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Abstract: The knowledge of the area and spatial distribution of paddy rice fields is important for water
resource management. However, accurate map of paddy rice is a long-term challenge because of its
spatiotemporal discontinuity and short duration. To solve this problem, this study proposed a paddy
rice area extraction approach by using the combination of optical vegetation indices and synthetic
aperture radar (SAR) data. This method is designed to overcome the data-missing problem due to
cloud contamination and spatiotemporal discontinuities of the traditional optical remote sensing
method. More specifically, the Sentinel-1A SAR and the Sentinel-2 multispectral imager (MSI) Level-2A
imagery are used to identify paddy rice with a high temporal and spatial resolution. Three vegetation
indices, namely normalized difference vegetation index (NDVI), enhanced vegetation index (EVI),
and land surface water index (LSWI), are estimated from optical bands. Two polarization bands
(VH (vertical-horizontal) and VV (vertical-vertical)) are used to overcome the cloud contamination
problem. This approach was applied with the random forest machine learning algorithm on the
Google Earth Engine platform for the Jianghan Plain in China as an experimental area. The results of
39 experiments uncovered the effect of different factors. The results indicated that the combination of
VV and VH band showed a better performance compared with other polarization bands; the average
producer’s accuracy of paddy rice (PA) is 72.79%, 1.58% higher than the second one VH. Secondly,
the combination of three indices also showed a better result than others, with average PA 73.82%,
1.42% higher than using NDVI alone. The classification result presented the best combination is EVI,
VV, and VH polarization band. The producer’s accuracy of paddy rice was 76.67%, with the overall
accuracy (OA) of 66.07%, and Kappa statistics of 0.45. However, NDVI, EVI, and VH showed better
performance in mapping the morphology. The results demonstrated the method developed in this
study can be successfully applied to the cloud-prone area for mapping paddy rice to overcome the
data missing caused by cloud and rain during the paddy growing season.
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1. Introduction

Paddy rice is one of the important grain crops in the world and plays a critical role in food security
and water use assessments. This is because paddy rice fields account for about 11% of the cropland area
in the world and feed over a billion people [1]. Further, nearly 30% of the world’s developed freshwater
resources are used for paddy rice planting [2]. Paddy rice fields, as a critical form of artificial water
body, plays a key role in water circulation. Therefore, the knowledge of areas and distribution of paddy
rice is crucial for the government, water managers, as well as the researchers. With the development of
the satellite remote sensing method, a number of contributions have been made in this area [3]. With the
availability of high spatial and temporal resolution images, satellite remote sensing has become an
effective way to extract the distribution of paddy rice planting. However, these different methods
have an enduring challenge posed by the short-duration of the crop, the geographic and temporal
discontinuities, and the cloud-contamination for mapping paddy rice [4]. This is because paddy
flooding only lasts for 1–2 months. Usually, it happens in the rainy season, resulting in considerable
difficulties in acquiring a high-quality image with no cloud in a short period. When considering the
overlap of paddy rice areas with existing water body locales, the traditional water extraction methods
usually result in an underestimation of paddy rice fields [4].

To extract and discretize paddy rice fields from other crops, a number of efforts have been reported
in the literature [5–7]. There are also some cropland maps on global scales [8,9]. However, global paddy
rice field maps are still undeveloped relaying heavily on statistical approaches [10,11]. Many studies
in the earlier literature build on the use of Landsat band reflectance [12–14]. In the last two decades,
vegetation indices have been popular for use in feature extraction [15–17]. For example, one study
developed a phenology-based method using the relationships among the difference vegetation Index
(NDVI), enhanced vegetation index (EVI), and land surface water index (LSWI) to capture the
flooding and transplanting signals, providing important insights regarding the selection of vegetation
indices [18]. The normalized difference water index (NDWI) also has been found superior to the
traditional classification methods [16]. Many studies have therefore focused on the phenological
metrics to map paddy rice [19–21]. Nevertheless, in monsoon climate zones, flooding and transplanting
happen in the cloudy and rainy season, which causes persistent cloud contamination, and hence a
gap in the vegetation indices dataset. Also, summer rainfall or East Asian monsoon or plum rains
could create fake flooding signals [22]. Thus, a more robust algorithm that can overcome the cloud
contamination is urgently needed.

