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Abstract: Land surface temperature (LST) is a crucial parameter in surface urban heat island (SUHI)
studies. A better understanding of the driving mechanisms, influencing variations in LST dynamics,
is required for the sustainable development of a city. This study used Changchun, a city in northeast
China, as an example, to investigate the seasonal effects of different dominant driving factors on the
spatial patterns of LST. Twelve Landsat 8 images were used to retrieve monthly LST, to characterize
the urban thermal environment, and spectral mixture analysis was employed to estimate the effect
of the driving factors, and correlation and linear regression analyses were used to explore their
relationships. Results indicate that, (1) the spatial pattern of LST has dramatic monthly and seasonal
changes. August has the highest mean LST of 38.11 ◦C, whereas December has the lowest (−19.12 ◦C).
The ranking of SUHI intensity is as follows: summer (4.89 ◦C) > winter with snow cover (1.94 ◦C)
> spring (1.16 ◦C) > autumn (0.89 ◦C) > winter without snow cover (−1.24 ◦C). (2) The effects of
driving factors also have seasonal variations. The proportion of impervious surface area (ISA) in
summer (49.01%) is slightly lower than those in spring (56.64%) and autumn (50.85%). Almost half
of the area is covered with snow (43.48%) in winter. (3) The dominant factors are quite different
for different seasons. LST possesses a positive relationship with ISA for all seasons and has the
highest Pearson coefficient for summer (r = 0.89). For winter, the effect of vegetation on LST is not
obvious, and snow becomes the dominant driving factor. Despite its small area proportion, water has
the strongest cooling effect from spring to autumn, and has a warming effect in winter. (4) Human
activities, such as agricultural burning, harvest, and different choices of crop species, could also affect
the spatial patterns of LST.

Keywords: land surface temperature; driving factors; seasonal comparison; snow climate;
Changchun city

1. Introduction

Urbanization has occurred at an unprecedented rate and is considered as one of the most important
drivers of dramatic changes in land use and land cover (LULC) [1,2]. Transformation from natural
surfaces to various man-made impervious surfaces (e.g., parking lots, roads, and buildings) made of
concrete, asphalt, and metal has resulted in the alteration of land surface characteristics, including land

Remote Sens. 2020, 12, 3006; doi:10.3390/rs12183006 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-0477-5845
http://dx.doi.org/10.3390/rs12183006
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/18/3006?type=check_update&version=2


Remote Sens. 2020, 12, 3006 2 of 19

surface temperature (LST), hydrothermal condition, landscape composition, and albedo, which have
led to the phenomenon known as urban heat island (UHI), wherein urban areas tend to have warmer
climates than their surrounding areas [3–5]. UHI has been proved to significantly affect air and water
quality, energy consumption, regional climate, and human health [6–8]. Therefore, given the severity
of the negative effects of UHI, there is a need for a better understanding and monitoring of the driving
factors, contributing to the occurrence of UHI, to improve the quality of urban environments and to
develop sustainable urban development policies.

Air temperature and LST are the two most used indicators in UHI studies [9,10]. Traditionally,
UHI characterized by air temperature, collected from fixed weather stations or mobile vehicles, is known
as canopy UHI (CUHI) [11]. Air temperature has advantages in terms of high temporal resolution
and high accuracy, and thus can be employed in conducting CUHI studies at a fine time scale [12–14].
Nevertheless, the limited stations fail to provide detailed spatial information regarding CUHI. Previous
studies have shown that the relationships between LST and air temperature are statistically significant,
and UHI, quantified using retrieved LST from thermal remote sensing, has been defined as the surface
UHI (SUHI) [15–17]. LST is one of the primary indicators for examining SUHI because it is related to
surface radiation and energy exchange, and helps us to explicitly reveal sufficient spatial patterns of
the urban thermal environment, despite being subject to the time of satellite overpass [18,19]. However,
LST estimated from remote sensing is easily influenced by urban surface properties and background
climates. As a result, the spatiotemporal variations (from global to city level, and from interannual,
seasonal, and monthly, to diurnal, nocturnal, and even hourly level) of the urban thermal environment
spatial pattern has been explored by many studies [19–24].

