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Abstract: Ship detection in synthetic aperture radar (SAR) images is becoming a research hotspot. In
recent years, as the rise of artificial intelligence, deep learning has almost dominated SAR ship detection
community for its higher accuracy, faster speed, less human intervention, etc. However, today, there is
still a lack of a reliable deep learning SAR ship detection dataset that can meet the practical migration
application of ship detection in large-scene space-borne SAR images. Thus, to solve this problem,
this paper releases a Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) from Sentinel-1,
for small ship detection under large-scale backgrounds. LS-SSDD-v1.0 contains 15 large-scale SAR
images whose ground truths are correctly labeled by SAR experts by drawing support from the
Automatic Identification System (AIS) and Google Earth. To facilitate network training, the large-scale
images are directly cut into 9000 sub-images without bells and whistles, providing convenience for
subsequent detection result presentation in large-scale SAR images. Notably, LS-SSDD-v1.0 has five
advantages: (1) large-scale backgrounds, (2) small ship detection, (3) abundant pure backgrounds,
(4) fully automatic detection flow, and (5) numerous and standardized research baselines. Last but
not least, combined with the advantage of abundant pure backgrounds, we also propose a Pure
Background Hybrid Training mechanism (PBHT-mechanism) to suppress false alarms of land in
large-scale SAR images. Experimental results of ablation study can verify the effectiveness of the
PBHT-mechanism. LS-SSDD-v1.0 can inspire related scholars to make extensive research into SAR
ship detection methods with engineering application value, which is conducive to the progress of
SAR intelligent interpretation technology.

Keywords: synthetic aperture radar (SAR); ship detection; deep learning; dataset; LS-SSDD-v1.0

1. Introduction

Synthetic aperture radar (SAR) is an active microwave imaging sensor whose all-day and all-weather
working capacity give it an important place in marine exploration [1–7]. Since the United States launched
the first SAR satellite, SAR has received much attention in marine remote sensing, e.g., geological
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exploration, topographic mapping, disaster forecast, traffic monitoring, etc. As a valuable ocean mission,
SAR ship detection is playing a critical role in shipwreck rescue, fishery and traffic management, etc.,
so it is becoming a research hotspot [1–70].

So far, many traditional SAR ship detection methods have been proposed, e.g., global threshold-
based [36–38], constant false alarm ratio (CFAR)-based [39–41], generalized likelihood ratio test
(GLRT)-based [42–44], transformation domain-based [45–47], visual saliency-based [48–50], super-pixel
segmentation-based [51–53], and auxiliary feature-based (e.g., ship-wake) [54–56], all of which obtained
modest results in specific backgrounds, but these methods always extract ship features by hand-designed
means, leading to complexity in computation, weakness in generalization, and trouble in manual
feature extraction [1,4]. Moreover, as ship wakes do not exist all the time, and their features are not as
obvious as ship targets, the research on the detection of ship wakes is not extensive [13].

With the rise of AI, deep learning [71] is providing much power for SAR ship detection. Based on
our survey [8,10–35,61,62,70], deep learning has almost dominated the SAR ship detection community
for its higher accuracy, faster speed, less human intervention, etc., so increasingly, scholars have made
use of deep learning-based ship detection act in an important research direction. In the early stage, deep
learning was applied in various parts of SAR ship detection, e.g., land masking [28], region of interest
(ROI) extraction, and ship discrimination [28,72] (i.e., ship or background binary classification of a
single chip). However, in the present stage, deep-learning-based SAR ship detection methods utilize
an end-to-end mode to send SAR images into networks for detection and output detection results
directly [13], without the support of auxiliary tools (e.g., traditional preprocessing tools, geo information,
etc.) and without manual involvement, so the operation of sea–land segmentation [13] that may need
geo information is removed, which greatly improves detection efficiency. In addition, the coastline of
the earth is constantly changing, so the use of fixed coastline data from geo information will inevitably
result in some deviations [28]. Today, deep-learning-based SAR ship detectors always simultaneously
locate many ships in large SAR images, instead of just ship–background binary classification in some
small single chips, so the ship discrimination process is integrated into the end-to-end mode, improving
detection efficiency.

However, the greatest weakness of lacking SAR ship learning data is bound to cause the inadequate
play of the above advantages, because deep learning always needs much labeled data to enrich the
learning experience [10]. Thus, some famous scholars, e.g., Li et al. [12], Wang et al. [10], Sun et al. [22]
and Wei et al. [7], released their SAR ship detection datasets, i.e., SAR ship detection dataset (SSDD) [12],
SAR-Ship-Dataset [10], AIR-SARShip-1.0 [22], and high-resolution SAR images dataset (HRSID) [7],
but these datasets still have five defects: (1) the lack of considering the practical migration application
of ship detection in large-scene space-borne SAR images, (2) the lack of pure backgrounds, (3) the lack
of considering relatively hard-detected small ships, (4) insufficient automation of detection process in
practical migration applications, and (5) quantity-insufficient and non-standardized research baselines.
Thus, there is still a lack of a reliable deep learning SAR ship detection dataset that can meet the
practical migration application of ship detection in large-scene space-borne SAR images. Moreover,
deep learning for SAR ship detection involves three basic processes (see Figure 1): (1) model training
on the training set of open datasets to learn ship features (see Figure 1a), (2) model test on the test
set (see Figure 1a), and (3) model practical applications or model migration capability verification on
actual large-scene space-borne SAR images [1–4,6,7,10,14,15] (see Figure 1b). The last process is the
most critical because one always need to focus on the actual migration application capability, instead of
the good detection performance just on the test set. Thus, “practical engineering applications” refers to
the actual migration applications, from the acquisition of raw large-scene space-borne SAR images
to the final ship detection result presentation in raw space-borne SAR images, using deep learning,
without any human involvement. Briefly, the existing datasets still have resistance to ensure the smooth
implementation of the last practical application process.
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Figure 1. Deep learning-based synthetic aperture radar (SAR) ship detection. (a) Model establishment;
(b) model application. (1) Model training on the training set; (2) model test on the test set;
(3) model migration.

Thus, we release LS-SSDD-v1.0 from Sentinel-1 [73] for small ship detection under large-scale
backgrounds, which contains 15 large-scale images with 24,000 × 16,000 pixels (the first 10 images are
selected as a training set, and the remaining are selected as a test set). To facilitate network training,
the 15 large-scale images are directly cut into 9000 sub-images with 800 × 800 pixels without bells
and whistles.

In contrast to the existing datasets, LS-SSDD-v1.0 has the following five advantages:

(i) Large-scale background: Except AIR-SARShip-1.0, the other datasets did not consider large-scale
practical engineering application of space-borne SAR. One possible reason is that small-size ship
chips are beneficial to ship classification [7], but they contain fewer scattering information from
land. Thus, models trained by ship chips will have trouble locating ships near highly-reflective
objects in large-scale backgrounds [7]. Although images in AIR-SARShip-1.0 have a relatively
large size (3000 × 3000 pixels), their coverage area is only about 9 km wide, which is still not
consistent with the large-scale and wide-swath characteristics of space-borne SAR that often
cover hundreds of kilometers, e.g., 240–400 km of Sentinel-1. In fact, ship detection in large-scale
SAR images is closer to practical application in terms of global ship surveillance. Thus, we collect
15 large-scale SAR images with 250 km swath width to construct LS-SSDD-v1.0. See Section 4.1
for more details.

(ii) Small ship detection: The existing datasets all consider multi-scale ship detection [13,17], so there
are many ships with different sizes in their datasets. One possible reason is that multi-scale ship
detection is an important research topic that is one of the important factors to evaluate detectors’
performance. Today, using these datasets, there have been many scholars who have achieved
great success in multi-scale SAR ship detection [13,17]. However, small ship detection is an
another important research topic that has received much attention by other scholars [19,24,66]
because small target detection is still a challenging issue in the deep learning community (it
should be noted that “small ship” in the deep learning community refers to occupying minor
pixels in the whole image according to the definition of the Common Objects in COntext (COCO)
dataset [74] instead of the actual physical size of the ship, which is also recognized by other
scholars [19,24,66].). However, at present, there is still lack of deep learning datasets for SAR small
ship detection, so to make up for such a vacancy, we collect large-scene SAR images with small
ships to construct LS-SSDD-v1.0. Most importantly, ships in large-scene SAR images are always
small, from the perspective of pixel proportion, so the small ship detection task is more in line
with the practical engineering application of space-borne SAR. See Section 4.2 for more details.

(iii) Abundant pure backgrounds: In the existing datasets, all image samples contain at least one ship,
meaning that pure background image samples (i.e., no ships in images) are abandoned artificially.
In fact, such practice is controversial in application, because (1) for one thing, human intervention
practically destroyed the raw SAR image real property (i.e., there are indeed many sub-samples
not containing ships in large-scale space-borne SAR images); and (2) for another thing, detection
models may not be able to effectively learn features of pure backgrounds, causing more false
alarms. Although models may learn partial backgrounds’ features from the difference between
ship ground truths and ship backgrounds in the same SAR image, false alarms of brightened dots
will still emerge in pure backgrounds, e.g., urban areas, agricultural regions, etc. Thus, we include
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all sub-images into LS-SSDD-v1.0, regardless of sub-images contain ships or not. See Section 4.3
for more details.

(iv) Fully automatic detection flow: In previous studies [1–4,6,10,34], many scholars have trained
detection models on the training set of open datasets and then tested models on the test set.
Finally, they always verified the migration capability of models on other wide-region SAR
images. However, their process of authenticating model migration capability is a lack of sufficient
automation for the domain mismatch between datasets and practical wide-region images. Thus,
artificial interference is incorporated to select ship candidate regions from the raw large-scale
images, which is troublesome and insufficiently intelligent, but if using LS-SSDD-v1.0, one can
directly evaluate models’ migration capability because we keep the original status of large-scale
space-borne SAR images (i.e., the pure background samples without ships are not discarded
manually and the ship candidate regions are not selected by human involvement.), and the final
detection results can also be better presented by simple sub-image stitching without complex
coordinate transformation or other post-processing means, so LS-SSDD-v1.0 can enable a fully
automatic detection flow without any human involvement that is closer to the engineering
applications of deep learning. See Section 4.4 for more details.

(v) Numerous and standardized research baselines: The existing datasets all provides research
baselines (e.g., Faster R-CNN [75], SSD [76], RetinaNet [77], Cascade R-CNN [78], etc.),
but (1) for one thing, the numbers of their provided baselines are all relatively a few that
cannot facilitate adequate comparison for other scholars, i.e., two baselines for SSDD, six for
SAR-Ship-Dataset, nine for AIR-SAR-Ship-1.0, and eight for HRSID; and (2) for another thing,
they provided non-standardized baselines because these baselines are run under different
deep learning frameworks, different training strategies, different image preprocessing means,
different hyper-parameter configurations, different hardware environments, different programing
languages, etc., bringing possible uncertainties in accuracy and speed. Although the research
baselines of HRSID is standardized, they followed the COCO evaluation criteria [74], which is
rarely used in the SAR ship detection community. Thus, we provide numerous and standardized
research baselines with the PASCAL VOC evaluation criteria [79]: (1) 30 research baselines
and (2) under the same detection framework, the same training strategies, the same image
preprocessing means, almost the same hyper-parameter configuration, the same development
environment, the same programing language, etc. See Section 4.5 for more details.

Moreover, based on abundant pure backgrounds, we also propose a PBHT-mechanism to suppress
false alarms of land, and the experimental results can verify its effectiveness. LS-SSDD-v1.0 is a dataset
according with practical engineering application of space-borne SAR, helpful for the progress of SAR
intelligent interpretation technology. LS-SSDD-v1.0 is also a challenging dataset because small ship
detection in the practical large-scale space-borne SAR images is a difficult task. It seems that the
number of LS-SSDD-v1.0 is small because its image number is only 15. However, in fact, LS-SSDD-v1.0
is still a relatively big dataset because it contains 9000 sub-images. Although the image number in the
SAR-Ship-Dataset seems to be bigger than ours (43,819 >> 9000), its image size is far small than ours
(256 << 800 pixels) and their image samples also have a 50% overlap, causing (1) the detection speed
decline for the duplicate detection in overlapping regions and (2) an inconvenience of subsequent results
presentation in large-scale images. To be clear, some datasets, e.g., OpenSARShip [80], FUSAR [81],
etc., were released for ship classification, e.g., cargo, tanker, etc., but this is not our focus, because this
paper only focuses on ship location without the follow-up classification.