As an alternative to the optical satellite data [23], Synthetic Aperture Radar (SAR) data also
emerges as a new option for mapping padding rice [24–26]. In recent years, SAR has been employed
popularly for its all-weather capability of active microwave sensing in the study of paddy rice
extraction [15,27,28]. SAR signals, when combined with NDVI [29] or other vegetation indices [21],
could provide realistic results. Nevertheless, due to the diversity in paddy rice, the intra-class
variability limits the applicability of the threshold-based approach. Therefore, the convincing results
SAR and the vegetation index-based algorithms may only be valid for a specific type of paddy rice
or only specific cropping patterns in one area [22]. Advance function of Geostatistics can be used
to interpolate space/time missing data [30]. However, high spatiotemporal discontinuities limit the
application of geostatistical methods as these methods rely on spatial and temporal autocorrelations.
Additionally, the intra-class variability of temporal profiles necessitates a multi-type classification of
paddy rice. A prior study has demonstrated that the relationship between NDVI and EVI and LSWI is a
useful approach to map paddy rice [5], and the combination of multisource data has the complementary
advantage and combines the strength [31]. However, the utility of combining optical vegetation indices
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with SAR data is still unexplored. How exactly does each vegetation index influence the extraction
results, and how does the SAR data’s cloud-independent signal contribute to the mapping outcome
are not well understood.

Therefore, this study will explore the result of the combination of vegetation indices and SAR data
using Sentinel satellite on the Google Earth Engine (GEE) platform [32] by applying the random forest
algorithm, taking the example over the Jianghan Plain in China. The Sentinel satellite provides six-day
intervals and usually 10 m spatial resolution, which is suitable for the size of the paddy rice area in
Jianghan Plain [33,34]. The data are classified by using a machine learning approach. This study aims
to implement the paddy rice area extraction under the condition of an incomplete dataset caused by
whole-month cloud contamination. The result of a different combination of optical vegetation indices
and polarization bands is evaluated to explore the best combination for mapping paddy rice fields.

2. Materials and Methods

2.1. Study Area

The study area, shown in Figure 1, is the Qianjiang region in Hubei Province, which is about
2000 km2. The Qianjiang region is located on Jianghan Plain, one of the most important plains of
the Yangtze Plain [35], near the Yangtze River and Han River. Qianjiang region is a flat, water-land
crisscrossed landscape that is interconnected by waterways and dotted lakes. The elevation of the
Qianjiang region is only about 26–31 m, which makes the whole area plain. The surface texture mainly
comprises of modern river alluvial and lake silt, such as fine sand, silt, and clay. The subtropical
monsoon climate brings ample sunlight and warms the region during rainy season. The annual
average precipitation is around 1300 mm. The rain and heat are synchronous in Jianghan Plain, which
is the typical sub-tropical monsoon climate. Furthermore, most of the extreme precipitation events
(more than 90%) occur during the rainy season between May and October, and more than 30% of
these extreme events concentrate in July [36]. Therefore, during the paddy rice growth period, cloud
contamination could be a very serious problem.
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All these conditions are highly conducive to paddy rice production, making the Qianjiang region
as one of the important commodity grain production bases in China. The total rice production is more
than 70% of Hubei Province. The total area of paddy field is more than 50% of the total paddy fields in
Hubei Province [37].

The middle-season rice is a dominating type of paddy rice, while other types, including early,
and late rice, also have a notable presence. Therefore, the study period is from March to September,
encompassing all the stages of each of the different kinds of paddy rice. The production method on
Jianghan Plain is primarily smallholder agricultural production, and the area of paddy is generally
small. As mentioned, the spatial resolution of Sentinel-2 (10 m and 20 m) is considered suitable for the
study. On Jianghan Plain, other main crop species, including rape, cotton, wormwood, lotus root, grass,
other vegetables, wetland vegetation, and corn, are considered as alternate crops against paddy rice.

2.2. Datasets and Pre-Processing

2.2.1. Sentinel Data

The optical datasets used are Sentinel-2 multispectral imager (MSI) Level-2A images.
The microwave SAR datasets are Sentinel-1 SAR ground range detected (GRD): C-band synthetic
aperture radar ground range detected, log scaling images. Both datasets are selected from March to
September 2019, including all the months that all kinds of rice exist. Sentinel satellites provide high
spatial and temporal resolution products which have been successfully applied to estimating canopy
chlorophyll and nitrogen (N) content [38], soil moisture retrieving [39], vegetation classification [40]
and land cover classification [41].

