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Abstract: Land use land cover (LULC) of city regions is strongly affected by urbanization and affects the
thermal environment of urban centers by influencing the surface temperature of core city areas and their
surroundings. These issues are addressed in the current study, which focuses on two provincial capitals in
Pakistan, i.e., Lahore and Peshawar. Using Landsat data, LULC is determined with the aim to (a) examine
the spatio-temporal changes in LULC over a period of 20 years from 1998 to 2018 using a CA-Markov model,
(b) predict the future scenarios of LULC changes for the years 2023 and 2028, and (c) study the evolution of
different LULC categories and investigate its impacts on land surface temperature (LST). The results for
Peshawar city indicate the significant expansion in vegetation and built-up area replacing barren land. The
vegetation cover and urban area of Peshawar have increased by 25.6%, and 16.3% respectively. In contrast,
Lahore city urban land has expanded by 11.2% while vegetation cover decreased by (22.6%). These
transitions between LULC classes also affect the LST in the study areas. Transformation of vegetation
cover and water surface into built-up areas or barren land results in the increase in the LST. In contrast,
the transformation of urban areas and barren land into vegetation cover or water results in the decrease
in LST. The different LULC evolutions in Lahore and Peshawar clearly indicate their effects on the thermal
environment, with an increasing LST trend in Lahore and a decrease in Peshawar. This study provides a
baseline reference to urban planners and policymakers for informed decisions.

Keywords: urbanization; land use land cover (LULC); LULC transition; CA-Markov model; linear
regression
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1. Introduction

The world’s population is growing rapidly [1] and people are moving from rural to urban areas [2],
leading to a strong increase in urbanization [3]. The number of people living in the global metropolitan
regions is expected to increase by ~80% during the period from 2010 to 2050 [2]. During the past few
decades, urbanization in and around metropolitan cities all around the world has significantly reduced
the fraction of green vegetation cover layer. Green vegetation cover is essential for the equilibrium
between the land surface and atmospheric parameters [4,5]. Two of the most important parameters
associated with the urban environment are land use land cover (LULC) and land surface temperature
(LST) [6,7]. Variation in different land use categories, especially the transformation of vegetation land to
the urban area, can effectively influence the LST [8–10]. The surface reflectance and roughness of each
LULC category are different, so each LULC category has various contributions to the LST because of its
unique qualities in terms of energy radiation and absorption [11,12]. Many regions around the world
are facing dramatic changes in LULC [13], associated with rapid urbanization [14–16] and with large
consequences for, e.g., the increase in urban population demands of metropolitan luxuries and facilities
for their living, including the construction of new residential and commercial areas, public utilities and
road infrastructure [17–20]. The combined influences of biological factors and anthropogenic activities
play a vital role in the transition of LULC [21–25]. Several natural and anthropogenic elements cause
LULC changes [26–29], such as social, economic, biophysical, and political factors [30–32].

Remote sensing (RS) is a powerful and effective tool that can provide abundant, multi-spectral,
multi-temporal, and real-time data from which information can be distracted which is valuable for
monitoring and understanding land development patterns and processes [33]. Satellite remote sensing
provides a unique opportunity to monitor the changes in both LULC and LST at high spatial and
temporal resolution [7,34,35], which is used in the current study. The launch of the different Landsat
satellites since 1972 provides a continuous time series of remote sensing data that are available free of
charge for numerous applications in studies on social, economic, and environmental characteristics
of urban areas [36]. This long time series can provide a better understanding of the past and recent
dynamics in LULC transitions, which can support the development of future policies for urban
sustainability [18]. Moreover, the continuous availability of Landsat imagery can also be used to
develop and test land use prediction models [37,38]. The utilization of urban growth models [39,40]
has reliable and practical capabilities to predict land use land cover change [41,42] and quantify the
transition of a LULC class to another one [18], which can help to plan a city while limiting problems
due to urbanization [43]. Recent studies showed that for the transition and future predictions of
LULC, a CA-Markov Model combined with GIS and remote sensing is an effective and powerful
modeling technique [44–50], which can provide detailed information on a synoptic scale [50–54]. In the
CA-Markov model, the cellular automata (CA) detect the spatial location of changes while the Markov
chain calculates the future changes [55–57]. It has been widely used for the urbanization studies
in cities in Wuhan/China [48], HuaHin/Thailand [44], Saga/Japan; SetúbalSesimbra/Portugal [58];
central Germany [56], London/UK [23], Ahmedabad/India [59], Tehran/Iran [55], Santiago/Chile [60]
and Foshan/China [61]. Other models have also been used to simulate urbanization processes [62–68].
However, in this study, the CA-Markov model has been used for reasons provided in Section 2.4, where
the CA-Markov model is described in detail.

This study focuses on LULC variations over two urbanized regions in Pakistan, i.e., Lahore and
Peshawar. In Pakistan, urbanization has mainly affected the growth of the population in major cities
due to a lack of planning and policy. An increase in urban population requires the development of
facilities for living, including the construction of new residential and commercial areas, public utilities,
and road infrastructure, which ultimately leaves footprints on the environment [62]. Urban growth
not only influences socioeconomic change but also causes the loss of farmland [25,63]. In the past
several years, the LULC has changed on a large scale in which forest land was transformed into
farmland, while farmland has gradually been transformed into urban areas [64]. These transformations
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have dramatically influenced the environment [65] and often threatens the sustainable urban
development [66,67].

