT 1.24 0.73 2.82 2.10 0.59
Oh92 + WCM 1.22 0.73 2.75 2.21 0.57
Oh04 + SSRT 1.33 0.69 2.87 2.14 0.57
Oh04 + WCM 1.32 0.68 2.81 2.22 0.57

Dubois95 + SSRT 1.55 0.49 3.06 2.11 0.49
Dubois95 + WCM 1.60 0.45 3.06 2.18 0.48

WCM + SSRT 1.16 0.82 2.65 1.93 0.63
WCM + WCM 1.13 0.81 2.57 2.08 0.60
IEM_B + SSRT 1.32 0.78 2.62 1.82 0.64
IEM_B + WCM 1.34 0.77 2.54 1.92 0.62

Figure 6. Measured and modeled data (non-static parameters) of wheat field 508 for vegetation period
2017. VV-polarized backscatter comparison of different model combinations (surface + canopy) with
non-static empirical parameters and Sentinel-1 data. Different icons represent different acquisition
geometries of Sentinel-1 (top). Field measurements of LAI, canopy height, and soil moisture, as well
as precipitation data from meteorological station Freising (middle). Observed vegetation phenology
according to BBCH scale [84] (bottom).
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Figure 7. Model results (wheat field 508, non-static parameter) of ground contribution to total
backscatter for different model combinations (different colors) with Sentinel-1 VV polarized total
backscatter (black line) as reference (top). Temporal evolution of model component two way attenuation
by the canopy T (bottom).

Figure 8. Evolution over time of non-static parameter coe f separated by different surface models
(colors) for each Sentinel-1 acquisition date during vegetation period 2017. The box plots show the
range of coe f used during the validation approach for different fields point (top). Mean and standard
deviation of all measurement points for LAI and canopy height (bottom).
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Figure 9. Evolution over time of non-static parameter B separated by different surface models (colors)
for each Sentinel-1 acquisition date during vegetation period 2017. The box plots show the range of B
used during the validation approach for different fields point (top). Mean and standard deviation of all
measurement points for LAI and canopy height (bottom).

Figure 10. Scatter plot showing statistical validation results (correlation coefficient R2 and ubRMSE)
for canopy model SSRT separated by different surface models (colors) and different field points (icons).
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Figure 11. Scatter plot showing statistical validation results (correlation coefficient R2 and ubRMSE) for
canopy model WCM separated by different surface models (colors) and different field points (icons).

4.2. Model Validation Results

The validation for the non-static approach was performed by a leave-one-out cross-validation
method. Means of RMSE, ubRMSE, and R2 are shown in Table 7. The results for the non-static approach
show ubRMSE values between 1.92 and 2.22dB. All validation (ubRMSE) results are in a range of
0.65 to 0.95dB poorer than the calibration (RMSE) results. Furthermore, for the validation results R2

ranges between 0.49 and 0.64, whereas the poorest results are archived with surface model Dubois95.
A comparison of ubRMSE for canopy model SSRT and WCM yields for all surface models slightly
better results for canopy model SSRT. A more detailed overview of the validation results separated
by models and measurement points is given in Figure 10 for canopy model SSRT and in Figure 11
for canopy model WCM. Comparing different fields, as well as field measurement points, a diverse
picture is drawn. In general, field 508, especially 508-1, shows the best results, with R2 values mainly
higher than 0.6 and ubRMSE lower than 2.2. Field 542, and especially 542-1, show the worst results,
with R2 around 0.4 and ubRMSE higher than 2.2. Comparing different surface model combinations,
IEM_B and WCM show, for both canopy models, slightly better results than the others. It is noticeable
that the results of Dubois95 are, in general, poorer than the results of the other surface models, with
the exception of point 542-1 (measurement point with the poorest overall results) and partly 301-2.
Differences between Oh92 and Oh04 for the different measurement points are present but, compared
to the other models, very low. A closer look into each model combination, and especially at the used
non-static empirical parameters coe f and B, and thus at the change of the attenuation of the canopy
in time, are given with Figures 8 and 9. The figures show the development of coe f and B over the
vegetation period and the parameter calibration spread, which is defined by the used leave-one-out
cross-validation results. Comparing different surface models, the same evolution over time (except
Dubois95 for the first half of the vegetation period), with some differences in the absolute values,
can be observed. The low values of coe f and B for model Dubois95 in the first half of the vegetation
period can explain the differences in absolute values of T (Figure 7, bottom part) between Dubois95
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and the other model combinations. A comparison of canopy model SSRT (parameter coe f ) and WCM
(parameter B) show, for all surface models (except Dubois95), for parameter coe f , a almost steady
decrease from the beginning to the end of the vegetation period and a similar evolution for parameter
B, except for a short period of increasing values to a relative maximum from mid-May to the end of
May. The differences in shape between coe f and B might be explained due to different model input
data. SSRT uses the canopy height and LAI for the description of the canopy, whereas WCM only
uses LAI. The increase of parameter B correlates very well with the measured increase of the canopy
height. This suggests that parameter B compensates for possible shortcomings of WCM due to missing
information about the canopy height. Furthermore, not only the absolute values but also the spread
of coe f and B for different models are higher at the beginning of the vegetation period and strongly
decrease over time. This means that coe f and B show higher differences between fields and field
measurement points at the beginning of the vegetation period. This is in line with observations made
during the field campaign, where higher differences within one field and between fields could be
observed more easily at early vegetation stages. At the end of the vegetation period, such differences
were not detectable anymore. Another indicator of low field differences regarding the ripening stage
of the wheat plants was the almost simultaneous harvesting date. Another factor to be considered
if looking at higher variability of coe f and B at the beginning of the vegetation season is the model
implementation itself. B and coe f are influencing the attenuation of the backscatter by the canopy and
therefore how strong each model compartment (surface or canopy) contributes to the total backscatter
calculation. At the beginning of the growing season, LAI and canopy height are low; therefore, notable
differences within coe f and B might have not such a high impact on total backscatter predictions.
Differences in the range of coe f (0 to 2.5) and B (from 0 to 0.35) are most likely based on differences
between the model definitions and the required input parameters.