The SAR data collection mode used in this study was interferometric wide swath (IW) out of
four modes Stripmap (SM), interferometric wide swath (IW), extra wide swath (EW) and wave (WV).
IW mode is the primary operational mode over land, preserving revisit performance with consistent
long-term archives. The SAR imagery used in this study was received from a dual-polarization C-band
Synthetic Aperture Radar (SAR) instrument with vertical transmit, vertical receive (VV), and vertical
transmit, horizontal receive (VH).

Level-1 ground range detected (GRD) product is a calibrated, ortho-corrected product.
Google Earth Engine (GEE) has pre-processed the Sentinel-1 data to derive the backscatter coefficient
in each pixel as implemented by the Sentinel-1 toolbox. Because thermal noise still has to be removed
to enhance the quality of the detected images, a simple noise filter calculating the average value of
the circle with a radius of 7 pixels is applied to the images. The L2A level products are processed by
Sen2Cor, which performs the atmospheric, terrain and cirrus correction of top-of-atmosphere Level
1C input data. Sen2Cor creates bottom-of-atmosphere corrected reflectance after the radiometric
calibration and atmospheric correction, which means that the image pre-processing still has to remove
the cloud. In this study, we have selected images with less than 20% of cloud coverage.

After the cloud selection, the number of optical images is less than the SAR images in the same
period. Therefore, the time to generate one image for optical is longer. The optical images were reduced
to one image using Maximum Value Composite, by calculating the maximum vegetation index value
of each pixel during one month. SAR images were reduced to one image by calculating the minimum
value of each pixel across the stack of all matching bands in a period of two weeks. Because of plum
rain, there are no available images that satisfy the needs in July due to cloud coverage. As a result,
the optical image datasets only contain six images to calculate the corresponding vegetation indices.
The information about GEE derived SAR and optical data used for the study is shown in Table 1.
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Table 1. The characteristics of the GEE derived SAR and optical data used for the study.

Datasets Optical Datasets Microwave SAR Datasets

Source Sentinel-2 MSI, Level-2A images Sentinel-1 SAR GRD

Time span March to September 2019 March to September 2019

Spatial resolution 10–20 m 10 m

Pre-processing Cloud coverage < 20% Speckle filter

Composition Maximum Value Composite
during one month

The minimum value of each pixel
in a period of two weeks

2.2.2. Field Samples

To ensure the accuracy of training and validation data, we collected around 2000 points, across
19 types of field samples in a ground survey in 2019. We divided the land type into five border
types: (1) paddy rice (2) non-rice fields, including rapeseed, cotton, wormwood, lotus, grass, wetland
vegetation, corn, and other vegetables, (3) forest, (4) built-up area, and (5) water body, as shown in
Table 2. Table 2 describes five border class and their dominated objects in each class to provide a
clear understanding of paddy rice and other land covers in this typical study area. In addition to the
ground survey data, sample points for forest, built-up area, and water body were manually selected
from Google Earth to complement the training and validation data. Based on the sample dataset
mentioned above, 1508 points were randomly selected for the training and validation. The selected set
of sample data was randomly split into 70/30 percent separately for training and classification accuracy
assessment, respectively.

Table 2. Field survey data class and border type.

Border Type Name Description

1 Paddy rice
Early rice (double cropping rice or ratoon rice), middle rice
(single-season rice or middle-late rice, mainly single-season

rice), crayfish paddy rice, ratoon rice

2 Non-rice fields Rape, cotton, wormwood, lotus, grass, wetland vegetation,
corn, other vegetables

3 Forest Orchard, evergreen broad-leaf forest, broadleaved deciduous
forest, coniferous forest, shrub

4 Built-up area Greenhouse

5 Water body Lake, river, and pond

2.2.3. Methodology

As shown in Figure 2, in this study, Sentinel-2 images are pre-processed through cloud selection
and composition. Then we used the processed images to calculate multiple vegetation indices (NDVI,
EVI, LSWI). Sentinel-1 SAR data is processed through speckle-noise filter and composition. These two
datasets are integrated together. All these procedures are processed on Google Earth Engine. The details
of this method are presented ahead.