To investigate the formation and driving mechanism of SUHI, numerous studies examined
the relationships between LST and its driving factors [20,25–32]. The driving factors could be
roughly classified into three categories: surface biophysical parameters, landscape component and
configuration factors, and socioeconomic factors [27]. The surface biophysical parameters were usually
composed of many spectral indices, among which normalized difference vegetation index (NDVI),
normalized difference building index (NDBI), and normalized difference water index (NDWI) were
the most used because they are easily calculated [26,33]. However, although they exhibited good
linear relationships with LST, the relationship between LST and NDVI suffers from evident seasonal
changes [11]. Therefore, these factors were still insufficient for fully exploring the characteristics of an
urban thermal environment. For landscape components, land-cover types obtained based on a per-pixel
classification method and the abundance of different driving factors estimated via spectral mixture
analysis (SMA), and based on sub-pixel classification, were often employed in studies exploring their
effects on LST [34]. However, because of the problem with mixing pixels in Landsat images (30 m
spatial resolution) of urban areas, per-pixel classification, compared to sub-pixel classification, may lead
to under- or over-estimation for certain land-cover types. Furthermore, despite high-spatial-resolution
images (e.g., Quickbird, WorldView, GF-2) being able to provide detailed information on land cover,
they are also more expensive. On the other hand, when free-access Landsat series images are used to
obtain information on landscape components, it is essential to perform a comprehensive examination
of the fraction of each feature within a pixel. Ridd proposed a “vegetation–impervious surface–soil”
(V–I–S) model, wherein he assumed that the urban area pixels were combinations of vegetation,
impervious surface area (ISA), and soil [35]. It is widely acknowledged that ISA is one of the most
important driving factor accounting for most of the variations in LST dynamics, and area proportion of
vegetation estimated via SMA was determined in SUHI studies to be a better indicator for characterizing
information on vegetation [11,34,36,37]. Thus, driving factors influencing urban surface biophysical
composition were found to be the best indicators for studying seasonal variations of LST across
space [38]. Human activities, such as changes in population density, gross domestic product (GDP),
and nighttime light were proved to also affect the LST [39,40]. However, they were rarely used in SUHI
studies because of the difficulty in accessing accurate data [27]. Among the analytical methods used to
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investigate the effect of driving factors on LST, the Pearson correlation analysis and the linear regression
model were the dominant choices and proved to be effective for the given purpose [2,4,41,42].

Even though the effects of driving factors on LST have been widely explored, some deficiencies
still exist in the current literature. First, relevant SUHI research has been focused on tropical,
subtropical, and temperate cities, whereas a snow-climate city like Changchun should be given more
attention, although several studies have been conducted in the city [26,43–47]. In Cici Alexander’s
paper, AlgAarhus Kommune in Denmark was selected as the study area, as relevant research is
under-represented and sensitive at high latitudes [26]. The city has high latitudes, above 55◦, and has
an average annual temperature of 7.8 ◦C, which is even higher than that of Changchun (5.5 ◦C).
This motivated us to choose Changchun in China to conduct our research. Snow-climate cities have
quite different climate features compared to those of low and other mid-latitude cities. Second, because
of seasonal changes in received incoming solar radiation and solar altitude, it is worth investigating
the seasonal combined effect of driving factors on LST, rather than assessing the effect of one factor in a
single season. Third, although LST is influenced by many driving factors, the dominant influencing
factor needs to be determined and further explored. Fourth, Changchun has four seasons with a
very long and cold winter. Its special climate characteristics make Changchun an appropriate place
for investigating the seasonal effects of driving factors on the spatial pattern of an urban thermal
environment. We hope our study can enrich SUHI case studies in snow-climate areas with long and
cold winters.

This study used Changchun, China, for its case study, investigated the seasonal effect of driving
factors on urban LST, and conducted a seasonal comparison study. Twelve Landsat 8 images were used
to retrieve LST for different months, and five driving factors (ISA, vegetation, soil, snow, and water)
were calculated via SMA for different seasons. This study has three main objectives: (1) to map the
spatial patterns of LST and driving factors simultaneously for different seasons; (2) to quantify the
relationships between LST and each of the five driving factors, to identify which factor is the dominant
one; and (3) to explore how these relationships have changed over different seasons. The goal of
this study is to improve our understanding of the formation and driving mechanism of SUHI in
snow-climate cities, and thus help in developing sustainable development policies for these cities.

2. Materials and Methods

2.1. Study Area

Changchun city (125◦06′–125◦36′ E, 43◦43′–44◦04′ N) (Figure 1), the capital of Jilin province,
is located in the northeast part of China, with nearly 4.45 million urban residents in 2019, based on the
local Bureau of Statistics. The city is flat and located about 250–350 m above sea level. The climate
of Changchun is classified by the Köppen–Geiger climate classification system as Dwa, or a snow
climate with a dry winter and hot summer, and with an average precipitation of 561.6 mm [48]. July is
the warmest month, with an average daily air temperature of 23.1 ◦C, whereas January is the coldest
(−15.6 ◦C) [47]. As a result, Changchun, which covers the 5th ring road, with an area of 523.3 km2,
was selected as our study area.
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Figure 1. Location of Changchun City (false-color image).

2.2. Datasets

Twelve cloud-free Landsat 8 OLI (operational land imager) and TIRS (thermal infrared sensor)
images (Path/Row:118/30), with a resampled spatial resolution of 30 m for all bands, were collected from
the Geospatial Data Cloud of China (http://www.gscloud.cn/) and the United States Geological Survey
website (http://earthexplorer.usgs.gov/), to retrieve LST and driving factors for this study. The data
were acquired at approximately 10:21 a.m. local time in 2014 and 2016, because of the difficulty of
obtaining all the 12-month images under clear-sky conditions in a single year. As a result, we assumed
that the same month in different years would have similar urban thermal environments, and that the
differences in LST for different months were significant. Information on the images is listed in detail in
Table 1. Radiation correction and atmospheric correction were applied to the OLI images using ENVI
5.3 FLAASH Atmospheric Correction tools, where needed parameters could be found in the image’s
metadata before the driving factors were calculated. Atmospheric correction was included in the LST
retrieval method employed in this study, and was therefore not implemented with the TIRS images.
Finally, a vector layer of the 5th ring road of Changchun was used to clip each dataset.

Table 1. Acquisition dates of Landsat 8 images and Google Earth images used in this study.