Especially, LS-SSDD-v1.0 is of significance, because (1) it can promote scholars to make extensive
research into large-scale SAR ship detection methods with more engineering application value, (2) it
can provide a data source for scholars who are focusing on the detection of small ships or densely
clustered ships [19], and (3) it can motivate the emergence of higher-quality SAR ship datasets
closer to engineering application and more in line with space-borne SAR characteristics in the future.
LS-SSDD-v1.0 is available at https://github.com/TianwenZhang0825/LS-SSDD-v1.0-OPEN.

https://github.com/TianwenZhang0825/LS-SSDD-v1.0-OPEN
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The main contributions of our work are as follows:

1. LS-SSDD-v1.0 is the first open large-scale ship detection dataset, considering migration
applications of space-borne SAR and also the first one for small ship detection, to our knowledge;

2. LS-SSDD-v1.0 is provided with five advantages that can solve five defects of existing datasets.

The rest of this paper is as follows. Section 2 reviews related work. Section 3 introduces establishment
process. Section 4 introduces five advantages. Experiments are described in Section 5. Results are shown
in Section 6. Discussion is introduced in Section 7. A summary is made in Section 8.

2. Related Work

Table 1 shows the descriptions of the existing four datasets and our LS-SSDD-v1.0, as provided in
their original papers [7,10,12,22]. Figure 2 shows some SAR image samples in them.

Table 1. Descriptions of existing four datasets provided in references [7,10,12,22] and our LS-SSDD-v1.0.
Resolution refers to R.×A. where R. is range and A. is azimuth (note: SSDD, AIR-SARShip-1.0, and
HRSID only provided a single optimal resolution, and SSDD only provided a rough resolution range
from 1 m to 15 m). Image size refers to W.×H., where W. is width and H. is height. Moreover,
SAR-Ship-Dataset and AIR-SARShip-1.0 only provide polarization in the form of single, dual, and full,
instead of the specific vertical or horizontal mode. “–” means no provision in their original papers.

Parameter SSDD SAR-Ship-Dataset AIR-SARShip-1.0 HRSID LS-SSDD-v1.0

Satellite
RadarSat-2,
TerraSAR-X,

Sentinel-1

Gaofen-3,
Sentinel-1 Gaofen-3 Sentinel-1,

TerraSAR-X Sentinel-1

Sensor mode – UFS, FSI, QPSI
FSII, SM, IW

Stripmap,
Spotlight SM, ST, HS IW

Location Yantai,
Visakhapatnam – – Houston,

Sao Paulo, etc.
Tokyo, Adriatic

Sea, etc.
Resolution (m) 1–15 5 × 5, 8 × 8, 10 × 10, etc. 1, 3 0.5, 1, 3 5 × 20

Polarization HH, HV, VV, VH Single, Dual, Full Single HH, HV, VV VV, VH
Image size (pixel) 500 × 500 256 × 256 3000 × 3000 800 × 800 24,000 × 16,000
Cover width (km) ~10 ~0.4 ~9 ~4 ~250

Image number 1160 43,819 31 5604 15

Note: HSRID: high-resolution SAR images dataset; LS-SSDD-v1.0: Large-Scale SAR Ship Detection Dataset-v1.0;
UFS: ultrafine strip-map; FSI: fine strip-map 1; FSII: fine strip-map 2; QPSI: full polarization 1; QPSII: full polarization
2; SM: S3 strip-map; IW: interferometric wide-swath; ST: staring spotlight; HR: high-resolution spotlight.

2.1. SSDD

In 2017, Li et al. [12] released SSDD from RadarSat-2, TerraSAR-X and Sentinel-1 with mixed
HH, HV, VV, and VH polarizations, consisting of 1160 SAR images with 500 × 500 pixels containing
2358 ships, with various resolutions from 1 m to 15 m. Similar to PASCAL VOC [79], SSDD was
established whose ground truths are labeled by LabelImg [3]. One image corresponds to an extensible
markup language (XML) label. Regions with > 3 pixels are seen as ships, instead of AIS and Google
Earth, so label errors may occur declining dataset authenticity. So far, scholars have proposed many SAR
ship detection methods [1–6,8,13–21,29,32] on SSDD, but SSDD has careless annotation, repeated scenes,
deficiency of sample number, etc., which hinders the further progress of research.

SSDD prophesied that deep learning would prevail, whose initial work has laid an important
foundation. Later, as the update of deep learning object detectors, scholars realized that one must
obtain more training data to enhance learning representation capability to further improve accuracy.
As a result, the SAR-Ship-Dataset emerged.
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Figure 2. Images samples. (a) SAR ship detection dataset (SSDD); (b) SAR-Ship-Dataset;
(c) AIR-SARShip-1.0; (d) high-resolution SAR images dataset (HRSID).

2.2. SAR-Ship-Dataset

In March 2019, Wang et al. [30] released the SAR-Ship-Dataset from Gaofen-3, Sentinel-1, consisting
of 43,819 small ship chips of 256 × 256 pixels, containing 59,535 ships, with various resolutions (3 m,
5 m, 8 m, 10 m, 25 m, etc.) and with single, dual and full polarizations. The ground truths are
labeled by SAR experts. They did not draw support from AIS nor Google Earth, so the annotation
process of their dataset relies heavily on expert experience, probably declining dataset authenticity.
Moreover, the SAR-Ship-Dataset abandoned the samples without ships, but such practice (1) destroyed
the large-scale space-borne SAR image property, i.e., there are indeed many samples not containing
ships, and (2) may not effectively learn features of pure backgrounds. Although detectors can learn
background features from the difference between ground truths and backgrounds in the same image,
false alarms of brightened dots will still emerge in pure backgrounds.

The SAR-Ship-Dataset’s large number of images number can make models learn rich ship features.
So far, scholars have reported research results on it, e.g., Cui et al. [14], Gao et al. [26], etc., but its image
size is too small to satisfy the practical migration requirements, so AIR-SARShip-1.0 emerged.

2.3. AIR-SARShip-1.0

In December 2019, Sun et al. [22] released AIR-SARShip-1.0 from Gaofen-3 with 1-m and 3-m
resolution and single polarization consisting of 31 images with 3000 × 3000 pixels in harbors, islands,
reefs, and the sea surface under different conditions. They also labeled the ship ground truths based
on expert experience, not drawing support from AIS or Google Earth. AIR-SARShip-1.0 provides the
labels of the raw SAR images with 3000 × 3000 pixels, instead of those of their training sub-images.
Although they have cut the raw SAR images into 500 × 500 pixel sub-images for network training,
the final detection results are shown in the raw 3000 × 3000 pixel images, reflecting an end-to-end mode
of the practical migration applications. That is, no matter what kind of image division mechanism
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(e.g., direct cutting, sliding window, visual saliency, etc.), they should provide the final ship detection
results on the raw images, instead of small sub-images. However, their 3000 × 3000 pixel image
size (only 9 km of swath width) still does not fully reflect SAR images’ wide-swath characteristic.
Moreover, its total quantity of images for network training is relatively small (1116 sub-images),
inevitably bringing about inadequate learning, and even leading to training over-fitting, which reduces
the models’ generalization capability. Although they used data augmentation, e.g., dense rotation,
image flipping, contrast enhancement, random scaling, etc., to alleviate this problem, data augmentation
can only learn limited ship features based on limited data, and it is obvious that it is not definitely a
better choice if they do not expand the number of datasets. In addition, according to our observation,
SAR images in AIR-SARShip-1.0 seem to be of relatively low-quality compared with SSDD and
SAR-Ship-Dataset, e.g., severe speckle noise, intense image defocus, etc., possibly coming from the
modest imaging algorithms for the raw SAR data, which probably declines the feature extraction of
real ships.

AIR-SARShip-1.0 inspired our work (i.e., design a dataset in line with the actual migration
application.). So far, Fu et al. [35] and Gao et al. [27] have reported their research results based on
AIR-SARShip-1.0. However, the SAR image quality of AIR-SARShip-1.0 is modest, possibly bringing
about certain resistance for other scholars’ further studies. As a result, HRSID emerged.

2.4. HRSID

In July 2020, Wei et al. [7] released HRSID from Sentinel-1 and TerraSAR-X, for ship instance
segmentation including ship detection. There are 5604 SAR images with 0.5 m, 1 m, and 3 m resolutions;
800 × 800 pixels; and HH, HV, and VV polarization in HRSID, containing 16,951 ships. It is worth
noting that they labeled the ship ground truths in SAR images, with the help of Google Earth, which is
a progress compared to SSDD, SAR-Ship-Dataset, and AIR-SARShip-1.0, but AIS is still not considered
in their work. Moreover, HRSID also abandoned the pure background samples by manual intervention,
which leads to the emergence of many false alarm cases of brightened dots in some pure background
SAR images, e.g., urban areas, agricultural regions, etc.

HRSID reminds us that small ship chips are beneficial to ship classification [7] because these ship
chips contain fewer scatterings from land, so models trained by ship chips may have trouble locating
ships near highly reflective objects, which inspired us to consider large-scale SAR ship detection.

3. Establishment Process

3.1. Step 1: Raw Data Acquisition

We download the 15 raw Sentinel SAR data from the Copernicus Open Access Hub [82] in busy
ports, straits, river areas, etc. Table 2 shows the detailed information of the 15 raw Sentinel-1 SAR
data. From Table 2, LS-SSDD-v1.0 is composed of Sentinel-1 images in the interferometric wide
swath (IW) mode, which is the main Sentinel-1 mode to acquire data in areas of maritime surveillance
(MS) interest [9]. We choose ground range multi-look detected (GRD) data for most intensity-based
applications, instead of single-look complex (SLC) data for interferometric applications [83]. The default
polarimetric combination for Sentinel-1 images acquired over areas of maritime interest is (VV-VH) [83].
For incidence angles in the range of 30◦ to 45◦, which are characteristic for Sentinel-1 IW, vessels
generally exhibited higher backscattering values in the co-polarization channel (VV), while in the
cross-polarization channel (VH), the backscattering values were lower [9,83]. In addition, we also note
that there is a special type of instrumental artifact in Sentinel-1 VH polarization images [84], probably
coming from the radio frequency interference (RFI) of instrumental artifacts [84]. The intensity of RFIs
could be as strong as ships, making it difficult to distinguish them using methods based on intensity
information. Given the above, we choose VV co-polarization to perform actual ship annotation.
In particular, for cross-polarization, the ship RCS is smaller, but the clutter is below the noise floor;
the cross-polarization case is noise limited [83]. There are significant benefits to using cross-polarization,
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especially for acquisitions at smaller incidence angles [83]. Furthermore, cross-polarization provides
more uniform ship detection performance across the image swath since the noise floor is somewhat
independent of incidence angle [83]. Therefore, we also provide the 15 raw large-scale SAR images
with VH polarization in the LS-SSDD-v1.0 source documents for possible further research in the future,
which possess the same ship label ground truths as VV polarization.

Table 2. Detailed descriptions of Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0).

No. Place Date Time Duration (s) Mode Incident
Angle (◦)

Image Size
(Pixels)

1 Tokyo Port 20 June 2020 12:01:56 2.509 IW 27.6–34.8 25,479 × 16,709
2 Adriatic Sea 20 June 2020 19:47:56 1.140 IW 27.6–34.8 26,609 × 16,687
3 Skagerrak 20 June 2020 19:57:58 1.227 IW 27.6–34.8 26,713 × 16,687
4 Qushm Islands 11 June 2020 06:50:06 0.652 IW 27.6–34.8 25,729 × 16,717
5 Campeche 21 June 2020 03:55:27 1.353 IW 27.6–34.8 25,629 × 16,742
6 Alboran Sea 17 June 2020 08:55:11 0.896 IW 27.6–34.8 26,446 × 16,672
7 Plymouth 21 June 2020 09:52:22 1.153 IW 27.6–34.8 26,474 × 16,689
8 Basilan Islands 21 June 2020 03:05:52 0.681 IW 27.6–34.8 25,538 × 16,810
9 Gulf of Cadiz 21 June 2020 21:01:21 1.260 IW 27.6–34.8 25,710 × 16,707

10 English Channel 19 June 2020 20:43:04 0.794 IW 27.6–34.8 26,275 × 16,679
11 Taiwan Strait 16 June 2020 13:36:24 0.741 IW 27.6–34.8 26,275 × 16,720
12 Singapore Strait 6 June 2020 14:38:09 1.721 IW 27.6–34.8 25,650 × 16,768
13 Malacca Strait 12 April 2020 05:16:40 0.935 IW 27.6–34.8 25,427 × 16,769
14 Gulf of Cadiz 18 June 2020 09:15:04 1.458 IW 27.6–34.8 25,644 × 16,722
15 Gibraltarian Strait 16 June 2020 21:20:42 0.782 IW 27.6–34.8 25,667 × 16,705

Figure 3 shows their coverage areas. In Figure 3, the 15 raw Sentinel SAR data has large-scale
and width swath characteristics (250 km > 9 km of AIR-SAR-Ship-1.0 > 4 km of HRSID > 0.4 km
of SAR-Ship-Dataset), covering a large area of sea, straits, ports, shipping channels, etc. Moreover,
their image sizes are all relatively large, about 26,000 × 16,000 pixels on average, compared to
other datasets.