Firstly, a different combination of multi-temporal polarization bands and vegetation indices
derived from optical bands were used for the paddy rice classification experiments. The polarization
method is VV and VH; and the vegetation indices are NDVI, LSWI, and EVI. Thus, there are five
variables in the experiment. A total of 39 experiments were performed to evaluate how exactly the
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various combinations of different variables influence the results. After pre-processing, three vegetation
indices, namely NDVI, EVI, and LSWI, were calculated for each image as follows:

NDVI =
NIR−RED
NIR + RED

(1)

EVI = 2.5∗
NIR−RED

NIR + 6×RED−7.5× BLUE + 1
(2)

LSWI =
NIR− SWIR
NIR + SWIR

(3)
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As the assets contain 12 UINT16 spectral bands representing SR (spectral reflectance) scaled by
10000, NDVI, EVI, and LSWI of Sentinel images were calculated with GEE as follows:

NDVI =
B8− B4
B8 + B4

(4)

EVI = 2.5∗
B8−B4

B8 + 6× B4−7.5× B2 + 10000
(5)

LSWI =
B8A− B11
B8A + B11

(6)

The accuracy assessment is presented through a confusion matrix. Other accuracy indices to
assess the performance of the classification includes overall classification accuracy, producer’s accuracy,
user’s accuracy, and Kappa statistic.

There are many examples using machine learning to classify crop, including neutral network [42],
decision tree algorithms [43], support vector machines [44–46], and random forest algorithm [47–49].
Among these algorithms, the random forest is proven to be an accurate classification algorithm
to handle large and diverse datasets [50]. The random forest algorithm is used in the study [51].
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This algorithm is based on the classification and decision tree, which has been successfully applied
for many study areas in remote sensing [52]. The random forest algorithm is based on a collection of
decision trees. Each tree uses a subset of training data by bagging, and the best split variable is used to
split the nodes, leaving the remaining data points for internal cross-validation.

As for the platform used in the study, Google Earth Engine is a cloud platform hosting a
multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis
capabilities. Using GEE helps in reducing the pre-processing and data downloading steps, which would
otherwise require high data storage capacity and intense computational power. The method proposed in
this study requires multi-temporal images for several months. On Google Earth Engine, multi-petabyte
datasets are easily accessed and mostly pre-processed. Secondly, the high-performance computing
resources allows users to apply a machine-learning algorithm to get the validated result. The image
collection of integrated vegetation indices and SAR data is used as the basis to train the random forest
algorithm to classify the paddy rice. Finally, the extracted paddy rice classification map was validated
by 30% sample points randomly selected early. The variable importance is calculated through the
“.explain()” method on Google Earth Engine.

3. Result

3.1. NDVI, LSWI, and EVI Results

Figure 3 shows the temporal profiles of the mean values of vegetation indices (EVI, NDVI, LSWI)
and polarization band for the paddy rice and non-rice fields over the study area in 2019. In this study
area, the type of paddy rice includes several types, and hence the temporal profile is not reflective of
one phenological change but the broader tendency of paddy rice in the study area.
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Figure 3 shows that the paddy rice and non-rice fields has a similar trend in general.
However, using these three vegetation indices could still separate one type from the other in the end
by using this method. The general trend is that all three indices rises up during the period. At the
beginning paddy rice’s indices are lower. A turning point appears around June making paddy rice’s
value larger than non-rice’s of all three indices. Before June, 0.2 is larger than paddy rice’s value, while
lower than non-rice’s EVI. In respect of NDVI, 0.3 could be the threshold before June. As for LSWI,
both types of paddy rice and non-rice are rising at first. But still before June paddy rice’s LSWI is lower.
After July, paddy rice’s indices all exceed non-rice fields. Paddy rice’s NDVI is larger than 0.7 while
non-rice’s lower. And 0.4 could be the threshold for LSWI.
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In addition to the assessment of the temporal profiles of vegetation indices for the six months
period, we added SAR data to improve the classification accuracy. As for polarization band for
the paddy rice and non-rice fields, it also shows a rising general trend for both VV and VH band.
The backscatter coefficient depends on variables such as surface roughness, soil moisture, and texture.
At the beginning, both VV and VH have a higher value for paddy rice than non-rice fields. The reason
of why the paddy rice’s VH is lower during May and June could be the majority of paddy is during
transplanting at that time. The water gives a low backscatter coefficient. After tillering, leaves and
stem grow up, covering the water, rising the backscatter coefficient. Around September, most of the
paddy rice is mature. The backscatter coefficient exceeds other non-paddy rice fields.