Season Winter Spring Summer Autumn Winter

Month Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Landsat 8 4 January
2014

21 February
2014

3 March
2016

10 April
2014

17 May
2016

13 June
2014

July 4
2016

5 August
2016

17 September
2014

3 October
2014

4 November
2014

27 December
2016

Google
Earth 8 February 2013 25 March 2014

20 April 2016
31 July 2014
3 July 2016

15 October 2016
14 October 2018 24 December 2013

Air temperature (AT) was obtained from 19 weather stations located in the study area, which are
operated by the Meteorological Bureau of Changchun city. As access was limited to year-round
data, AT was collected only at 10:00 a.m. and 11:00 a.m. local time, on August 5 (for summer) and
December 27 (for winter) in 2016, when the Landsat 8 images were acquired synchronously. On one
hand, AT was employed to validate the accuracy of the retrieved LST. On the other hand, we could
perform a comparison study to explore the difference between LST and AT in characterizing the urban
thermal environment. High-spatial-resolution Google Earth images, acquired on the same season
and similar months, were also used to help identify the different statuses (such as growth situation of
vegetation) of driving factors in different places and different seasons, given that the Landsat 8 images
had a coarse resolution (Table 1). It was hard to obtain Google Earth images which had the identical
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acquisition dates as Landsat 8. In this study, it made sense to compare Landsat 8 and Google Earth if
they had the same acquisition month, as we assumed that the status of driving factors in the same
month would have similar features, although obtained in adjacent years. As listed in Table 1, all the
Landsat 8 images, and most of the Google Earth images, were acquired from 2014 to 2016 in this study,
and the effect of LULC changes on the status of the driving factors could be neglected. No Google
image was available in December 2016 for the study area, and was therefore replaced with another
image from December 2013.

2.3. Methods

2.3.1. Retrieval of LST

Band 10 of the Landsat 8 TIRS images was used to estimate the monthly LST of Changchun city.
Band 11 was not recommended for retrieving LST because of technical problems [49]. The original
digital number of each pixel in band 10 was first converted to the top-of-atmosphere brightness
temperature (BT), which is the effective temperature viewed via satellite, under an assumption of unity
emissivity, using the radiometric calibration tool in ENVI 5.3 software (Harris Geospatial Solutions,
Broomfield, CO, USA). The BT was then corrected for the varied emissivities of the different land-cover
types. Finally, the LST (◦C) could be calculated using the following:

Ts =
Tb

1 + (λTb/ρ)lnε
− 273.15, (1)

where Ts is the LST, and Tb refers to BT; λ is a wavelength of 10.9 µm for TIRS band 10;
and ρ = 1.43 × 10–2 mK. ε is the land surface emissivity (LSE), a very important factor for accurate LST
retrieval. The NDVI threshold method was adopted in this study to estimate LSE [50]. The NDVI was
calculated as follows:

NDVI =
NIR−R
NIR + R

, (2)

where NIR and R are band 5 and band 4, respectively, for Landsat 8 OLI. If NDVI was greater than 0.5,
then the pixel was considered as fully vegetated, the LSE of which was assigned a value of 0.99. If the
NDVI was smaller than 0.2, the emissivity of the pixel was estimated to be 0.97. The LSE of surfaces
for 0.2 < NDVI < 0.5 was calculated as follows:

ε = 0.986 + 0.004× Fv, (3)

where Fv is the vegetation fraction, estimated from NDVI, and is calculated as follows:

Fv =
NDVI −NDVIs

NDVIv −NDVIs
, (4)

where NDVIv is the NDVI value of pure vegetation and has a value of 0.5, and NDVIs is bare soil or
non-vegetation, and is assigned a value of 0.2. More details about LST estimation can be found in a
previous study [50].

2.3.2. Indicator of SUHI Intensity

The SUHI intensity is defined as the LST difference between urban and rural areas. In this study,
the SUHI intensity was calculated as follows:

SUHI intensity = LST1th Ring − LST4−5Ring, (5)

where LST1th Ring represents the urban thermal environment and is defined as the average LST of the
1st ring road, and LST4−5Ring is the average LST of the area between the 4th and 5th ring roads, which
was considered as a rural area. The SUHI intensity was computed for all 12 months.
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2.3.3. Retrieval of Driving Factors

Land surface characteristics could affect the spatial pattern of LST to a large extent. In our study,
five indicators were selected as the driving factors: water, vegetation, ISA, soil, and snow. The reasons
why these five elements were chosen were: (1) a snow-climate city usually consists of these five factors,
by which the urban area could be well depicted, and (2) these factors are less sensitive to changes in
atmospheric condition, (3) are easily calculatable, and (4) have been widely used as influencing factors
in LST studies, but need to be re-examined for their relationships with LST, for different seasons.

The modified normalized difference water index (MNDWI) proposed by Xu was employed in
extracting water body features for this study [51] and was calculated as follows:

MNDWI =
Green−MIR
Green + MIR

, (6)

where Green and MIR are band 3 and band 6, respectively, for Landsat 8 OLI. Based on visual
interpretation, if the MNDWI values of the pixels were higher than 0.3, they were treated as pure
water bodies.