Figure 3. Coverage areas. (a) Tokyo Port; (b) Adriatic Sea; (c) Skagerrak; (d) Qushm Islands;
(e) Campeche; (f) Alboran Sea; (g) Plymouth; (h) Basilan Islands; (i) Gulf of Cadiz; (j) English Channel;
(k) Taiwan Strait; (l) Singapore Strait; (m) Malacca Strait; (n) Gulf of Cadiz; (o) Gibraltarian Strait.

We used the Sentinel-1 toolbox [85] to help imaging to obtain 15 tag image file format (TIFF)
files with 16-bit physical brightness or grey levels, where all images are processed by geometrical
rectification, radiometric calibration and de-speckling. Moreover, as demonstrated in the scientific
literature [83], the minimum detectable ship length for the groups of single beam modes is about
25–34 m for 30◦ to 45◦ incidence angle [80,83] (~1.46 dB intensity contrast [83] similar to ice), and it
also decreases with increasing incidence angle, which illustrates the importance of incidence angle in
reducing the background ocean clutter level. More details of Sentinel-1 can be found in Torres et al. [83].
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Finally, the European Space Agency (ESA) provided the specific shooting time of Sentinel-1
satellite in their annotation files, and moreover, with the help of the Sentinel-1 toolbox, we can also
obtain the latitude and longitude information of the surveyed areas. Thus, the above exact time and
accurate geographical location will be convenient for the follow-up AIS consultation and Google Earth
correction. Thus far, the raw 15 large-scale SAR images with the TIFF file format have been obtained.

3.2. Step 2: Image Format Conversion

To keep a same image format as PASCAL VOC [79], we convert the 15 raw tiff files into the
Joint Photographic Experts Group (JPG) files, and we use the Geospatial Data Abstraction Library
(GDAL) [86], a translator library for raster and vector geospatial data formats, to accomplish such
format conversion. Thus far, the raw 15 large-scale SAR images with the .jpg file format were obtained.

3.3. Step 3: Image Resizing

From Table 2 in Section 3.1, the raw 15 large-scale SAR images are provided with different sizes,
but they are all about 26,000 × 16,000 pixels on average. To generate more uniform training samples so
as to facilitate the image cutting in Section 3.4, we resize these images with uniform sizes into 24,000 ×
16,000 pixels by resampling, where 24,000 and 16,000 can be divisible by 800 which is a moderate size
for most deep learning detection models. Our such practice is also the similar as HRSID [7]. Thus far,
the raw 15 large-scale SAR images with 24,000× 16,000 pixels have been obtained.

3.4. Step 4: Image Cutting

Figure 4 shows the process of image cutting. In order to facilitate network training,
these 15 large-scale SAR images with 24,000 × 16,000 pixels are directly cut into 9000 sub-images
with 800 × 800 pixels without bells and whistles (marked in white lines). As a result, 600 sub-images
for each large-scale image are obtained. In Figure 4, the small 600 sub-images from each large-scale
image are, respectively, numbered as N_R_C.jpg (marked in yellow numbers), where N denotes the
serial number of the large-scale image, R denotes the row of sub-images, and C denotes the column.
For instance, as is shown in Figure 4 and taking the 11.jpg as an example, the size of the original
large-scale SAR images is 24,000 × 16,000 pixels, and after cutting, 600 sub-images with 800 × 800 pixels
are generated that are numbered as from 1_1.jpg to 1_30.jpg, from 2_1.jpg to 2_30.jpg, . . . , and from
20_1.jpg to 20_30.jpg, which means the division of 20 rows and 30 columns.

Figure 4. Image cutting process taking the 11.jpg as an example.

Finally, the total 9000 sub-images are generated for network training and test in the LS-SSDD-v1.0
dataset. In LS-SSDD-v1.0, we select the first 10 large-scale images as a training set and the remaining
five images as a test set. In other words, the first 6000 small sub-images coming from 01.jpg to 10.jpg
are selected as a training set, and the remaining 3000 sub-images coming from 11.jpg to 15.jpg as a test
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set. Different from the sliding window mechanism used in SAR-Ship-Dataset, we adopt the direct and
simple cutting mechanism that is the similar as AIR-SARShip-1.0 to produce sub-images, because (1)
for one thing, such direct cutting mechanism is more efficient and concise, and also can avoid repeated
detection of the same ship in multiple sub-images (e.g., 128 pixels are shifted over both columns
and lines during the sliding window, leading to a 50% overlap of adjacent ship chips in the work of
Wang et al. [30]). As a result, the total detection speed can be improved. (2) For another thing, our
practice is also convenient for the subsequent presentation of large-scene SAR ship detection results,
i.e., only the simple image stitching operation is needed, without more complicated post-processing of
ship coordinate transformation, from small sub-images to large-scale images.

Regardless of whether the sub-images contain ships or not, we all add them to our LS-SSDD-v1.0
dataset for network training and test, because (1) for one thing, our such practice complies with
the raw SAR image property because there are indeed many samples not containing ships in the
practical migrating applications of large-scale space-borne SAR images, and (2) for another thing,
detection models can effectively learn features of many pure backgrounds to suppress some false alarms,
e.g., some brightened dots in urban areas, agricultural regions, mountain areas, etc., according to our
findings in Section 7. Thus far, these 9000 sub-images have been obtained.

3.5. Step 5: AIS Support

Before labeling the ship ground truths, SAR experts firstly draw support from AIS to roughly
determine the possible positions of ships in the large-scale SAR images, according to the exact time
and the accurate geographical location of the raw SAR data, introduced in Section 3.1. Figure 5 shows
the AIS messages. In Figure 5, the inshore AIS systems and satellite AIS systems are both employed to
get more comprehensive ship information.

Figure 5. Automatic Identification System (AIS) messages in Taiwan Strait taking the 11.jpg as an
example. Marks of different shapes represent different types of ships, and the depth of colors represents
the time delay.

In addition, it should be noted that AIS can automatically broadcasts information from the vessel
to an AIS ship receiver or an inshore receiver by very high frequency (VHF), but they can only work in
a limited geographical space [87] (about 200 nautical miles) coming from their limited base station
(BS) operating distance. In other words, in fact, some ships far away from land cannot be searched by
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inshore VHF receivers, and moreover, although the satellite AIS systems can find these ships, there
is still a long time delay due to the periodic motion of the satellite around the Earth. Therefore, it is
difficult to fully match the SAR images with a very accurate AIS information at the corresponding time
and corresponding locations, but we have tried our best to narrow such gap. Moreover, in fact, it is not
fully feasible to mark ships if merely using AIS information because many small ships with <300 tons
mass are rarely installed AIS, according to our investigation [88]. Therefore, we also draw support
from the Google Earth for our annotation correction, which will be introduced in Section 3.7. Thus far,
SAR experts have obtained some prior information from AIS.

3.6. Step 6: Expert Annotation

The ship ground truths of the 9000 sub-images are annotated by SAR experts, using LabelImg.
In the expert annotation process, AIS and Google Earth both provide some suggestions for some
controversial areas, e.g., some islands, ports facilities similar to ships, etc. For prominent marine SAR
reflectors, in most cases, we can distinguish them easily according to their shape feature difference with
real ships. If some prominent marine SAR reflectors are so similar to ships that we cannot discriminate
them based on significant geometric features, we draw support from Google Earth to determine their
real conditions. For example, there is a prominent marine SAR reflector in the Google Earth optical
images through visual observation, so we remove it in the SAR images.

During the annotation process, if there are obvious V-shape wake and scattering point defocusing
phenomenon, we regard these strong scattering points as moving ships, and the others are regarded as
stationary/moored ships. In other words, as long as the speed of the ship is not large enough to appear
in the above two situations, we think that they are stationary. Although our practice is rough, it is in
line with the actual situation to a certain extent, because in such wide-region space-borne Sentinel-1
SAR images, compared to the satellite with a high-speed operation, the speed/velocity of ships is far
lower, so in most cases, they can be regarded as stationary targets, which is obviously different from
air-borne SAR according to our experience. For ships with obvious wakes and ships with scattering
point defocusing, we do not include their wake pixels and defocusing pixels into the ship ground truth
rectangular box. In other words, similar to the other existing datasets, we only use the geometrical
properties of ships or the areas around them to act as the salient features of ships based on visual
enhanced mechanism. Moreover, for ships with different headings or courses, we use the maximum
and minimum pixel coordinates from pixels of ship hulls to draw the ship ground truth rectangular
box. In other words, similar to the other datasets, we only use rectangular box to locate the center
point of the ship, not considering the direction estimation of rotatable boxes. Therefore, a ship ground
truth box may have ships in different headings or courses, which means that as long as these ships
with different courses have similar center coordinates, they are measured by a same rectangular box.

Moreover, in SAR images, ships and icebergs typically have a stronger backscatter response than
the surrounding open water, so icebergs that occur in a large variety of sizes and shapes impose
additional challenge to our ship annotation process. First, according to the geographical locations and
shooting time (the determination of the area season) of the original SAR images, drawing support from
the World Glacier Inventory (WGI) [89], we determined that the covered area belongs to an open sea
area where icebergs rarely exist or a complex sea-ice area where icebergs often exist. For the former,
we do not consider icebergs effects that hardly exist. For the latter, we use intensity and shape features
to discriminate ships and icebergs or ice floes, inspired from Bentes et al. [90], because they generally
have the obvious differences in the dominant scattering mechanism [90].

According to the shooting time and geographical positions of SAR images, one can also consult
the satellite images of the corresponding weather conditions including precipitation in the website
of the World Weather Information Service from the World Meteorological Organization (WMO) [91].
In addition, for different water surface phenomena that comes from different weather conditions,
we do not pay too much attention to it because the gray level change of image backgrounds possibly
from different sea clutter distribution is still not obvious in contrast to high-intensity ships. Certainly,
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if there is extreme weather in a sea area (e.g., typhoon), we will pay more attention to inshore ships
that may be less likely to go to sea in extreme weather conditions, so they often park at ports side by
side densely.

Figure 6 shows the expert annotation process. In Figure 6a, the image axis x and y are marked in
orange. From Figure 6a, in LS-SSDD-v1.0, we employ a rectangular box to represent a ship (marked in
green), where its top-left vertex A (xmin, ymin) (marked in black) and bottom-right vertex B (xmax,
ymax) (marked in red) are used to locate the real ship. After the rectangle box has been drawn, the
LabelImg annotation tool will pop up a dialog box to prompt for the category information (i.e., ship in
LS-SSDD-v1.0). After the category information is input successfully, the xml label file, as is shown in
Figure 6b, will be generated automatically. In Figure 6b, the blue rectangle mark refers to the image
information including the width, height, and depth; the green rectangle mark refers to the category
information (i.e., ship in LS-SSDD-v1.0); and the red rectangle mark refers to the ship ground truth
box, which are denoted as xmin, ymin, xmax, and ymax.

Figure 6. Expert annotation. (a) LabelImg annotation tool; (b) xml label file.

Different from HRSID, which employs polygons to describe ships because they need to implement
ship segmentation task and in the deep learning community, the ship detection task generally is always
described by rectangular boxes. Finally, in order to ensure the correctness of ship labels as much as
possible, we also invite more experts to provide technical guidance. Thus far, 9000 label files with the
xml format have been obtained.

3.7. Step 7: Google Earth Correction

To ensure the authenticity of the dataset as much as possible, we also utilize Google Earth for
more careful inspection. In Google Earth, we choose the closest time to approximately match the
shooting time of SAR images. Figure 7 shows a Google Earth optical image of 11.jpg SAR image in
the same coverage areas. In our correction process, appropriate enlargement of images, i.e., zoom in
(marked in blue box in Figure 7) is needed to obtain more detailed geomorphological information and
ocean conditions. Moreover, we find that some islands and reefs are labeled as ships by mistake, so we
performed their correction, which shows Google Earth correction plays an important role.

It needs to be clarified that Google Earth is merely used for annotation correction, and in fact,
it cannot provide fully accurate ship information because there is still a time gap between its optical
images shooting time and SAR images. Moreover, such time gap is objective and cannot be overcome
unless Google Corporation updates maps in time. Yet, LS-SSDD-v1.0 is still superior to other datasets
because they rarely considered Google Earth correction. Thus, finally, we draw support from Google
Earth to identify islands or docks whose locations may not change with time based on visual observation,
so as to (1) check some areas that are easy to label incorrectly and (2) correct wrong labels.
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Figure 7. A Google Earth image corresponding to the coverage areas of 11.jpg in Taiwan Strait. In the
Google Earth software, more image details can be obtained by the operation of zooming in.

To here, we complete the dataset establishment process. Figure 8 shows ground truths of 11.jpg
(marked in green). Compared with other datasets, from Figure 8, it is obvious that LS-SSDD-v1.0 has
the characteristics of large-scale background and small ship detection.

Figure 8. Ship ground truth labels of the 11.jpg. Real ships are marked in green boxes.