3.2. Paddy Rice Mapping Results

This section summarizes the results of 39 classification experiments. Table 3 codifies the different
input datasets. In the table, A through E refers to the various combinations of polarization bands,
while 1–8 refers to the combinations of different vegetation indices. For instance, B7 stands for the
combination of VV bands and LSWI.

Table 3. Combination of the dataset used in this study.

Vegetation Indices Combination Polarization Band Combination

CODE Combination CODE Combination

1 NDVI + LSWI +
EVI A VVVH

2 NDVI + LSWI B VV

3 NDVI + EVI C VH

4 EVI + LSWI D VV/VH

5 NDVI E null

6 EVI

7 LSWI

8 null

Overall experiment results, including the producer accuracy (PA), overall accuracy, and Kappa
statistics of each experiment, are presented in Figure 4. A number of combinations provide high
accuracy results, which are analysed in further detail, as shown in Figure 5. For the sample points,
we randomly selected 70% for the training algorithm to produce the paddy rice map. The other 30%
are used for accuracy assessment.
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The best combination for mapping paddy rice fields emerges as A6 with EVI and VV and VH
band; the producer’s accuracy of paddy rice (PA) was 76.67%, with the overall accuracy (OA) of 66.07%,
and Kappa statistics of 0.45. Generally, more variables used for the combination trends to have a better
accuracy generally, for both vegetation indices and polarization bands.

The highest results in each column or row is considered as the “best” performance. Counting the
number of the “best” performance could evaluate the principle of the combination of polarization band
under the same condition of vegetation indices, and vice versa. For similar vegetation indices, generally,
the VV yielded one “best” performances B2, while VH band yielded two, C3 and C4. The combination
of VV and VH bands has three “best” performance, A6, A7, A8. The VV/VH band combinations have
D5 only. However, when no polarization band is used, vegetation indices had one “best” performances,
E1. From these results, the VV and VH band combinations showed better performance, and the other
polarization band combinations did not provide encouraging results.

For the same polarization band, the contribution of each vegetation indices was considered
next. In row A, using the combination of VV and VH, the best performance was noted for the
experiment adding EVI, which is also the overall “best” out of all experiments. Using only the
VV/VH, the “best” performance was with the combination of three vegetation indices, D1. Only using
VV, the “best” performance were B2, with PA, OA, and Kappa values as 73.4%, 67.63%, and 0.48,
respectively. Only using VH, the “best” performance were C3, with PA, OA, and Kappa values as
74.74%, 65.18%, and 0.43, respectively. The best result of the experiment using only vegetation indices
was the experiment using three indices, E1, with PA of paddy rice as 74.72%, OA as 64.51%, and Kappa
value of 0.43. Thus, on the whole, no index or combination show encouraging results significantly.

To analyse the different results of “top performers”, we selected top 5 experiments for the paddy
rice’s PA, which is greater than 74.49%. Figure 5 presents a closer view for A6 (VV + VH + EVI),
A7 (VV + VH + LSWI), C3 (VH + NDVI + EVI), C4 (VH + EVI + LSWI), and E1 (NDVI + EVI + LSWI).

Results from E1 are highly fragmentized, indicating that the integration of polarization bands
could increase not only the classification accuracy but also benefit the morphology of the extraction
map. This made the shape of the classification result fit the real surface feature better. The other
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four results with polarization bands clearly show a better visualization. In contrast, A6 and A7
do not present the actual shape of crop fields. For water bodies, E1 also shows a relatively better
performance. C3 shows a good texture of crop fields and urban area. The A6 combination shows
relatively best performance considering the producer’s accuracy, and C3 have a better visualization.
In particular, C3 can demarcate the quadrilateral shape of cropland and the precise shape of the urban
area. The relationship between accuracy and morphology needs further study in the future.