The idea of a “V–I–S” model, raised by Ridd, was used to estimate the abundance of each driving
factor [35]. Based on the theory of spectral unmixing, a constrained linear spectral mixture analysis
(LSMA) was applied [52,53], and it assumed that the reflectance of each pixel was a linear combination
of reflectance of different endmembers (different land-cover types):

Rb =
∑N

i=1
fiR(i,b) + eb, (7)

subject to ∑N

i=1
fi = 1 and 0 ≤ fi ≤ 1, (8)

where Rb is the reflectance of band b, fi is the abundance of endmember ( fi), R(i,b) is the reflectance of
endmember ( fi), and eb is the residual. First, five pure endmembers, i.e., vegetation, soil (excluding for
winter), snow (only for winter), high albedo, and low albedo, were selected manually on the fused
Landsat 8 OLI images to obtain their responding curves, on spectrum-based high-resolution Google
Earth images. The snow endmember was selected to replace soil in winter because the study area
was usually covered with snow during most of the season. LSMA was then performed to obtain
the abundance of each endmember. The abundance of ISA could be calculated as the sum of low
albedo and high albedo. Finally, the water bodies were removed from all the abundance images via
the application of an MNDWI mask. For the results, if the ISA value of a pixel is 0.85, it signifies that
85% of the pixel was covered with impervious areas (buildings, roads, or parking lots). An accuracy
assessment conducted using 150 samples with 5 × 5 pixels revealed that more than 80% of the absolute
errors of the samples were less than 0.1.

2.3.4. Statistical Analysis and Sample Selection

To investigate the relationships between the driving factors and LST, the study area was divided
into 577 grids at a scale of 1 × 1 km2 (Figure 2), and each grid was treated as a statistical sample. First,
Pearson correlation analysis was performed to explore their correlations. The ordinary least-squares
linear regression model was then applied to explore the influence of each factor on LST. For each
season, the average LST of each grid was regarded as the dependent variable, and the abundances of
the five factors were treated as independent variables. The LST was not affected by only one single
factor. However, the problem of multicollinearity prevented our endeavor to conduct multivariate
linear regression model analysis, to quantify the relative contributions of the different driving factors
to LST. Fortunately, in this study, the Origin software made it possible to qualitatively analyze the
relationship between LST and the different components of each grid by generating a figure that showed
information on the area, proportions of different factors, and LST synchronously.
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Figure 2. Grid (1 × 1 km2, 577 in total) map and four samples (s1–s4) of the study area.

Based on the principle that both the spatial pattern of LST and the status of a driving factor were
changed distinctly, four samples (s1–s4) (Figure 2) were selected to explore the seasonal changes of
the effects of phenology and potential human activities on variations in the LST, in a spatially explicit
way. Each sample had 12 corresponding figures, including 4 LST maps, 4 Landsat 8 false-color maps,
and 4 spatially corresponding Google Earth maps for spring, summer, autumn, and winter. As a result,
there were 48 figures in total.

3. Result

3.1. Monthly Spatial Pattern of LST

To assess the accuracy of LST retrieval, Pearson correlation analysis was performed using the
air temperature and corresponding mean LST for 5 × 5 pixels near each weather station. The results
show that the coefficients between them were 0.52 in summer and 0.76 in winter, and that they were all
statistically significant at a level of 0.05. The results of the linear regression model indicate that there
was a good consistency between LST and observed air temperature (Figure 3).

Figure 3. Correlations between land surface temperature (LST) and air temperature.

The spatial distribution of LST for different months is shown in Figure 4. It can be clearly seen
that the thermal environment of Changchun had remarkable monthly variations. The high-LST areas
were concentrated mainly inside the 3rd ring road for most months (June, July, August, December,
and January); these areas were assembled with dense buildings. Commercial lands with little vegetation
were usually located in the central city and generated higher LST because of the transformation of
the natural environment to artificial surfaces, such as asphalt and concrete. However, for April,
September, and October, the high-LST regions were distributed sporadically, and it was difficult the
find a typical SUHI phenomenon because there were some hot spots in the rural area. For February,
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March, and November, especially, the values of LST inside the 2nd ring road were much lower than
those in the surrounding areas, and thus an “inverse SUHI” was observed. During these months,
very-high-LST regions could be found in the west, northwest, and northeast parts of the study area,
where croplands were the dominant land-cover type. This very interesting phenomenon attracted our
attention, and we will explore the driving force in the following discussion.

Figure 4. Spatial distributions of LST for different months.

In addition to the monthly variations, several similar spatial patterns of LST were also observed.
For example, from April to September, the Yitong River, which is the mother river of Changchun city,
flowing from south to north, always had a lower LST, and formed a “strip” of cooling area. However,
in December and January, the LST of the north part was much higher than in other areas, which may
have been because the north part of the river was not frozen. On the other hand, the China FAW
Group Corporation was in the southwest part of Changchun, which had a higher LST from January to
December because of dense ISA and industrial activities.

3.2. Monthly Variation of SUHI Intensity

The average LST of the 1st to 5th ring roads is visualized in Figure 5. The mean LST of the 5th
ring road is notably also the average LST of the whole study area. December had the lowest LST
(−19.12 ◦C), followed by January (−12.97 ◦C), and February (−0.53 ◦C). The LST values of the other
nine months were all higher than zero, and August had the highest average LST, at 38.11 ◦C. The mean
LSTs for May (30.57 ◦C), June (34.74 ◦C), and July (37.61 ◦C) were higher than 30 ◦C.
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Figure 5. Monthly average LST for the five ring roads, and surface urban heat island (SUHI) intensity.