Finally, in order to facilitate scholars to use LS-SSDD-v1.0, we provide a file preview as is
shown in Figure 9. In Figure 9, there are seven file folders in the root directory of LS-SSDD-v1.0
(a compressed package file with zip format): (1) JPEGImages, (2) Annotations, (3) JPEGImages_sub,
(4) Annotations_sub, (5) ImageSets, (6) Tools, and (7) JPEGImages_VH.
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Figure 9. File content preview of LS-SSDD-v1.0.

(1) JPEGImages in Figure 9 has 15 files, which contain the 15 raw large-scale space-borne SAR
images that are numbered as from 01.jpg to 15.jpg. The size of these SAR images is 24,000× 16,000 pixels.

(2) Annotations in Figure 9 has 15 files, which contain the 15 ground truth label files of real ships
that are numbered as from 01.xml to 15.xml. These labels files are in line with PASCAL VOC standard
shown in Figure 6b.

(3) JPEGImages_sub in Figure 9 has 9000 files, which contain 9000 sub-images with 800 × 800
pixels that are obtained from the raw 15 large-scale SAR images based on image cutting numbered as
from 1_1.jpg to 1_30.jpg, from 2_1.jpg to 2_30.jpg, . . . , and from 20_1.jpg to 20_30.jpg, as introduced in
Section 3.4. In addition, these sub-images are numbered as N_R_C.jpg, where N denotes the serial
number of the large-scale image, R denotes the row of sub-images, and C denotes the column. It should
be noted that these sub-images are actually used in our network training and test in this paper, due to
limitation of GPU memory. If there are some distributed high performance computing (HPC) [8] GPU
servers, one can direct train the raw 24,000×16,000 pixels large-scale SAR images.

(4) Annotations_sub in Figure 9 contains 9000 label files of ship ground truths numbered as
1_1.xml to 1_30.xml, 2_1.xml to 2_30.xml, . . . , and 20_1.xml to 20_30.xml, respectively, corresponding
to 9000 sub-images with the same file number.

(5) ImageSets in Figure 9 contains two file folders (Layout and Main). Layout is used to place
ship segmentation labels for future version updates, and Main is used to place the training set and
test set division files (train.txt and test.txt). Similar to HRSID [7], regarded images containing land as
inshore samples, we follow this means to divide the test set into a test inshore set and a test offshore set
(test_inshore.txt and test_offshore.txt) to facilitate future studies of other scholars [48,49] who focus on
inshore ship detection, because it is more difficult to detect inshore ships than offshore ships.

(6) Tools in Figure 9 contains a Python tool file named as image_stitch.py to stitch sub-images’
detection results into the original large-scale SAR image. We also provide a user manual for other
scholars’ easier use, named as user_manual.pdf. In addition, in the user_manual.pdf, one can also link
to and obtain additional information about the images by searching the specific product IDs of these
15 raw SAR images in the Copernicus Open Access Hub website [82].

(7) JPEGImages_VH in Figure 9 has 15 files, which contain the 15 raw large-scale space-borne
SAR images with VH cross-polarization numbered as from 01_VH.jpg to 15_VH.jpg that is used for
future dual polarization research. In addition, these 15 VH cross-polarization SAR images possess the
same label ground truths as VV co-polarization. In this paper, we only provide the research baselines
of the VV co-polarization.
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4. Advantages

4.1. Advantage 1: Large-Scale Backgrounds

The capability to cover a wide area is a significant advantage of space-borne SAR, but previous
datasets were always provided with limited detection backgrounds that may be not a best choice for
the practical migration application in engineering. In fact, in general, small ship slices are relatively
appropriate for ship classification [7] due to their obvious shapes, outlines, sizes, textures, etc., but they
contain fewer scattering information from land, islands, artificial facilities, etc., negatively affecting the
practical detection [7]. For the practical space-borne SAR ship detection task, in most cases, one always
needs to detect ships in the large-scene SAR images so as to provide wide-range and all-round ship
monitoring in the Earth, which is also recognized by Cui et al. [14] and Hwang et al. [58], so we collect
SAR images with large-scale backgrounds to establish LS-SSDD-v1.0.

Table 3 shows the background comparison with other existing datasets. From Table 3, LS-SSDD-v1.0′s
image size is the largest. Moreover, from Figures 2 and 8, LS-SSDD-v1.0′s coverage areas are also the
largest. Thus, LS-SSDD-v1.0 is closer to the practical migration application of wide-region global ship
detection in space-borne SAR images, compared to the other four existing datasets. Finally, in Table 3,
it should be noted that “image size” refers to the size of image samples in the dataset files that are
provided by their publishers.

Table 3. Background comparison.

No. Dataset Image Size W.×H. (Pixels) Cover Width (km)

1 SSDD 500 × 500 ~10
2 SAR-Ship-Dataset 256 × 256 ~0.4
3 AIR-SARShip-1.0 3000 × 3000 ~9
4 HRSID 800 × 800 ~4
5 LS-SSDD-v1.0 (Ours) 24,000× 16,000 ~250

4.2. Advantage 2: Small Ship Detection

LS-SSDD-v1.0 can also be used for SAR small ship detection, and there are also two types of
benefits: (1) in fact, ships in large-scale Sentinel-1 SAR images are always rather small from the
perspective of occupied pixels (not real physical size), so LS-SSDD-v1.0 is closer to the practical
engineering migration application; and (2) today, SAR small ship detection is also an important
research topic that has received significant attention from many scholars [19,24,66], but there is still a
lack of datasets that are used specifically to address this problem among open reports, so LS-SSDD-v1.0
can also compensate for such vacancy.

Special attention needs to be paid to is that in the deep learning community, “small ship” refers to
occupying minor pixels in the whole image based on the definition of the COCO dataset [74], instead of
real ship physical size (i.e., ship length and ship breadth). Figure 10 is the intuitive schematic diagram
of small ship detection. For example, in nature, the airplane size is rather large, while in Figure 10a,
the airplane in the first image is often regarded as a small one, but the airplane in the second image
can also often regarded as a large one. In addition, in nature, bird size is often rather small, while in
Figure 10a, the birds in the third image are often regarded as small ones, but the bird in the fourth
image can also often be regarded as a large one. Therefore, for SAR ship detection, in Figure 10b,
the ships in the first and the third images are regarded as small ships; meanwhile, the ships in the
second and the fourth images can also often be regarded as large ships. To sum up, ship pixel ratio
among the whole image is used to measure the ship size, instead of the physical sizes in meters. Up to
now, many other scholars [19,24,66] have adopted this definition, and the existing other datasets are
also based on this definition, so in this paper, we follow the usual practice. In other words, for deep
learning object detection, we do not pay special attention to the specific resolution of images in meters
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or centimeters; on the contrary, we merely focus on the pixel proportion of the real object in the whole
image, i.e., the relative pixel size, instead of the physical size.

Figure 10. Small targets and large targets in the deep learning community. (a) Small objects and large
objects in the nature; (b) small ships and large ships in the SAR images.

Table 4 shows the ship pixel size comparison with the other existing datasets. From Table 4, the
average ship area of LS-SSDD-v1.0 is only 381 pixels2, which is far smaller than others (i.e., 381 <<

1134 < 1808 < 1882 < 4027), and the largest ship area is only 5822 pixels2, which is far smaller than
others (i.e., 5822 << 26,703 < 62,878 < 72,297 < 522,400). Moreover, if we calculate the proportion of
ship pixels among the whole image pixels based on average pixels2, ships in LS-SSDD-v1.0 will be
greatly smaller than others. If we can take the average pixels2 as an example, then we can find that
381/(24,000 × 160,00) = 0.0001% of LS-SSDD-v1.0 << 4027/(3000×3000) = 0.0447% of AIR-SARShip-1.0
< 1808/(800 × 800) = 0.28% of HRSID < 1882/(500 × 500) = 0.75% of SSDD < 1134/(256 × 256) = 1.73% of
SAR-Ship-Dataset. Therefore, LS-SSDD-v1.0 is also dedicated to SAR small ship detection.

Table 4. Ship pixel size. “Pixels2” refers to the area of ship rectangle box. “Proportion” refers to the
proportion of ship pixels occupying the whole image when using average pixels2 to make a statistic.

No. Dataset Smallest
(Pixels2)

Largest
(Pixels2)

Average
(Pixels2) Proportion

1 SSDD 28 62,878 1882 0.7500%
2 SAR-Ship-Dataset 24 26,703 1134 1.7300%
3 AIR-SARShip-1.0 90 72,297 4027 0.0447%
4 HRSID 3 522,400 1808 0.2800%
5 LS-SSDD-v1.0 (Ours) 6 5822 381 0.0001%

Figure 11 shows the ship pixel size distribution of different datasets. In Figure 11, we measure
the ship size in the pixel level (i.e., the number of pixels and the pixel proportion among the whole
image), instead of the physical size level, because (1) SAR images in different datasets have inconsistent
resolutions, and these datasets’ publishers only provided a rough resolution range, so we cannot
perform a strict comparison if using the physical size; (2) the specific resolution of a specific image
of other datasets was not provided in the other datasets’ original papers; (3) the physical size of real
ships of other datasets was also not provided in their original papers; and (4) in the deep learning
community, it is a common sense to use pixel to measure the object size in a relative pixel proportion
among the whole image [78].

In addition, in Figure 11, similar to the other existing datasets, we use the width and height of
the ship ground truth rectangular box to represent the ship pixel size, instead of the ship length L
and the ship breadth B (always B < L), because (1) this is to facilitate dataset comparison because
other datasets’ publishers did not provided the ship length L and the ship breadth B in their original
papers, and they all adopt the width and height [7,10,12,22] to plot the figures in Figure 11. More
cases can be found in references [3,4,6,10,15]. (2) The ship length L and the ship breadth B is related to
image resolution, but other datasets’ publishers did not provide the specific resolution of a specific
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image in their datasets, just a rough resolution range. (3) For deep-learning-based ship detection,
a ship is generally represented as a rectangular box where the width and height are the two core
parameters of a rectangular box, and when using deep learning for SAR ship detection, the final
detection results are also generally represented by a series of rectangular boxes, instead of the ship
length L and the ship breadth B. (4) In fact, there is still a lot of resistance to obtain the physical size of
the ship (i.e., the ship length L and the ship breadth B), because it is difficult to obtain these accurate
information comprehensively from the limited AIS data (i.e., there are still some “dark” ships [9,92]
that fish illegally, smuggle in illegally, etc., which cannot be monitored by AIS, whose ship length L
and ship breadth B cannot be obtained; see more detail in references [9,92]).

Figure 11. Ship pixel size distribution of different datasets. (a) SSDD; (b) SAR-Ship-Dataset;
(c) AIR-SARShip-1.0; (d) HRSID; (e) LS-SSDD-v1.0; (f) coordinate axis enlarged display of (e).

Given the above, it does not affect the core work of this paper if not using the ship length L
and ship breadth B, because (1) the width and height of a ship ground truth rectangular box have
been able to describe ship pixel size well, merely not containing more information when compared
to the ship length L and ship breadth B; (2) different from the ship recognition or classification task
in OpenSARShip [80] that may need specific the ship length L and ship breadth B to represent ship
features to enhance recognition accuracy, our LS-SSDD-v1.0 only focus on ship location, which means
just using a simple rectangle box to frame the ship; and (3) similar to the other datasets, we only use a
vertical or horizontal rectangular box to locate the center point of the ship, not considering the direction
estimation of rotatable boxes in references [11,93] that may be involved with the ship length L and ship
breadth B.

From Figure 11, ships in LS-SSDD-v1.0 (Figure 11e,f) have a concentrated distribution in the area of
both width < 100 pixels and height < 100 pixels, but ships in other datasets are provided with multi-scale
characteristic, especially for HRSID (Figure 11d). Although detecting ship with different sizes is an
important research topic that has attracted many scholars [13,17], the hard-detected small ship detection
are also rather important to evaluate the minimum recognition capability of detectors. Therefore, today,
SAR small ship detection has also received much attention by another scholars [19,24,66]. However,
there is still a lack of datasets that are used for small ship detection among open reports, so LS-SSDD-v1.0
can solve this problem.

According to the COCO dataset regulation, we also count the number of small ships, medium
ships and large ships in different datasets in detail, as is shown in Table 5. It needs to be noted that,
in Table 5, different from traditional understanding that ships with < 50 pixels in Sentinel-1 SAR
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images are regarded as small ones, in our LS-SSDD-v1.0 dataset of this paper, we use the definition
standard from the COCO dataset regulation [74] to determine small ships, medium ships and large
ships, because in the deep learning community, most scholars (e.g., Cui et al. [14], Wei et al. [6,7],
Mao et al. [34], etc.) always adopt such size definition standard. First, the average size of images for
training in the COCO dataset is 484 × 578 = 279,752 pixels in total. As a result, in the COCO dataset
regulation, the targets with their rectangular box areas < 1024 pixels (0.37% proportion among the total
279,752 pixels) are regarded as small ones; 1024 pixels < area < 9216 pixels as medium ones (from 0.37%
proportion among the total 279,752 pixels to 3.29% proportion among the total 279,752 pixels); and area
> 9216 pixels as large ones (3.29% proportion among the total 279,752 pixels). Therefore, the pixel
proportions of 0.37% and 3.29% are used to determine the target size, instead of the simple pixel
number of targets. More intuitive observation can be found in Figure 10.