5. Conclusions

Modeled backscatter results of wheat field time series data using different RT model combinations
(surface: Oh92, Oh04, Dubois95, IEM_B, WCM; canopy: WCM, SSRT) were compared to observed
C-band data from Sentinel-1. Differences between the models were analyzed. The used dataset
was acquired by an intense field campaign throughout one vegetation period in 2017. The analysis
focused on coupled performance of surface and canopy models and especially on how changes of
backscatter attenuation through the canopy influence the total backscatter calculation for different
vegetation stages. The two novelties of this study are the evaluation of different combinations of widely
used surface and canopy RT models on one test site and the analysis over time of empirical model
parameters coe f (SSRT) and B (WCM) describing the backscatter attenuation through the canopy T.

Results show that, for total LAI, as vegetation descriptor, a static parameter influencing the
backscatter attenuation through the canopy is suitable for the first half but not for the second half
of the vegetation period. By using a non-static parameter approach, the backscatter increase at the
end of the vegetation period can be modeled. The static calibration performance results in the form
of RMSE improved from 1.92–2.25dB to 1.13–1.60dB for the non-static approach. The validation
accuracy for the non-static parameter approach was evaluated with ubRMSE and ranges for all model
combinations between 1.82 and 2.22dB. Validation results with SSRT as canopy model show better
results in combination with all surface models when compared to respective combinations using
WCM for the canopy part. Furthermore, it has been shown that the modeled backscatter results
highly depend on the non-static empirical parameter. The evolution of the empirical parameter is
similar for all surface models except Dubois95. At the beginning of the vegetation period, high values
are observed, which decrease during the vegetation season to a minimum shortly before harvesting.
Differences between the canopy model SSRT and WCM are noticeable in the form of higher variability
(more outliers) of the empirical parameter from canopy model WCM. Furthermore, the empirical
parameter for canopy model WCM has a relative maximum at the end of June. This increase of WCM’s
empirical parameter B can most likely be explained by not including information about the canopy
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height. Overall, the results of this study indicate that more complex models, like IEM_B as surface
and SSRT as canopy model, provide the best results in our setup regarding ubRMSE and R2. It should
be mentioned that the disadvantage of more complex models, by requiring more input parameters,
were set to a minimum because of model parameter reduction by model adjustments and the use of
literature values for rms height and single scattering albedo. Therefore, based on this study, we suggest
using surface model IEM_B in combination with canopy model SSRT.

To accomplish a very dense time series of satellite acquisitions with a revisit time of 1.5 days,
Sentinel-1 images with different incidence and azimuth angles were used. The models can account for
backscatter changes due to different acquisition geometries only during the first half of the vegetation
period. During the second half, a trend mismatch between Sentinel-1 and modeled backscatter is
apparent in all model results. Therefore, it has to be stated that the used models in this study are only
partially able to handle differences due to changes in radar acquisition geometries.

To take full advantage of dense time series provided, e.g., by incorporating different sensors on
top of varying radar acquisition geometries, extended research on the suitability of certain RT models
is required. Respectively, arising radiometric differences added to the disparity in radar acquisition
geometries must be investigated, for that matter. To advance synergistic retrieval methods of SAR
and optical data for soil moisture estimation, further research on incorporating non-static empirical
parameter sets retrieved from optical sensors, to account for vegetation phenological states, is needed.
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