The monthly variations in SUHI intensity are also presented in Figure 5. The change trend for
SUHI intensity declined from January (1.08 ◦C) to March (−1.99 ◦C), then gradually increased to
August (5.37 ◦C). It declined again from August to November (−1.15 ◦C) and increased to 2.79 ◦C in
December. From a comparison of the average LST and SUHI of each month, it was not difficult to find
that a low LST did not indicate a weak SUHI intensity. For example, December had the lowest LST,
whereas the SUHI was 2.79 ◦C, which was much higher than for other months with higher average
LST, such as April (average LST of 20.73 ◦C). For February, April, and October, the absolute value
of SUHI was less than 1 ◦C, indicating that the LST difference between urban and rural areas was
not significant. Corresponding to the spatial patterns of LST for March and November, the SUHI
were −1.99 and −1.15 ◦C, respectively, which signified that urban areas had a much lower LST than
that in rural areas. For seasonal variations, from the highest to lowest, the ranking of SUHI was as
follows: summer (4.89 ◦C) > winter (December and January in this study) with snow cover (1.94 ◦C) >

spring (1.16 ◦C) > autumn (0.89 ◦C) > winter without snow cover (−1.24 ◦C). However, many studies
in a similar cold-climate city (such as Beijing) have suggested that winter has the strongest UHI
effect [54,55]. These conclusions are based on air temperature data, rather than the LST used in our
study. The different data may cause different results. Another question is how to define urban and rural
areas [15]. Different definitions may also generate different results. Although Beijing and Changchun
are classified as cold-climate cities, their climates in winter are quite different. Changchun’s winter is
much longer and colder, and it is usually covered with snow in the coldest months. However, the
snow in Beijing is more likely to melt. Different data, methods, and climate background may yield
different results.

3.3. Seasonal Spatial Pattern of Driving Factors

Temperature is an environmental factor that changes all the time, and thus it is necessary to explore
the monthly variations in LST, as listed in Sections 4.1 and 4.2. However, monthly changes in the driving
factors are relatively slow, and therefore a seasonal contrast analysis was performed in our study.
Through the use of the methods mentioned in Section 2.3, the seasonal distributions of ISA, vegetation,
soil, and snow are visualized in Figure 6. Water is not included in Figure 6 because it accounted for less
than 2% of the whole study area, as shown in Table 2. The seasonal distributions of LST were averaged
based on the corresponding months. Therefore, a visual comparison between thermal environment
and driving factors could be easily performed. The LST for winter, especially, was averaged based
only on December and January, when Changchun was covered with snow, to explore the effect of snow
on LST.
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Figure 6. Seasonal distributions of LST, impervious surface area (ISA), vegetation (Veg.), soil, and snow.
(for ‘a1–d4’: ‘a–d’ represent different seasons, a for Spring, b for Summer, c for Autumn and d for
winter; ‘1–4’ represent LST and factors, 1 for LST, 2 for ISA, 3 for Veg. and 4 for soil (snow)).

Table 2. Area proportions of driving factors in different seasons.

Season ISA Vegetation Soil (Snow) Water Total

Spring 56.64% 19.14% 22.58% 1.64% 100%
Summer 49.01% 46.23% 3.23% 1.53% 100%
Autumn 50.85% 40.59% 7.26% 1.30% 100%

Winter 34.38% 22.13% 43.48%
(snow) 0.01% 100%

The distributions of LST for summer (Figure 6(b1)) and winter (Figure 6(d1)) had similar spatial
patterns, wherein the high-LST area was concentrated in the city center. On the other hand, the low
LST was located mostly outside the 4th ring road. Meanwhile, for spring and autumn, although there
were several hot spots in the southwest, it was difficult to observe obvious differences between the 1st
ring road and 5th ring road. For winter, several low-LST areas were observed inside the city; however,
these areas were not observed for other seasons. This pattern may be due to certain characteristics that
were present only in winter.

Despite some seasonal variations in the distribution of ISA, most of the ISA were observed to be
distributed inside the 4th ring road for all seasons. However, the area proportion of ISA for winter
(34.38%) (Figure 6(d2)) was much less than that for spring (56.64%) (Figure 6(a2)). One possible
explanation was that some of the flat ISA was covered with snow in winter, and thus these areas were
classified with snow factors.
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Meanwhile, different from the ISA, the distributions of vegetation and soil (snow) had considerable
seasonal variations because the status of vegetation growth could change significantly among different
seasons. In spring (Figure 6(a3)), the trees began to turn green earlier than the crops, and high values
of vegetation abundance could be found in parks, and along Yitong River. At this time, most crops
had not yet been sowed, and therefore the west, northeast, and south parts of the study area were
covered with soil, as shown in Figure 6(a4). However, in summer (Figure 6(b3)), the area proportion of
vegetation was 46.23%, and was much higher than that in spring (19.14%) because the crops (most of
which were corn) had been growing very fast after cultivation. As a result, there was little soil (3.23%)
in summer (Figure 6(b4)). In autumn, the area proportion of vegetation declined as farmers began
to harvest. If one farmland was harvested earlier, it changed from vegetation to soil again, such as
in the west part in autumn (Figure 6(c4)). There were some under-construction-site areas that were
also classified as soils. In winter, most of the corps had been harvested, and the lands were covered
with snow (Figure 6(d4)). The snow became the dominant factor in winter, with an area proportion of
approximately 43.48%. There were almost no liquid water bodies in winter (less than 0.01%).