Table 5. The definition standard of ship size in different datasets.

No. Dataset Training
Avg. Size (Pixels)

Total Pixel
Number

Small
Pixels/Proportion

Medium
Pixels/Proportion

Large
Pixels/Proportion

0 COCO (Standard) 484 × 578 279,752 (0, 1024]/
(0, 0.37%]

(1024, 9216]/
(0.37%, 3.29%]

(9216,∞]/
(3.29%,∞]

1 SSDD 500 × 500 250,000 (0, 915]/
(0, 0.37%]

(915, 8235]/
(0.37%, 3.29%]

(8235,∞]/
(3.29%,∞]

2 SAR-Ship-Dataset 256 × 256 65,536 (0, 240]/
(0, 0.37%]

(240, 2159]/
(0.37%, 3.29%]

(2159,∞]/
(3.29%,∞]

3 AIR-SARShip-1.0 500 × 500 250,000 (0, 915]/
(0, 0.37%]

(915, 8235]/
(0.37%, 3.29%]

(8235,∞]/
(3.29%,∞]

4 HRSID 800 × 800 640,000 (0, 2342]/
(0, 0.37%]

(2342, 21056]/
(0.37%, 3.29%]

(21056,∞]/
(3.29%,∞]

5 LS-SSDD-v1.0 800 × 800 640,000 (0, 2342]/
(0, 0.37%]

(2342, 21056]/
(0.37%, 3.29%]

(21056,∞]/
(3.29%,∞]

According to the relationship between the proportion of the ship rectangular box occupying the
full image pixels, using the above pixel proportion rule, in LS-SSDD-v1.0, whose training images
average size is 800 × 800 pixels, the targets with their rectangular box areas < 2342 pixels are regarded
as small ones (0.37% proportion among the total 640,000 pixels); 2342 pixels < area < 21,056 pixels as
medium ones (0.37% proportion among the total 640,000 pixels to 3.29% proportion among the total
640,000 pixels); and area > 21,056 pixels as large ones (3.29% proportion among the total 640,000 pixels).

Finally, the comparison results of the number of different size ships in different datasets are shown
in Figure 12. From Figure 12, we can draw the following conclusions: (i) There are 2551 ships in total in
SSDD. Among them, there are 1463 small ships (57.35% of the total), 989 medium ships (38.77% of the
total), and 99 large ships (3.88% of the total). (ii) There are 59,535 ships in total in SAR-Ship-Dataset.
Among them, there are 5099 small ships (8.56% of the total), 48,128 medium ships (80.84% of the total),
and 6308 large ships (10.60% of the total). (iii) There are 512 ships in total in AIR-SARShip-1.0. Among
them, there are 74 small ships (14.45% of the total), 406 medium ships (79.30% of the total), and 32
large ships (6.25% of the total). (iv) There are 16,965 ships in total in HRSID. Therefore, there are 15,510
small ships (91.42% of the total), 1344 medium ships (7.92% of the total), and 111 large ships (0.66% of
the total). (v) There are 6015 ships in total in LS-SSDD-v1.0. Among them, there are 6003 small ships
(99.80% of the total), 12 medium ships (0.20% of the total), and 0 large ships (0.00% of the total).

To sum up, LS-SSDD-v1.0 is also a dataset dedicated to SAR small ship detection, because its
proportion of small ships is far higher than others (99.80% of LS-SSDD-v1.0 > 91.42% of HRSID >

57.35% of SSDD > 14.45% of AIR-SARShip-1.0 > 8.56% of SAR-Ship-Dataset).
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Figure 12. The number of different size ships in different datasets. (a) SSDD; (b) SAR-Ship-Dataset; (c)
AIR-SARShip-1.0; (d) HRSID; (e) LS-SSDD-v1.0; (f) coordinate axis enlarged display of (e).

4.3. Advantage 3: Abundant Pure Backgrounds

In the existing four datasets, the image samples with pure backgrounds are all discarded artificially
(Pure backgrounds mean that there are no ships in images.). There may be two possible reasons for this:
(1) detection models seem to be able to simultaneously learn the features of ships (i.e., positive samples)
and those of backgrounds (i.e., negative samples) from the images containing ships, so previous
scholars possibly think that it is unnecessary to add so many pure background samples; and (2) if too
many pure background samples are added, the training time of models is bound to be increased.

However, we find that if pure background samples are fully discarded in training, many false
alarm cases of brightened dots will emerge in urban areas, agricultural regions, mountain areas, etc.,
which will be shown in Section 7. In addition, such phenomenon also really appeared in the work of
Cui et al. [14] and our previous work [4]. Obviously, it is impossible for ships to exist in these areas.

In addition, it is indeed time-consuming for training to add many pure backgrounds samples, but
we hold the view that it is cost-effective to obtain better detection performance, because, in fact, such
practice does not slow down the final detection speed for the test process (or inference process).

Table 6 shows the abundant pure background comparison with other datasets. From Table 6,
only LS-SSDD-v1.0 has abundant pure backgrounds. Figure 13 shows some typical SAR images with
pure backgrounds in LS-SSDD-v1.0 and their optical images of corresponding areas. In Figure 13,
we show eight types of areas that generally do not contain ships, i.e., pure ocean surface, farmlands,
urban areas, Gobi, remote rivers, villages, volcanos and forests. Moreover, it should be noted that
these typical pure background samples are all from the original 15 large-scale SAR images, not a
deliberate addition.

Table 6. Abundant pure backgrounds comparison.

No. Dataset Abundant Pure Background

1 SSDD 8

2 SAR-Ship-Dataset 8

3 AIR-SARShip-1.0 8

4 HRSID 8

5 LS-SSDD-v1.0(Ours) 3
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Figure 13. Abundant pure backgrounds of SAR images in LS-SSDD-v1.0. (a) SAR images; (b) optical
images. Sea surface; farmlands; urban areas; Gobi; remote rivers; villages; volcanos; forests.

Especially, combined with abundant pure backgrounds, we propose PBHT-mechanism to suppress
false alarms of land in large-scale SAR images. In other words, these pure background samples in
Figure 13 are mixed in non-pure background samples that are jointly inputted into networks for the
actual training. In this way, for example, for the urban areas in Figure 13a, the false alarms of some
bright spots marked in red circles can be effectively suppressed. Influences of PBHT-mechanism on the
overall detection performance will be discussed in detail in Section 7.

Finally, it needs to be noted that the theme of our work is “ship detection,” as is shown in
this paper’s title, but we still include these land areas with pure backgrounds in Figure 13 into our
LS-SSDD-v1.0 dataset, because (1) according to the evolution of time, the use of deep learning for
SAR ship detection can be divided into two stages, i.e., the early stage and the present stage. In the
early stage, deep learning was applied in various parts of SAR ship detection, e.g., land masking [28],
region of interest (ROI) extraction, and ship discrimination [28,72] (i.e., ship or background binary
classification of a single chip.). However, in the present stage, deep learning-based SAR ship detection
methods utilize an end-to-end mode to send SAR images into networks for detection and output
detection results directly [13], without the support of auxiliary tools (e.g., traditional preprocessing
tools, geo information, etc.) and without manual involvement. In other words, the operation of
sea–land segmentation [13] that may need geo information is removed at present, so the detection
efficiency is greatly improved, which reflects the biggest advantage of AI, i.e., a thoroughly intelligent
process. Although it seems to be forcible, it is rather highly efficient, as long as there are abundant
image samples containing land used for network training and learning. (2) In addition, the coastlines
of the Earth are constantly changing, so the use of fixed coastline data from geo information to perform
sea-land segmentation will inevitably result in some deviations [28], and especially, in fact, it is also
challenging to obtain an accurate result of land–sea segmentation that are under extensive research by
many other scholars [94–96]. (3) Today, deep learning-based SAR ship detectors always simultaneously
locate many ships in large SAR images, instead of just ship–background binary classification in some
small single chips, so the ship discrimination process is integrated into the end-to-end mode, improving
detection efficiency. (4) In order to avoid the trouble of land-sea segmentation, networks have to train
on these land areas to learn their features to discriminate land, sea, ship, etc., which is a compromise
alternative to replace the operation of land–sea segmentation, and our such practice is also same as the
other existing datasets where some land areas are also included (just these existing datasets do not
include the pure background land areas without ships.). (5) As described before, such practice can
suppress the false alarms of brightened dots in urban areas, agricultural regions, mountain areas, etc.

4.4. Advantage 4: Fully Automatic Detection Flow

Fully automatic detection flow means that there is no human involvement when detecting
ships in large-scale SAR images in the practical engineering migration application. According to
our investigation, today, many scholars [1–4,6,10,34] needed to verified their detection models on
some open datasets and then performed practical ship detection in several other large-scale SAR
images to confirm the migration capability of models. However, their practical operation process
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needs some preprocessing means, e.g., separation of land-sea, vision selection, etc., to obtain ship
candidate areas, because there is a huge domain gap between the existing datasets and the practical
large-scale space-borne SAR images (small ship chips VS. large detection regions), according to intuitive
observation. Thus, they often needed to abandon these regions without ships (i.e., pure backgrounds)
based on the human’s observing experience or some sophisticated traditional algorithms. Moreover,
their detection results from ship candidate areas also need to be integrated into the original large-scale
SAR image via some specific post-processing means (i.e., coordinate transformation).

Obviously, the above practice is not a fully automated and adequately intelligent process.
One possible reason for such is that the datasets they used for model training are not exclusively
designed for their practical large-scale space-borne SAR images, consequently leading to insufficient
automation and insufficient intelligence in their model migration capability verification process (the
last process in Figure 1b of Section 1). On the contrary, if using LS-SSDD-v1.0 to conduct model
training, one can verify their detection models’ migration application capability on large-scale SAR
images, without any human involvement and any use of traditional algorithms, fully automatically,
which is also the most appropriate embodiment of the advantages of deep learning.

Table 7 shows the automatic detection flow comparison with other existing datasets. From Table 7,
only LS-SSDD-v1.0 can achieve an automatic detection flow, while others are not fully automatic in
practical engineering applications.

Table 7. Fully automatic detection flow comparison.

No. Dataset Fully Automatic Detection Flow

1 SSDD 8

2 SAR-Ship-Dataset 8

3 AIR-SARShip-1.0 8

4 HRSID 8

5 LS-SSDD-v1.0 (Ours) 3

Figure 14 shows the fully-automatic ship detection process in a large-scale space-borne SAR image
when using our LS-SSDD-v1.0 dataset to train network models.

Figure 14. Fully automatic detection flow based on LS-SSDD-v1.0 to train network models.

From Figure 14, the fully-automatic detection flow is as follows.
Step 1: Input a large-scale SAR image.
That is, input a raw large-scale Sentinel-1 SAR image with the raw .tiff file format.
Step 2: Automatic image preprocessing.
That is, convert the raw SAR image with the .tiff file format into the .jpg file format. Afterward,

resize the image into 24,000 × 16,000 pixels.
Step 3: Image cutting into sub-images.
That is, cut the 24,000 × 16,000 pixels SAR image into 600 sub-images with 800 × 800 pixels

directly, without bells and whistles. It should be noted that these sub-images are actually used in our
network training and test in this paper, coming from limitation of GPU memory, because most deep
learning network models are so huge (hundreds of MB) that their training needs huge GPU memory.
Such image cutting is also a common sense in the deep learning community, and the AIR-SARShip-1.0
dataset also adopts such practice where the original large SAR images with 3000 × 3000 pixels are
cut into small sub-images with 500 × 500 pixels for the actual network training. Of course, if there
are some distributed cluster high performance computing (HPC) GPU servers [8] with enough GPU
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memory, one can also directly train the raw 24,000 × 16,000 pixels large-scale SAR images, similar to
traditional CFAR-based methods that may need not image cutting, i.e., a one-step procedure clipping
single ship from the start is straight forward.

Step 4: Perform ship detection in sub-images.
That is, use trained models on LS-SSDD-v1.0 to perform ship detection in sub-images, and obtain

the detection results of 600 sub-images.
Step 5: Sub-images stitching.
That is, stitch the detection results of 600 sub-images.
Step 6: Output ship detection results of the large-scale SAR image.
That is, ship detection results are presented in the raw large-scale space-borne SAR image.
To sum up, in brief, from Figure 14, if using LS-SSDD-v1.0 to train detection models, one can

directly input a raw large-scene SAR images to be detected into models, and obtain the output of the
final large-scene SAR ship detection results, which means that models can achieve a fully end-to-end
large-scene detection flow, shown in Figure 1b of Section 1. In other words, the above steps are all
completed on automated machines, without any manual involvement, so LS-SSDD-v1.0 enables a fully
automatic detection flow in the last process in Figure 1b of Section 1.