The spatial distribution of classification error in these six experiments are shown in Figure 6
and discussed in more detail ahead in Section 4.2. Several reasons could cause a classification error.
For example, crop rotation could cause the temporal field to be different. Even though the same type
of paddy rice was planted, different crops planted before or after could disturb the classification result.
The mixed cropping also creates a difference in the same type of crop. Whether these combinations
could be applied to other areas with similar accuracy needs further testing and can be undertaken in a
future study.
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3.3. Variable Importance Results

To analyse the variables importance, we selected top five experiments for the paddy rice’s PA and
one experiment with all five variables. As shown in Figure 7, in general, we can see the trend that
the order of variable importance is NDVI, LSWI, EVI, VV, VH. One study believes that the VH signal
could better represent the actual rice-growth cycle [53]. However, the variable importance result in
this study shows that VV contributes more than VH in the classification.
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4. Discussions

4.1. Classification Improvement by Integrating SAR Data

This study reviewed the performance of using a different combination of vegetation indices
and polarization bands to extract the paddy rice. Some studies [54] have found that the integrated
polarization SAR bands with NDVI could improve the overall classification accuracy. Based on the prior
findings, this study selected three vegetation indices (NDVI, EVI, LSWI) to represent the phenological
evolution, and used SAR imagery as a supplement to separate paddy fields from adjoining crop fields.

The optical vegetation indices dataset employed in this study is comprised of six images in March,
April, May, June, August, and September, i.e., covering six months in 2019. July is missing because of
the plum rain. In addition to multi-temporal optical vegetation indices, the SAR dataset is integrated
with phenological information to provide a more accurate description. Each type of paddy rice was
not classified separately, and the study duration is sufficiently long to include all the paddy rice types
in the study area. The different performance of different combinations of variables was reviewed.
The results indicate that the combination of VV and VH and EVI band could produce a convincing
classification result (paddy rice PA is 76.67%).

The confusion tables of the combination of VV and VH and EVI with or without the polarization
band in July are presented in Tables 4 and 5, respectively. By comparison, we can see that the paddy rice
PA increases from 68% to 77% after adding the polarization band. It appears that adding a polarization
band could increase the accuracy of paddy rice extraction when vegetation indices are unavailable.
The backscattering coefficient could reflect the texture of the surface feature. So, the difference surface
during the vegetation grows could be captured. Moreover, the synthetic aperture radar data penetrating
the clouds could monitor the ground all time to fill the phenological phenomenon missed in optical
remote sensing data.
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Table 4. Confusion table of the combination of VV and VH and EVI.

Observed Classification

Estimated Classification Paddy
Rice

Non-Rice
Fields Forest Built-Up

Area
Water
Body

User’s
Accuracy

Paddy rice 138 73 0 5 2 63%

Non-rice fields 40 121 3 6 4 70%

Forest 0 5 8 1 0 57%

Built-up area 1 10 1 22 0 65%

Water body 1 0 0 0 7 88%

Producer’s accuracy (PA) 77% 58% 67% 65% 54%

Table 5. Confusion table of the combination of VV and VH and EVI without VV and VH bands in July.

Observed Classification

Estimated Classification Paddy
Rice

Non-Rice
Fields Forest Built-Up

Area
Water
Body

User’s
Accuracy

Paddy rice 144 65 2 4 3 66%
Non-rice fields 64 90 8 4 8 52%

Forest 0 5 8 1 0 57%
Built-up area 1 6 10 17 0 50%
Water body 2 1 0 0 5 63%

Producer’s accuracy (PA) 68% 54% 29% 65% 31%

4.2. Error Analysis for Different Data Combinations

Figure 6 presents the spatial distribution of the classification error of five experiments for paddy
rice’s PA higher than 74.49%. The legend used in Figure 6 uses the same shape for the same true type
and the same colour for the same classified type. For instance, no matter what the pixel type is classified
as, if the field sample finds it is paddy rice, it is represented by a circle on the map. Also, no matter
what type the true type is, if it is classified as non-paddy field, then the pixel is shown as green on
the map.

As a whole, it is found that the error of paddy and non-paddy is more than other types. Green is
the domain colour on all maps. Generally, the error is concentrated in the southwest of the study area,
as the city area of Qianjiang City is in the northeast, which makes the crop fields are mainly at the
south and the west. So, the misclassification between paddy rice fields and non-paddy rice fields are
concentrated in the southwest. Further, in the northeast, there are more type of misclassification error.
Between paddy rice fields and non-paddy rice fields, the shape of the field or the spatial distribution
do not have a pattern, which means in this study area the paddy rice and other crop equally planted
and it is difficult to differentiate them from certain optical images. Thus, temporal profile, which the
combination of optical vegetation index and SAR could necessarily contribute to build, is essential
to classification,

In all five experiments, the actual paddy rice classified as non-paddy by error is more than the
other way around. A6, with the highest PA, also has the highest difference between misclassified
paddy field and misclassified non-paddy fields. C3 has the most even number in two misclassified
types. Compared to other combinations, C4 appears to be more concentrated on a specific type.
The classification error could be caused by crop rotation and the mixed cropping. Moreover, whether
these combinations could be applied to other areas with similar accuracy needs further testing and can
be undertaken in a future study.