3.4. Relationships between LST and Driving Factors

From a comparison of the spatial patterns of LST and driving factors in Figure 6, a general
conclusion could be made: that high LST was related to ISA, and that lower LST was usually located
in the vegetation and snow areas, which was consistent with previous studies [11,26]. However,
the quantitative analysis of their relationships in different seasons should be explored in detail.
The Pearson correlation coefficients (PCC) between LST and the indicators are listed in Table 3. LST
had positive relationships with ISA for all seasons, and the coefficient was 0.89 for summer, which was
much larger than for the other seasons. Negative linear relationships between LST and vegetation
were found for all seasons except winter (PCC = 0.05), and similarly, the cooling effect of vegetation
was strongest in summer. From spring to autumn, the relationships between LST and soil were
not significant. Although the study area had few water bodies, the LST had significant negative
relationships with these bodies of water. However, a positive correlation (PCC = 0.21) between LST
and liquid water was observed for winter.

Table 3. Pearson correlation coefficients between driving factors and LST for different seasons.

Season ISA Vegetation Soil (Snow) Water

Spring 0.37 * −0.50 * 0.04 −0.65 *
Summer 0.89 * −0.81 * 0.00 −0.37 *
Autumn 0.49 * −0.47 * −0.10 * −0.36 *
Winter 0.43 * 0.05 −0.43 * 0.21 *

* Statistically significant at level of 0.05 (two-tailed).

The Pearson correlation analysis could provide only the final coefficients, and therefore it was
difficult to explore the relationships in detail. As a result, for all the grids (577 in total), 16 regression
models were developed to reveal the correlations between LST and the indicators. As mentioned
previously, ISA had a warming effect on each season, but the relationship between the area proportion
of ISA and LST could not be explored. In spring (Figure 7(a1)), when the area proportion of ISA was
between 20 and 40%, both low and high LST values were observed, indicating that LST was affected
not only by ISA but also by other factors. The high LST values in these grids with ISA ranging from
20–40% may have been caused by other warming factors. Some grids with high area proportions of
soil also had very high LST, however, others did not. One possible reason was that although both had
soil areas, the varying properties of soil resulted in these differences. In summer, this phenomenon
disappeared. There were no grids with small ISA area that had high LST values. Therefore, the ISA
may be the only warming factor in summer.
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Figure 7. Regression results between LST and driving factors for different seasons (n = 577). (for ‘a1–d4’:
‘a–d’ represent different seasons, a for Spring, b for Summer, c for Autumn and d for winter; ‘1–4’
represent factors, 1 for ISA, 2 for Veg., 3 for soil (snow) and 4 for water).

From a comparison of Figure 7(a2,b2), it could be seen that, for most of the grids, the area
proportion of vegetation was less than 40%, and its cooling effect was weaker in spring. In summer,
a 10% increase in the vegetation area in a grid could decrease the LST by 1 ◦C, which was the strongest
effect observed among all the seasons. In winter, there was little relationship between vegetation
and LST.

For the effects of soil on the LST, it was difficult to find effective connections based on only the
regression model. For most of the grids, their area proportions of soil were less than 10% (Figure 6(b3)).
In winter (Figure 7(d3)), the snow exhibited a cooling effect.

For water, its cooling effect was similar in spring (Figure 7(d1)) and summer (Figure 7(d2)), and was
stronger than that of vegetation. In autumn (Figure 7(d3)), the cooling effect of water became slightly
weaker because the climate began to cool, and the difference between water and other land-cover types
became smaller. In winter (Figure 7(d4)), if one grid had water inside, then its LST would be much
higher. A 10% increase in the water area in a grid could increase the LST by about 1.8 ◦C.

4. Discussion

4.1. Combined Effects of Driving Factors on LST

The effect of driving factors on LST has been assessed in previous studies [2,56,57]. However,
most of these studies investigated the effect of only a single indicator (such as NDVI, NDBI) on LST,
similar to the results shown in Figure 7 in Section 3.4. The combined effects of driving factors on
LST, on the other hand, still need to be explored. In this study, we generated 577 grids that were
composed of ISA, vegetation, soil, snow, and water bodies, and calculated the corresponding average
LST. The LST was sorted from highest to lowest, and the area proportion of each driving factor for
each grid was computed at the same time, as shown in Figure 8.
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Figure 8. Combined effects of driving factors on LST for different seasons. (‘A–D’ represent different
seasons, A for Spring, B for Summer, C for Autumn and D for winter).

Different driving factors represent different land-cover types that have different thermodynamic
properties [58,59]. As a result, a change in grid components will significantly influence the LST.
In Figure 8, several phenomena, which have been marked with red circles, attracted our interest and
helped us to understand the combined effects of these driving factors. In spring (Figure 8A), red circle
A-1 showed that although the area proportion of ISA was not very high, the LST was relatively high.
Meanwhile, these grids had high area proportions of soil, indicating that the soil, as a warming factor,
may increase the LST. However, for all the grids (577), the relationship between LST and soil was not
significant. Thus, the soils in the red circle A-1 may have special properties that need to be investigated.