4.5. Advantage 5: Numerous and Standardized Research Baselines

The existing datasets all have provided some research baselines for future related scholars, but it
is a pity that their research baselines still have two shortcomings: (1) For one thing, apart from HRSID,
the research baselines of the other three existing datasets are non-standardized, because most of their
different detection methods are run under different deep learning frameworks (e.g., Caffe, Tensorflow,
Pytorch, Keras, etc.), different training strategies (e.g., different training optimizers, different learning
rate adjustment mechanisms, etc.), different image preprocessing means (e.g., different image resizing,
different data augmentation ways, etc.), different hyper-parameter configurations (e.g., different batch
sizes, different detection thresholds, etc.), different experimental development environments (e.g., CPU
and GPU), different programing languages (e.g., C++, Python, Matlab, etc.), etc., which possibly bring
many uncertainties in both detection accuracy and detection speed, according to our experience [5].
(2) For another thing, the numbers of their research baselines are generally insufficient, which is not
conducive to make a more adequate method comparison in detection performance for other scholars
in the future.

Thus, we provide standardized and numerous baselines of LS-SSDD-v1.0, as shown in Table 8:

1. Standardized. In Table 8, the research baselines of LS-SSDD-v1.0 are run under the same
detection framework (MMDetection with Pytorch), the same training strategies, the same image
preprocessing method, almost the same hyper-parameter configuration (it is impossible for
different models to have the same hyper-parameters, but we try to keep them basically the same),
the same experimental environments, the same programing language (Python), etc. Moreover,
HRSID provided standardized ones, but their detection accuracy evaluation indexes followed
the evaluation protocol on COCO [74], which is scarcely used by other scholars. One possible
reason is that the COCO evaluation protocol only can reflect the detection probability but not
the false alarm probability, so many scholars generally abandon it. Thus, LS-SSDD-v1.0 uses the
evaluation protocol on PASCAL VOC [79], i.e., Recall, Precision, mAP and F1 as accuracy criteria.

2. Numerous. From Table 8, the number of research baselines of LS-SSDD-v1.0 is far more than other
datasets, i.e., 30 of LS-SSDD-v1.0 >> 9 of AIR-SAR-Ship-1.0 > 8 of HRSID > 6 of SAR-Ship-Dataset
> 2 of SSDD. Therefore, in the future, other scholars can make more research on the basis of these
30 research baselines.

To be clear, we do not provide the research baselines of traditional methods, because (1) traditional
methods generally run in the Matlab development environment instead of Python, and moreover
they scarcely call GPU for training and test acceleration; and (2) the detection accuracy of traditional
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methods is far inferior to that of deep learning methods (See Cui et al. [13] and Sun et al. [22].), so it has
little significance compared with traditional methods. Moreover, as to why methods based on deep
learning is generally superior to traditional methods, it is still an unsolved problem, probably from the
fact that deep networks can extract more representative and abstract hierarchical features [71].

Table 8. Research baselines comparison with other existing datasets.

No. Dataset Standardized
Research Baselines

Number of Research
Baselines

1 SSDD 8 2
2 SAR-Ship-Dataset 8 6
3 AIR-SARShip-1.0 8 9
4 HRSID 3 8
5 LS-SSDD-v1.0 (Ours) 3 30

5. Experiments

Our experiments are run on a personal computer with RTX2080Ti GPU and i9-9900k CPU,
using Python and MMDetection [97] based on PyTorch. CUDA is used to call GPU to accelerate training.

5.1. Experimental Details

We train 30 deep learning detectors on LS-SSDD-v1.0 by using the MMDetection toolbox [97].
We input the sub-images with 800 × 800 pixels into networks for training. SSD-300′s input image size
is set as 300 × 300 pixels and SSD-512 as 512 × 512 pixels. We train the following 30 detectors by using
stochastic gradient descent (SGD) [98] for 12 epochs. Given limited GPU memory, the batch size is set as 1.
The learning rate is set as 0.01 with momentum as 0.9 and weight decay as 0.0001. In order to further
reduce the training loss, the learning rate is also reduced 10 times per epoch from 8-epoch to 11-epoch.
We also adopt the linear scaling rule (LSR) [99] to adjust the learning rate proportional. These 30 detectors
are (1) Faster R-CNN [75] without FPN [100], (2) Faster R-CNN [75], (3) OHEM Faster R-CNN [101],
(4) CARAFE Faster R-CNN [102], (5) SA Faster R-CNN [103], (6) SE Faster R-CNN [104], (7) CBAM
Faster R-CNN [105], (8) PANET [106], (9) Cascade R-CNN [78], (10) OHEM Cascade R-CNN [101], (11)
CARAFE Cascade R-CNN [102], (12) SA Cascade R-CNN [103], (13) SE Cascade R-CNN [104], (14) CBAM
Cascade R-CNN [105], (15) Libra R-CNN [107], (16) Double-Head R-CNN [108], (17) Grid R-CNN [109],
(18) DCN [110], (19) EfficientDet [111], (20) Guided Anchoring [112], (21) HR-SDNet [6], (22) SSD-300 [76],
(23) SSD-512 [76], (24) YOLOv3 [113], (25) RetinaNet [77], (26) GHM [114], (27) FCOS [115], (28) ATSS [116],
(29) FreeAnchor [117], and (30) FoveaBox [118]. We utilize (1) ResNet-50 [119] as the backbone networks
of Faster R-CNN without FPN, Faster R-CNN, OHEM Faster R-CNN, CARAFE Faster R-CNN, SA Faster
R-CNN, SE Faster R-CNN, CBAM Faster R-CNN, PANET, Cascade R-CNN, OHEM Cascade R-CNN,
CARAFE Cascade R-CNN, SA Cascade R-CNN, SE Cascade R-CNN, CBAM Cascade R-CNN, Libra
R-CNN, Double-Head R-CNN, Grid R-CNN, DCN, EfficientDet, Guided Anchoring, RetinaNet, GHM,
FCOS, ATSS, FreeAnchor and FoveaBox; (2) HRNetV2p-w40 [6] as the backbone network of HR-SDNet;
(3) VGG-16 [120] as the backbone network of SSD; and (4) DarkNet-53 as the backbone network of
YOLOv3. These backbones are all pre-trained on ImageNet [121] and their pre-training weights are
transferred into networks for fine-tuning [121].

Moreover, the loss functions of different methods are basically the same as their original work.
When performing ship detection in the test process, we set the score threshold as 0.5 and also set the
intersection over union (IOU) threshold of detections as 0.5, which means that if the overlap area of
a predictive box and a ground truth box exceeds or equals 50%, then ships in this box are detected
successfully [1]. IOU is defined by (BG∩BD)/(BG∪BD), where BG denotes ground truth boxes and BD
denotes detection boxes. Non-maximum suppression (NMS) [122] is used to suppress repeatedly
detected boxes whose threshold is set as 0.5. We do not select Soft-NMS [123] used by Wei et al. [6] to
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complete such operation, because (1) Soft-NMS is insensitive to high score threshold, i.e., 0.5 of ours
>> 0.05 of Wei et al. [6]; and (2) Soft-NMS increases extra computation cost, declining detection speed.

5.2. Evaluation Indices

Detection probability Pd, false alarm one Pf and missed detection one Pm are defined by [5]

Pd =
TP
GT

(1)

P f =
FP

TP + FP
(2)

Pm =
FN
GT

(3)

where TP is true positive, GT is ground truth, FP is false positive, and FN is false negative.
Recall, precision, mean average precision (mAP), and F1 are defined by [5,16]

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

mAP =

∫ 1

0
P(R)·dR (6)

F1 = 2·
Precision·Recall

Precision + Recall
(7)

where P denotes precision, R denotes recall, and P(R) denotes the precision–recall curve.
Frames per second (FPS) is defined by 1/t, where t denotes the time to detect a small sub-image.

As a result, the total time T to detect a raw large-scale space-borne SAR image equals 600 t.

6. Results

Tables 9–11, respectively, shows the research baselines on the entire scenes, the inshore ones and
the offshore ones. Figure 15 respectively shows precision–recall curves on the entire scenes, the inshore
ones and the offshore ones.

Table 9. Research baselines of the entire scenes. Pd: Detection probability; Pf: False alarm probability;
Pm: Missed detection probability; mAP: mean Average Precision.

No. Method Pd Pf Pm Recall Precision mAP F1

1 Faster R-CNN without FPN [75] 65.81% 26.42% 34.19% 65.81% 73.58% 63.00% 0.69
2 Faster R-CNN [100] 77.71% 26.26% 22.29% 77.71% 73.74% 74.80% 0.76
3 OHEM Faster R-CNN [101] 71.40% 13.50% 28.60% 71.40% 86.50% 69.25% 0.78
4 CARAFE Faster R-CNN [102] 77.67% 25.37% 22.33% 77.67% 74.63% 74.70% 0.76
5 SA Faster R-CNN [103] 77.88% 25.20% 22.12% 77.88% 74.80% 75.17% 0.76
6 SE Faster R-CNN [104] 77.21% 25.21% 22.79% 77.21% 74.79% 74.34% 0.76
7 CBAM Faster R-CNN [105] 78.39% 25.62% 21.61% 78.39% 74.38% 75.32% 0.76
8 PANET [106] 76.32% 25.09% 23.68% 76.32% 74.91% 73.33% 0.76
9 Cascade R-CNN [78] 72.67% 15.91% 27.33% 72.67% 84.09% 70.88% 0.78
10 OHEM Cascade R-CNN [101] 64.05% 6.79% 35.95% 64.05% 93.21% 62.90% 0.76
11 CARAFE Cascade R-CNN [102] 74.60% 15.52% 25.40% 74.60% 84.48% 72.66% 0.79
12 SA Cascade R-CNN [103] 71.99% 16.37% 28.01% 71.99% 83.63% 69.94% 0.77
13 SE Cascade R-CNN [104] 72.71% 16.47% 27.29% 72.71% 83.53% 70.92% 0.78
14 CBAM Cascade R-CNN [105] 74.31% 16.49% 25.69% 74.31% 83.51% 72.20% 0.79
15 Libra R-CNN [107] 76.70% 26.45% 23.30% 76.70% 73.55% 73.68% 0.75
16 Double-Head R-CNN [108] 78.47% 25.63% 21.53% 78.47% 74.37% 75.74% 0.76
17 Grid R-CNN [109] 75.23% 20.98% 24.77% 75.23% 79.02% 72.28% 0.77
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Table 9. Cont.

No. Method Pd Pf Pm Recall Precision mAP F1

18 DCN [110] 76.87% 25.87% 23.13% 76.87% 74.13% 73.84% 0.75
19 EfficientDet [111] 67.49% 37.86% 32.51% 67.49% 62.14% 61.35% 0.65
20 Guided Anchoring [112] 70.86% 12.06% 29.14% 70.86% 87.94% 69.02% 0.78
21 HR-SDNet [6] 70.56% 15.04% 29.44% 70.56% 84.96% 68.80% 0.77
22 SSD-300 [76] 28.26% 14.50% 71.74% 28.26% 85.50% 25.37% 0.42
23 SSD-512 [76] 42.30% 9.53% 57.70% 42.30% 90.47% 40.60% 0.58
24 YOLOv3 [113] 26.24% 12.36% 73.76% 26.24% 87.64% 24.63% 0.40
25 RetinaNet [77] 55.51% 5.38% 44.49% 55.51% 94.62% 54.31% 0.70
26 GHM [114] 70.73% 15.31% 29.27% 70.73% 84.69% 68.52% 0.77
27 FCOS [115] 51.30% 6.08% 48.70% 51.30% 93.92% 50.33% 0.66
28 ATSS [116] 31.29% 10.25% 68.71% 31.29% 89.75% 30.10% 0.46
29 FreeAnchor [117] 77.67% 44.70% 22.33% 77.67% 55.30% 71.04% 0.65
30 FoveaBox [118] 53.03% 4.25% 46.97% 53.03% 95.75% 52.32% 0.68

Table 10. Research baselines of the inshore scenes.