4.3. Comparison with a Current Water Body Product

To evaluate how much this study could improve water body extraction. We compared our result
from C3 (VH + NDVI + EVI) with The European Commission’s Joint Research Centre (JRC) Monthly
Water History [4] in 2019 September. JRC Monthly Water History displays water surfaces that are visible
from space, including natural (rivers, lakes, coastal margins and wetlands) and artificial water bodies
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(reservoirs formed by dams, flooded areas such as opencast mines and quarries, flood irrigation areas
such as paddy fields, and water bodies created by hydro-engineering projects such as waterway and
harbor construction) between March 1984 and October 2015 on a month-by-month basis. This dataset
contains maps of the location and temporal distribution of surface water and provides statistics on the
extent and change of the water surfaces. However, there is still a lot of omission of water body caused
by paddy rice fields for its short duration, small size, or crop cover. As the most important artificial
water body, paddy rice fields are highly fractured, especially in South China. The accuracy of water
extraction would rise as the paddy rice fields are extracted correctly. Hence, this study could improve
the paddy rice extraction and fill the missing area dramatically.

Figure 8 shows that both C3 and JRC could successfully extract the main river area. Around the
permanent rivers and lakes, the extracted water body are almost the same in JRC and C3.
Nevertheless, as for paddy rice, JRC, surprisingly, does not show any water area, while C3 mapped the
paddy rice fields in the study area. The JRC and C3 have 21,782 pixels overlap. While JRC Monthly
Water History has 10,889 pixels that C3 is missing as a water body, C3 has extracted 949,741 pixels that
have not been mapped as a water body in the JRC data. This indicates that the approach outlined in
this study could substantially improve the water body extraction, especially around the paddy fields,
by identifying the artificial wetland that was found to be missing.
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5. Conclusions

This study has demonstrated the combination of optical vegetation index, and SAR imagery
can effectively extract the paddy rice area, overcoming the month-long cloud impacted data in the
cloud-prone area, e.g., Jianghan Plain. A multi-temporal dataset from Sentinel is processed on GEE
using a random forest algorithm. The temporal profiles show that the three vegetation indices still
could differentiate paddy rice from non-paddy fields. All three indices rise during the period. At the
beginning, paddy rice’s indices are lower. A turning point appears around June making paddy rice’s
value larger than non-rice’s of all three indices. After July, paddy rice’s indices all exceed non-rice
fields. As for the polarization band for the paddy rice and non-rice fields, it also shows a rising general
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trend for both VV and VH band. However, the specific contribution of VV and VH band separately is
remain uncovered.

Generally, more variables used for the combination trends to have a better accuracy generally,
for both vegetation indices and polarization bands. The classification results present that the best
combination is EVI and VV and VH polarization band accuracy. The VH + NDVI + EVI shows the best
performance in morphology. As for variable importance, in general, we can see the trend that the order
of variable importance is NDVI, LSWI, EVI, VV, VH.

The study result has shown that paddy rice PA increases from 68% to 77% after adding the
polarization band, which demonstrates that adding a polarization band could increase the accuracy of
paddy rice extraction when vegetation indices are unavailable. Most of the paddy rice grows in the
monsoon region, where there have strong rain fall and cloud during the paddy rice growth period.
This could cause serious problem to paddy rice extraction by lacking the useful optical images. Therefore,
the synthetic aperture radar data penetrating the clouds could fill the phenological phenomenon
missed in optical remote sensing data, so as to improve the accuracy of paddy rice extraction.

By extracting the accuracy area and distribution of paddy rice, the water body area could be filled
dramatically. As the most important artificial water body, highly fractured and temporal paddy rice
fields have always been the difficulty in this study field. As a consequence, this study could contribute
to the food security and water use assessments.

Although the method could extract paddy rice as one type, the accuracy still has room for
improvements. In addition to the NDVI, EVI, and LSWI, other vegetation indices could also have an
impact on the classification result. The next step resulting from this study would be to explore other
variables to improve classification accuracy. Furthermore, the results of using the proposed approach
in other areas still need to be tested.
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