In red circle A-2, the grids were almost averagely split into four indicators, and water was the
dominant driving factor that could sharply decline the LST. In summer (Figure 8B), as expected,
with the increase in vegetation and decrease in ISA, the LST declined gradually, which was consistent
with previous studies [56,60]; there was a trade-off between these factors.

Similarly, red circle B-1 demonstrated that water bodies could provide a strong cooling effect.
The LST in summer was affected by the combined effects of ISA and vegetation, and ISA was the
dominant warming factor. In autumn (Figure 8), the effects of ISA and vegetation on LST were weaker
compared to those in summer.

Red circle C-1 showed that although the grid had about 25% water area, its LST was not as low,
which was different from what is observed for circle A-2. One possible reason was that the soil factor
inside the grid provided a warming effect. For winter (Figure 8D), high LST was always related to
grids with water bodies. The mean LST for winter was lower than −10 ◦C, and the reason for the
presence of liquid water may be anthropogenic heat or geological conditions. The effect of vegetation
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on LST was not significant for winter [61], and the influence of soil on LST was the same as for summer.
Snow was the only cooling factor in winter; ISA and water each had a warming effect.

According to an observation of the change curve for LST among the four seasons, the LST
decreased sharply at the beginning, and then declined gradually. Finally, the LST had a rapid falling
rate. The very high LST were related to large continuous distribution of industrial land with little
vegetation cover and dense human activity. In these areas, ISA was the dominant impact factor.
Similarly, the very low LST for spring, summer, and autumn were primarily caused by water bodies.
In other cases, the LST was influenced by the combined effects of different factors.

4.2. Seasonal Effects of Driving Factors on LST

The 30 m spatial resolution of the Landsat 8 images limited the detailed study of the seasonal
variations among the driving factors. As discussed in Section 4.1, it was unclear if special properties of
soil could increase LST for some grids in spring. Additionally, the reasons for low-LST areas in winter
that were not observed in other seasons were also not clear. Google Earth images provided detailed
spatial information that helped us explore potential explanations, and Landsat 8 false-color images
enhanced our ability to distinguish different driving factors; for example, vegetation always had a
red color in these images. However, the following issue should be considered: there is no meaning in
making a comparison if the acquisition time of Google Earth Images and OLI images are not consistent
or similar, because of the LULC type and driving factor changes. As shown in Table 1, this study has a
good consistency between them.

Sample 1 (Figures 2 and 9) was selected because, in spring, its LST was very high (Figure 9(s1–a1)),
whereas its soil was of a large area (Figure 9(s1–a2)). Google Earth images (s1–a3) show that the true
color of the soil in the northwest part was black. The local farmers interviewed informed us that they
set fire to maize straw around March and April, to kill pests and to create ashes that could serve as
fertilizer. Therefore, the high LST in the west part in spring (Figure 4, March and April) for these soils
might be related to the burned area. The spatial patterns of LST were also considerably affected by
human activities. In summer, the soil became vegetation (s1–b2 and s1–b3), and the LST was much
lower compared to that of airfield runways in the southeast part. In winter, the flat ground was covered
with snow, except for the airport, which had high LST. The phenological characteristics of vegetation
in different seasons would affect the LST significantly.

Figure 9. LST, Landsat 8 (false-color), and Google Earth images (true-color) of selected four samples.
(for ‘s1–a1 to s4–d3’: ‘s1–s4’ represent sample 1–4; ‘a–d’ represent different seasons, a for Spring, b for
Summer, c for Autumn and d for Winter).

Sample 2 was chosen to explain why LST, due to the same driving factor (soil) for the same season
(autumn, s2–c1, left part vs. right part), had huge differences. According to the Landsat 8 false-color
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images (s2–c2), there were obvious differences in the soil because the degrees of roughness of the soils
were quite different. The right part was fine and smooth, and was not divided into several small plots.
The reason behind this set-up may have been different ways of farming or different choices in crops.
The detailed properties of the same driving factors would also influence the LST.

Sample 3 was used to illuminate why low-LST regions were present in winter and not observed in
summer. As shown in s3–d1, there was a very-low-LST area (blue color) in the center of the grid. Both
the Landsat (s3–d2) and Google Earth (s3–d3) images show that a large area of shade was produced
by high buildings because of the very low solar altitude in winter, whereas in summer, the shade of
buildings accounted for only a small area. It was discussed by some studies whether grey buildings
always elevate urban LST [62,63]. However, it was found that the large area of shade generated by high
buildings could lower LST in winter. As a result, compared to average LST of the 4–5 ring roads, the
very low LST in the urban area, produced by large area of shade, might explain why there is a negative
SUHI in winter without snow cover. The changes in solar altitude in different seasons could result in
the seasonal variations of LST. It made us to think that although the area proportion of ISA was a good
indicator for studying the effect of man-made buildings on LST, a more detailed composition of ISA
would help us gain a more comprehensive understanding of its mechanism on LST.