No. Method Pd Pf Pm Recall Precision mAP F1

1 Faster R-CNN without FPN [75] 29.11% 50.86% 70.89% 29.11% 49.14% 25.27% 0.37
2 Faster R-CNN [100] 53.68% 44.04% 46.32% 53.68% 55.96% 46.76% 0.59
3 OHEM Faster R-CNN [101] 41.90% 22.11% 58.10% 41.90% 77.89% 38.31% 0.54
4 CARAFE Faster R-CNN [102] 53.68% 42.62% 46.32% 53.68% 57.38% 46.98% 0.55
5 SA Faster R-CNN [103] 52.66% 42.09% 47.34% 52.66% 57.91% 46.61% 0.55
6 SE Faster R-CNN [104] 51.76% 42.01% 57.99% 51.76% 57.99% 45.52% 0.55
7 CBAM Faster R-CNN [105] 54.25% 40.50% 45.75% 54.25% 59.50% 47.70% 0.57
8 PANET [106] 50.62% 40.72% 49.38% 50.62% 59.28% 44.39% 0.55
9 Cascade R-CNN [78] 44.28% 26.78% 55.72% 44.28% 73.22% 40.77% 0.55
10 OHEM Cascade R-CNN [101] 29.11% 12.59% 70.89% 29.11% 87.41% 27.44% 0.44
11 CARAFE Cascade R-CNN [102] 47.68% 28.40% 52.32% 47.68% 71.60% 43.66% 0.57
12 SA Cascade R-CNN [103] 44.05% 29.14% 55.95% 44.05% 70.86% 39.68% 0.54
13 SE Cascade R-CNN [104] 43.49% 27.55% 56.51% 43.49% 72.45% 40.21% 0.54
14 CBAM Cascade R-CNN [105] 48.02% 28.26% 51.98% 48.02% 71.74% 44.02% 0.58
15 Libra R-CNN [107] 50.74% 43.43% 49.26% 50.74% 56.57% 43.25% 0.53
16 Double-Head R-CNN [108] 53.57% 42.11% 46.43% 53.57% 57.89% 47.53% 0.57
17 Grid R-CNN [109] 48.92% 38.29% 51.08% 48.92% 61.71% 43.08% 0.55
18 DCN [110] 51.87% 42.68% 48.13% 51.87% 57.32% 45.31% 0.54
19 EfficientDet [111] 39.75% 62.38% 60.25% 39.75% 37.62% 30.48% 0.37
20 Guided Anchoring [112] 42.13% 18.95% 57.87% 42.13% 81.05% 39.30% 0.55
21 HR-SDNet [6] 37.83% 23.92% 62.17% 37.83% 76.08% 34.83% 0.51
22 SSD-300 [76] 6.68% 39.18% 93.32% 6.68% 60.82% 4.92% 0.12
23 SSD-512 [76] 15.18% 26.37% 84.82% 15.18% 73.63% 13.15% 0.25
24 YOLOv3 [113] 11.44% 38.79% 88.56% 11.44% 61.21% 8.64% 0.19
25 RetinaNet [77] 18.01% 10.17% 81.99% 18.01% 89.83% 17.29% 0.30
26 GHM [114] 40.77% 27.71% 59.23% 40.77% 72.29% 37.85% 0.52
27 FCOS [115] 11.21% 9.17% 88.79% 11.21% 90.83% 11.01% 0.20
28 ATSS [116] 12.57% 22.92% 87.43% 12.57% 77.08% 11.31% 0.22
29 FreeAnchor [117] 53.57% 69.52% 46.43% 53.57% 30.48% 34.73% 0.39
30 FoveaBox [118] 14.16% 5.30% 85.84% 14.16% 94.70% 13.92% 0.25
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Table 11. Research baselines of the offshore scenes.

No. Method Pd Pf Pm Recall Precision mAP F1

1 Faster R-CNN without FPN [75] 87.49% 18.45% 12.51% 87.49% 81.55% 84.62% 0.84
2 Faster R-CNN [100] 91.91% 17.18% 8.09% 91.91% 82.82% 89.99% 0.87
3 OHEM Faster R-CNN [101] 88.83% 10.75% 11.17% 88.83% 89.25% 86.84% 0.89
4 CARAFE Faster R-CNN [102] 91.84% 16.74% 8.16% 91.84% 83.26% 89.78% 0.87
5 SA Faster R-CNN [103] 92.78% 17.10% 7.22% 92.78% 82.90% 90.89% 0.88
6 SE Faster R-CNN [104] 92.24% 17.28% 7.76% 92.24% 82.72% 90.22% 0.87
7 CBAM Faster R-CNN [105] 92.64% 18.58% 7.36% 92.64% 81.42% 90.50% 0.87
8 PANET [106] 91.51% 18.03% 8.49% 91.51% 81.97% 89.25% 0.86
9 Cascade R-CNN [78] 89.43% 12.10% 10.57% 89.43% 87.90% 88.02% 0.89
10 OHEM Cascade R-CNN [101] 84.68% 5.52% 15.32% 84.68% 94.48% 83.51% 0.89
11 CARAFE Cascade R-CNN [102] 90.50% 10.52% 9.50% 90.50% 89.48% 88.99% 0.90
12 SA Cascade R-CNN [103] 88.49% 11.68% 11.51% 88.49% 88.32% 86.92% 0.88
13 SE Cascade R-CNN [104] 89.97% 12.66% 10.03% 89.97% 87.34% 88.48% 0.89
14 CBAM Cascade R-CNN [105] 89.83% 11.93% 10.17% 89.83% 88.07% 88.12% 0.90
15 Libra R-CNN [107] 92.04% 18.48% 7.96% 92.04% 81.52% 90.09% 0.86
16 Double-Head R-CNN [108] 93.18% 17.67% 6.82% 93.18% 82.33% 91.34% 0.87
17 Grid R-CNN [109] 90.77% 13.24% 9.23% 90.77% 86.76% 88.43% 0.89
18 DCN [110] 91.64% 17.82% 8.36% 91.64% 82.18% 89.45% 0.87
19 EfficientDet [111] 83.88% 24.00% 16.12% 83.88% 76.00% 80.37% 0.80
20 Guided Anchoring [112] 87.83% 9.88% 12.17% 87.83% 90.12% 86.15% 0.89
21 HR-SDNet [6] 89.90% 12.50% 10.10% 89.90% 87.50% 88.37% 0.89
22 SSD-300 [76] 41.00% 11.03% 59.00% 41.00% 88.97% 37.69% 0.56
23 SSD-512 [76] 58.33% 6.24% 41.67% 58.33% 93.76% 56.73% 0.72
24 YOLOv3 [113] 37.98% 4.39% 65.02% 34.98% 95.61% 33.98% 0.51
25 RetinaNet [77] 77.66% 4.68% 22.34% 77.66% 95.32% 76.15% 0.86
26 GHM [114] 88.43% 11.16% 11.57% 88.43% 88.84% 86.20% 0.89
27 FCOS [115] 74.98% 5.80% 25.02% 74.98% 94.20% 73.59% 0.84
28 ATSS [116] 42.34% 7.59% 57.66% 42.34% 92.41% 40.95% 0.58
29 FreeAnchor [117] 91.91% 23.15% 8.09% 91.91% 76.85% 88.67% 0.84
30 FoveaBox [118] 75.99% 4.14% 24.01% 75.99% 95.86% 75.01% 0.85

From Tables 9–11, we can draw the following conclusions:

1. If using mAP as the accuracy criteria, among the 30 detectors, the best on the entire scenes is
75.74% of double-head R-CNN, that on the inshore scenes is 47.70% of CBAM Faster R-CNN,
and that on the offshore scenes is 91.34% of Double-Head R-CNN. If using F1 as the accuracy
criteria, the best on the entire scenes is 0.79 of CARAFE Cascade R-CNN and CBAM Faster
R-CNN, that on the inshore scenes is 0.59 of Faster R-CNN, and that on the offshore scenes is 0.90
of CARAFE Cascade R-CNN and CBAM Faster R-CNN. If using Pd as the accuracy criteria, the
best on the entire scenes is 78.47% of Double-Head R-CNN, that on the inshore scenes is 54.25%
of CBAM Faster R-CNN, and that on the offshore scenes is 93.18% of Double-Head R-CNN.

2. There is a huge accuracy gap between the inshore scenes and the offshore ones, e.g., the inshore
accuracy of Faster R-CNN is far inferior to the offshore one (46.76% mAP << 89.99% mAP and
0.59 F1 << 0.87 F1). This phenomenon is consistent with common sense, because ships in the
inshore scenes are harder to detect than the offshore, due to the severe interference of land, harbor
facilities, etc. Thus, one can use LS-SSDD-v1.0 to emphatically study the inshore ship detection.

3. On the entire dataset, the optimal accuracies are 75.74% mAP of Double-Head R-CNN, 0.79 F1 of
CARAFE Cascade R-CNN and CBAM Faster R-CNN, and 78.47% Pd of Double-Head R-CNN.
Therefore, there is still a huge research space for future scholars. However, so far, the existing four
datasets have almost reached a satisfactory accuracy (about 90% mAP), e.g., for SSDD, the existing
open reports [1,2,4–6,15] have reached >95% mAP. Thus, related scholars may have resistance in
driving the emergence of more excellent research results. In particular, it needs to be clarified
that the accuracies on LS-SSDD-v1.0 are universally lower that on the other datasets if using
same detectors. This phenomenon is because small ship detection in large-scale space-borne SAR
images is a challenging task, instead of the problem from our annotation process. In fact, the
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seven steps in Section 3 has been able to guarantee the authenticity of dataset annotation. In short,
LS-SSDD-v1.0 can promote a new round of SAR ship detection research upsurge.

4. Last but not least, to facilitate the understanding of these 30 research baselines, we make a general
analysis of them. (1) Faster R-CNN with FPN has a better accuracy than Faster R-CNN without
FPN because FPN can improve detection performance of ships with different sizes. (2) OHEM
Faster R-CNN has a worse accuracy than Faster R-CNN because OHEM can suppress false
alarms but miss-detect many ships. (3) CARAFE Faster R-CNN has a similar accuracy to Faster
R-CNN; probably, its up-sampling module is insensitive to small ships. (4) SA Faster R-CNN
has a better accuracy than Faster R-CNN because space attention can capture more valuable
information. (5) SE Faster R-CNN has a similar accuracy to Faster R-CNN; probably, its squeeze
and excitation mechanism cannot respond small ships. (6) CBAM Faster R-CNN has a better
accuracy than Faster R-CNN because its spatial and channel attention can promote information
flow. (7) PANET has a worse accuracy than Faster R-CNN, probably its pyramid network losses
much information of small ships due to excessive feature integration. (8) Cascade R-CNN has a
worse accuracy than Faster R-CNN because its cascaded IOU threshold mechanism can improve
the quality of boxes but miss-detect other ships. (9) Cascade R-CNN with other improvements
have a similar change rule to Faster R-CNN with these improvements (10) Libra R-CNN has a
worse accuracy than Faster R-CNN; probably, it has resistance in solving lots of negative samples
leading to learning imbalance. (11) Double-Head R-CNN has a best accuracy because it has strong
performance to distinguish ships and backgrounds, from its double head for classification and
location. (12) Grid R-CNN has a worse accuracy than Faster R-CNN because its grid mechanism
on the RPN network may not capture useful features from rather small ships. (13) DCN has a
worse accuracy than Faster R-CNN because its deformed convolution kernel only captures larger
receptive field that may miss small ships with small receptive field. (14) EfficientDet has a worse
accuracy than Faster RCNN even Faster R-CNN without FPN, and one possible reason is that its
pyramid network overemphasizes multi-scale information and leads to information loss of small
ships. (15) Guided Anchoring has a worse accuracy than Faster R-CNN, probably because its
anchor guidance mechanism can generate good suggestions of small ships. (16) HR-SDNet has a
modest accuracy because its high-resolution backbone networks may not capture useful features
of small ships which is not suitable low-resolution small ships. (17) SSD-300 and YOLOv3 have
the worst accuracy than others, because they are not good at small ships. (18) SSD-512 has a better
accuracy than SSD-300 because its input image size is bigger than SSD-300, so it can obtain more
image information. (19) RetinaNet has a better accuracy than SSD-300, SSD-512, and YOLOv3
because its focal loss can address the imbalance between positive samples and negative ones.
(20) GHM has a better accuracy than RetinaNet because its gradient harmonizing mechanism
seems to be a hedging for the disharmonies. (21) FCOS has a worse accuracy than RetinaNet,
and a possible reason is that its object detection in a per-pixel prediction fashion may be able
to solve the low-solution SAR images. (22) ATSS has a bad accuracy, probably coming from
its oscillation of loss function due to too much negative samples. (23) FreeAnchor has a better
accuracy than other one-stage detectors because its anchor matching mechanism is similar to
two-stage detectors. (24) FoveaBox has a modest accuracy but lower than RetinaNet because it
directly learns the object existing possibility and the bounding box coordinates without anchor
reference [118]. (25) Finally, the two-stage detectors (from No. 1 to No. 21) generally have better
detection performance than one-stage ones (from No. 22 to No. 30) because two-stage detectors
can achieve better region proposals.

Table 12 shows the detection speed and model information. In Table 12, the detectors of No. 1 to No.
21 are two-stage detectors, and the detectors of No. 22 to No. 30 are one-stage detectors. In general, the
one-stage detectors have lighter network models than two-stage ones because they do not have heavy
RPN networks. As a result, the detection speed of one-stage detectors is higher than two-stage ones.
Moreover, in Table 12, if some improved modules or mechanism are added to the original detectors,
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e.g., Faster R-CNN and Cascade R-CNN, their models become bigger slightly, but these improvements
do not necessarily lead to better detection performance, as shown in Tables 9–12, the heaviest network
model is from HR-SDNet (694 MB) but its detection accuracy is not the best, and the lightest network
model is from SSD-300 (181 MB), leading to its worst detection accuracy. Finally, parameters and
FLOPs have a positive proportion relationship.

Figure 15. Precision–recall curves. (a) Entire scenes; (b) inshore scenes; (c) offshore scenes.

Finally, we take faster R-CNN as an example to show its detection results in the 11.jpg in Figure 16.
In Figure 16, the detection results are marked in blue and the corresponding ship ground truths are in
Figure 8. Given limited pages, the detection results of other detectors are not shown any more.
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Table 12. Detection speed and model information. t: the time to detect a sub-image. T: the time to
detect a large-scale image. FPS: frames per second of detecting sub-images. Parameters: network
parameter number. FLOPs: floating point of operations (giga multiply add calculations, GMACs) [124].

No. Method t (ms) T (s) FPS Parameters
(M)

FLOPs
(GMACs)

Model
Size

1 Faster R-CNN without FPN [74] 207 124.45 4.82 33.04 877.13 252 MB
2 Faster R-CNN [100] 98 58.67 10.23 41.35 134.38 320 MB
3 OHEM faster R-CNN [101] 99 59.31 10.12 41.35 134.38 320 MB
4 CARAFE faster R-CNN [102] 102 61.38 9.78 46.96 136.27 322 MB
5 SA faster R-CNN [103] 120 72.04 8.33 47.26 138.10 365 MB
6 SE faster R-CNN [104] 96 57.63 10.41 42.05 134.40 325 MB
7 CBAM faster R-CNN [105] 107 63.92 9.39 46.92 134.44 362 MB
8 PANET [106] 106 63.46 9.45 44.89 149.87 356 MB
9 Cascade R-CNN [77] 113 67.97 8.83 69.15 162.18 532 MB

10 OHEM cascade R-CNN [101] 114 62.28 8.79 69.15 162.18 532 MB
11 CARAFE cascade R-CNN [102] 119 71.42 8.40 74.76 164.07 534 MB
12 SA cascade R-CNN [103] 140 83.92 7.15 75.06 165.90 577 MB
13 SE cascade R-CNN [104] 116 69.58 8.62 69.85 162.20 537 MB
14 CBAM cascade R-CNN [105] 126 75.31 7.97 74.72 162.24 575 MB
15 Libra R-CNN [107] 109 65.57 9.15 41.62 135.04 322 MB
16 Double-head R-CNN [108] 160 95.97 6.25 46.94 408.58 363 MB
17 Grid R-CNN [109] 99 59.39 10.10 64.47 257.14 496 MB
18 DCN [110] 100 59.71 10.05 41.93 116.82 324 MB
19 EfficientDet [111] 88 131.33 11.42 39.40 107.52 302 MB
20 Guided anchoring [112] 137 82.23 7.30 41.89 134.31 324 MB
21 HR-SDNet [6] 135 80.99 7.41 90.92 260.39 694 MB
22 SSD-300 [75] 27 16.38 36.63 23.75 30.49 181 MB
23 SSD-512 [75] 38 23.09 25.99 24.39 87.72 186 MB
24 YOLOv3 [113] 46 27.57 21.76 20.94 121.15 314 MB
25 RetinaNet [76] 87 52.06 11.53 36.33 127.82 277 MB
26 GHM [114] 88 53.04 11.31 36.33 127.82 277 MB
27 FCOS [115] 87 52.28 11.48 32.06 126.00 245 MB
28 ATSS [116] 94 56.30 10.66 32.11 126.00 245 MB
29 Free anchor [117] 87 52.32 11.47 36.33 127.82 277 MB
30 FoveaBox [118] 79 47.16 12.72 36.24 126.59 277 MB

Figure 16. SAR ship detection results taking Faster R-CNN as an example on the 11.jpg.
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7. Discussions

In this section, we will conduct experiments to confirm the effectiveness of PBHT-mechanism.
Given limited pages, we merely select two two-stage detectors, i.e., Faster R-CNN and Cascade R-CNN,
and two one-stage detectors, i.e., SSD-512 and RetinaNet, to perform such ablation studies.

Table 13 shows the detection performance comparison of PBHT-mechanism on the entire scenes,
Table 14 shows the detection performance comparison of PBHT-mechanism on the inshore scenes,
and Table 15 shows the detection performance comparison of PBHT-mechanism on the offshore scenes.
Figure 17 shows the precision–recall curves with and without PBHT-mechanism.

Table 13. Detection performance with and without PBHT-mechanism on the entire scenes.

Type Method PBHT-Mechanism Pd Pf Pm Recall Precision mAP F1

Two-Stage

Faster
R-CNN

8 81.67% 76.27% 18.33% 81.67% 23.73% 74.09% 0.37
3 77.71% 26.26% 22.29% 77.71% 73.74% 74.80% 0.76

Cascade
R-CNN

8 74.39% 42.15% 25.61% 74.39% 57.85% 69.99% 0.65
3 72.67% 15.91% 27.33% 72.67% 84.09% 70.88% 0.78

One-Stage
SSD-512

8 35.87% 33.41% 64.13% 35.87% 66.59% 27.66% 0.47
3 42.30% 9.53% 57.70% 42.30% 90.47% 40.60% 0.58

RetinaNet
8 61.56% 38.80% 38.44% 61.56% 61.20% 50.38% 0.61
3 55.51% 5.38% 44.49% 55.51% 94.62% 54.31% 0.70

Table 14. Detection performance with and without PBHT-mechanism on the inshore scenes.

Type Method PBHT-Mechanism Pd Pf Pm Recall Precision mAP F1

Two-Stage

Faster
R-CNN

8 62.29% 91.13% 37.71% 62.29% 8.87% 41.18% 0.16
3 53.68% 44.04% 46.32% 53.68% 55.96% 46.76% 0.59

Cascade
R-CNN

8 48.58% 59.38% 51.42% 48.58% 40.62% 38.26% 0.44
3 44.28% 26.78% 55.72% 44.28% 73.22% 40.77% 0.55

One-Stage
SSD-512

8 12.46% 36.78% 87.54% 12.46% 63.22% 9.22% 0.21
3 15.18% 26.37% 84.82% 15.18% 73.63% 13.15% 0.25

RetinaNet
8 36.35% 55.04% 63.65% 36.25% 44.96% 25.56% 0.40
3 18.01% 10.17% 81.99% 18.01% 89.83% 17.29% 0.30

Table 15. Detection performance with and without PBHT-mechanism on the offshore scenes.

Type Method PBHT-Mechanism Pd Pf Pm Recall Precision mAP F1

Two-Stage

Faster
R-CNN

8 93.11% 29.73% 6.89% 93.11% 70.27% 90.48% 0.80
3 91.91% 17.18% 8.09% 91.91% 82.82% 89.99% 0.87

Cascade
R-CNN

8 89.63% 33.07% 10.37% 89.63% 66.93% 86.75% 0.77
3 89.43% 12.10% 10.57% 89.43% 87.90% 88.02% 0.89

One-Stage
SSD-512

8 49.70% 32.88% 50.30% 49.70% 67.12% 38.69% 0.57
3 58.33% 6.24% 41.67% 58.33% 93.76% 56.73% 0.72

RetinaNet
8 76.45% 31.88% 23.55% 76.45% 68.12% 64.70% 0.72
3 77.66% 4.68% 22.34% 77.66% 95.32% 76.15% 0.86

Figure 17. Precision-recall curves of different methods with and without PBHT-mechanism.
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From Tables 13–15, we can draw the following conclusions:

1. PBHT-mechanism can effectively suppress the false alarm probability Pf, i.e., (1) on the entire
scenes, 26.26% Pf of Faster R-CNN with PBHT-mechanism << 76.27% Pf of Faster R-CNN without
PBHT-Mechanism, 15.91% Pf of Cascade R-CNN with PBHT-mechanism << 42.15% Pf of Cascade
R-CNN without PBHT-mechanism, 9.53% Pf of SSD-512 with PBHT-mechanism << 33.41%
Pf of SSD-512 without PBHT-mechanism, and 5.38% Pf of RetinaNet with PBHT-mechanism
<< 38.80% Pf of RetinaNet without PBHT-mechanism; (2) on the inshore scenes, 44.04% Pf of
Faster R-CNN with PBHT-mechanism << 91.13% Pf of Faster R-CNN without PBHT-mechanism,
26.78% Pf of Cascade R-CNN with PBHT-mechanism << 59.38% Pf of Cascade R-CNN without
PBHT-mechanism, 26.37% Pf of SSD-512 with PBHT-mechanism << 36.78% Pf of SSD-512
without PBHT-mechanism and 10.17% Pf of RetinaNet with PBHT-mechanism << 55.04%
Pf of RetinaNet without PBHT-mechanism; (3) on the offshore scenes, 17.18% Pf of Faster
R-CNN with PBHT-mechanism << 29.73% Pf of Faster R-CNN without PBHT-mechanism,
12.10% Pf of Cascade R-CNN with PBHT-mechanism << 33.07% Pf of Cascade R-CNN without
PBHT-mechanism, 6.24% Pf of SSD-512 with PBHT-mechanism << 32.88% Pf of SSD-512 without
PBHT-mechanism, and 4.68% Pf of RetinaNet with PBHT-mechanism << 31.88% Pf of RetinaNet
without PBHT-mechanism.

2. If using PBHT-mechanism, the detection probability Pd has a slight drop for some detectors.
We hold the view that it is worth sacrificing a slight detection probability for a huge false alarm
probability reduction, because the final good balance between Pf and Pd can be achieved. In other
words, finally, mAP and F1, which simultaneously consider Pf and Pd, are obviously improved.

Figure 18 shows the detection result comparison of faster R-CNN with PBHT-mechanism and
without PBHT-mechanism. In Figure 18a, if not using PBHT-mechanism, there are many false alarms of
strong scattering bright spots occurring in the pure background areas (marked in magenta), and their
classification scores are also relatively high although the score threshold is set as 0.5. Obviously,
these false alarms are not likely to happen for traditional methods after sea-land segmentation. On the
contrary, if using PBHT-mechanism, it is obvious that the above false alarms are all suppressed in
pure backgrounds (all magenta boxes are removed), because models have learned the features of area
without ships so as to discriminate real ships and brightened dots of land. Finally, we also realize that it
is time-consuming for training to add many pure backgrounds samples (35 min/epoch >> 5 min/epoch),
but we hold the view that it is cost-effective to achieve better detection performance because such
practice does not slow down the final detection speed for the test or inference process.

Figure 18. SAR ship detection results of faster R-CNN with and without PBHT-mechanism. (a) Detection
results without PBHT-mechanism; (b) detection results with PBHT-mechanism.
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8. Conclusions

This paper releases LS-SSDD-v1.0 for small ship detection from Sentinel-1 with large-scale
backgrounds to meet the practical migration application of ship detection in large-scene space-borne
SAR images in engineering. LS-SSDD-v1.0 has five advantages: (1) large-scale backgrounds, (2) small
ship detection, (3) abundant pure backgrounds, (4) fully automatic detection flow, and (5) numerous
and standardized research baselines. We introduce the establishment process and describe the five
advantages in detail. Then, 30 research baselines are provided for scholars to facilitate future studies.
Finally, based on abundant pure backgrounds, we also propose PBHT-mechanism to suppress false
alarms of land and the experimental results verify its effectiveness. LS-SSDD-v1.0 is a challenging
dataset because small ship detection in the practical large-scale space-borne SAR images in engineering
migration applications is a challenging task. More importantly, LS-SSDD-v1.0 is also a dataset in line
with the practical engineering migration applications in large-scale space-borne SAR images, exciting
related scholars to research SAR ship detection methods with more engineering application value in
the future, beneficial for the progress of SAR intelligent interpretation technology.

Our future work is as follows:

1. We will update LS-SSDD-v1.0 into v2.0 or higher, e.g., expanding the sample number, adding
more typical scenarios, providing preferable research baselines, etc., in the future.

2. We will study more SAR ship detection methods based on LS-SSDD-v1.0, e.g., further improving
the accuracy of the state-of-the-art, further enhancing the accuracy of inshore ships, etc.

3. We will combine deep learning abstract features and traditional concrete ones to further improve
accuracy (e.g., Ai et al. [125]). So far, most scholars in this SAR ship detection community still
scarcely focus on much information of SAR images and ship identification, when they applied
those object detectors in the deep learning filed to this SAR ship detection field.
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