Sample 4 was a part of Yitong River. The cooling effect of the water body on LST was significant
for all the seasons, except for winter, when water exhibited a warming effect. It is well known that
water has a higher specific heat capacity than those of other land-cover types. In hot seasons, although
the water occupied only a small area, its ability to mitigate SUHI was much stronger than those of
other factors, due to its evaporative cooling [64]. Meanwhile, the warming effect in winter might help
to reduce energy consumption for heating in a snow-climate city such as Changchun.

4.3. Implications for Urban Planning

Our results underscore that the spatial patterns of LST exhibited considerable monthly and
seasonal variations. These variations were caused by a combined effect of land surface biophysical
indicators and human activities. However, because of seasonal variations in the received solar radiation
and solar altitude, the status of driving factors and human activities changed considerably. As a result,
for urban planners and decision makers, the climate and phenological characteristics of a city should
first be considered [65]. The statuses of different driving factors affecting LST in snow-climate cities,
such as Changchun, had huge seasonal changes. The dominant driving factors were different across
different seasons. For example, the effect of vegetation on LST in summer (high vegetation coverage)
and winter (without leaves) varied widely. Therefore, different measures should be made to regulate
LST. In spring, human activities on soil could elevate LST, and therefore policy could be made to guide
the agricultural activities of farmers. In summer, the cooling effect of water was stronger than that
of vegetation, and thus adding a water region seemed to be a more effective way of mitigating the
negative effects of UHI. In winter, shade would exacerbate cold waves, and thus building heights
should also be considered as one of the driving factors that could regulate LST. As the results have
shown, snow can decline LST in winter, and thus clearing snow quickly would help to regulate the
climate. In a word, from the perspective of regulating the thermal environment in future urban
planning, the following indicators should be considered based on our results: the background climate
features (different climate zone), the seasonal effects of different factors on LST, the dominant driving
factor in different seasons, and the human activities and others related to SUHI.

4.4. Limitations

The results from this study are likely to be subject to several limitations. First, due to data
limitation, we only used a single day to represent one month, and this may yield incomplete or even
opposite results, compared to previous studies. The 30 m spatial resolution of Landsat 8 made it
very difficult to depict information on the driving factors in better detail. In this study, only the
seasonal area proportions of the factors were used in exploring the effects of these factors on LST.
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However, the compositions of neither ISA nor vegetation were provided. For example, it was unclear
whether the ISA was made up of parking lots or low buildings. Second, in addition to land surface
biophysical indicators, the effect of human activities on LST could not be ignored. However, in this
study, we used only qualitative analysis to explore the influence of human beings on LST. In future
studies, socio-economic indicators, such as GDP, population, and energy consumption intensity,
could be employed in quantifying the effects of these indicators on LST. Third, a different choice of
samples may also yield very different results, especially for winter, as the snow cover in this area
has an important influence on LST. In our study, we only analyzed the samples with snow cover in
winter. One may get very different results if the analysis is based on winter without snow cover. In the
future, seasonal variations in nocturnal LST can be investigated using multi-source data, to have a
more comprehensive understanding of the mechanism of SUHI.

5. Conclusions

Twelve Landsat 8 images were used to retrieve LST for different months, to characterize the
seasonal patterns of the urban thermal environment of the snow-climate city Changchun. The seasonal
effect of the driving factors of LST were also investigated, because the causes and patterns of such
variations were unclear. Several conclusions were made based on our results.

(1) The spatial patterns of LST in Changchun city underwent intense seasonal changes. High LST
was concentrated in the urban center in the summer and winter seasons, wherein the SUHI intensities
were 4.89 and 1.94 ◦C, respectively. However, an “inverse” SUHI phenomenon was observed in
February, March, and November, when the LST of the soil surrounding the city was relatively high.
It is should be noted that these conclusions are based on LST data for a snow-climate city (Changchun).

(2) The status of the driving factors also had seasonal variations due to changes in the incoming
solar radiation, which had different impacts on LST in different seasons. The phenological characteristics
of vegetation caused changes in area proportion for the different seasons, which affected LST in different
ways. The area proportion of ISA in summer was slightly lower than those in spring and autumn
because of high vegetation coverage. Almost half of the area was covered with snow, which caused
low LST in winter.

(3) The effects of driving factors on LST had considerable variations. The dominant factors were
quite different for different seasons. Although LST possessed a positive relationship with ISA for all
the seasons, the impact of ISA on LST was most significant for summer. For spring, high LST was
related not only to high ISA but also to burned soil. For summer, the changes in LST were sensitive to
trade-offs between ISA and vegetation, and soil had little influence. For autumn, ISA and vegetation
were still the dominant driving factors, but their impacts were a little weaker than those in summer.
For winter, the effect of vegetation was not obvious, and snow became the most important driving
factor, which could have led to the lowest average LST (−19.12 ◦C) in December. The large areas of
shade caused by high buildings could have generated low LST regions that exacerbated cold waves.
Meanwhile, despite its small area proportion, water had the strongest cooling effect from spring to
autumn and had a warming effect in winter.

(4) The effects of human activities on LST could not be ignored. For example, agricultural burning
activities in March and November, harvesting dates in autumn, different selections of crops, and energy
costs for air conditioning in summer and heating in winter all affect the spatial patterns of LST. These
important factors should also be considered in future urban planning.
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