In recent years, Lahore, in the province of Punjab (see Figure 1), has experienced massive growth
because of the high demand for the urban area. Most of the agriculture and barren land was bought
by local developers and the Lahore Development Authority (LDA) and turned into different housing
societies and other projects [68,69]. As a result of this urban expansion and over-cutting, the vegetation
cover of Lahore has decreased substantially. Moreover, natural land has been replaced mainly by
built-up areas, i.e., urbanized areas including buildings, roads, and different other infrastructures [68,69].Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 23 

 

 

Figure 1. Map of the study area. 

2.2. Data Collection and Preprocessing 

For the analysis of the LULC dynamics and the effect of the LULC transition on the thermal 
environment in Lahore and Peshawar, satellite imagery including Landsat 5 Thematic Mapper (TM) 
and Landsat 8 (Operational Land Imager (OLI) was collected (Table 1). The temporal resolution of 
the images is 16 days and the spatial resolution is 30 m. All images were freely downloaded from the 
USGS earth explorer website (http://earthexplorer.usgs.gov/, last access: 4 January 2020). After the 
preparation of the satellite images vector layer of the administrative boundary of the study area, 
Lahore and Peshawar were utilized as masks to subset the images for clipping the area of interest 
(AOI) from the Tagged Image File Format (TIFF). No atmospheric corrections were executed since 
the Landsat images were cloud-free [75,76]. After this, the thermal bands were used to derive the LST 
[77,78]. First, the digital number (raw data) of Landsat images thermal bands was converted into 
radiance and then surface temperature. For LULC maps, visible, near-infrared and shortwave 
infrared bands of Landsat products were stacked and mosaicked using ARDAS Imagine [79,80]. 
Supervised classification was used to classify the pixels into four different LULC classes [81]: 
vegetation, water bodies, built-up, and barren land. After the preparation of LULC maps for each 
year, the error matrix was constructed to evaluate the accuracy of LULC classes. To this end, ground 
truth samples for each land-use class were taken from random locations using Google Earth [82] and 
compared with the collocated LULC pixel. The percentage accuracy of each class was evaluated in 
ArcGIS using frequency analysis and error matrix [83]. The results are presented in Section 3. The 
LST retrieval is visualized in the flowchart of Figure 2, with details described below. 

Figure 1. Map of the study area.

Peshawar, in the province of Khyber Pakhtunkhwa (KPK, see Figure 1), has also experienced
sudden changes in population growth due to the migration of people from Afghanistan [70].
Following the 1961 census, Peshawar represents 29% of the total population of the province of
Khyber Pakhtunkhwa, whereas in 1998 the population in Peshawar had increased to 33% of the entire
population of this province [71]. Additionally, in 2013, the provisional government of KPK started
the “billion trees project” in the whole region [72], which aims to restore 150 million hectares of
the world’s degraded and deforested lands by 2020 (https://en.unesco.org/courier/2019-3/pakistan-
green-again/, last access: 20 august 2020), and Pakistan hit its “billion trees” goal in August 2017
(https://www.weforum.org/agenda/2018/07/pakistan-s-billion-tree-tsunami-is-astonishing/, last access:
20 August 2020). Such changes in LULC influence the LST, air temperature, and topography of the
neighborhood [73,74]. Therefore, there is a strong need to quantify the individual contribution of
different LULC transformations to LST in and around urbanized regions of Pakistan.

In this study, the CA-Markov chain model is applied to simulate the current and future land
use dynamics over two metropolitan cities in Pakistan, Lahore and Peshawar. As described above,
land use management in these cities was very different, which resulted in contrasting effects on the
thermal environment. Overall, this study was conducted to (a) examine the spatio-temporal LULC
dynamics for the years 1998, 2003, 2008, 2013, and 2018, (b) predict the LULC in 2023 and 2028 using the

https://en.unesco.org/courier/2019-3/pakistan-green-again/
https://en.unesco.org/courier/2019-3/pakistan-green-again/
https://www.weforum.org/agenda/2018/07/pakistan-s-billion-tree-tsunami-is-astonishing/
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Markov and CA-Markov models, and (c) examine the LULC transition into different LULC categories
and to quantify its impacts on LST. The results clearly show the effect of different land-use policies
on the urban environment and provide direction for reducing environmental problems in future
climate scenarios using different choices of LULC. The study area, data collection and models used are
described in Section 2, including the motivation for using the CA-Markov model to simulate LULC
changes (Section 2.4). The results are presented and discussed in Section 3 and the conclusions from
the study are provided in Section 4.

2. Material and Methods

2.1. Study Area

The study area comprises two large cities (Lahore and Peshawar) in Pakistan (Figure 1). Peshawar
is the capital of KPK (Khyber Pakhtunkhwa) Province, along the Khyber Pass, near the border of
Afghanistan. Peshawar is a magnificent and essential economic, political and military center of the
province and Pakistan. Geographically Peshawar is located at 44◦15’ N, 71◦42’ E and covers an
area of 1264 km2. According to the census of 2017, a total of 1.97 million people live in Peshawar
(http://www.pbs.gov.pk/ last access: 13 July 2020). Lahore is the 2nd largest city in Pakistan and is the
capital city of Punjab province. Lahore covers a total area of 1842 km2 located between the latitudes of
31◦15′–31◦43′N and longitudes 74◦10′–74◦39′E. A total of 11.13 million people live in Lahore according
to the statistics of the 2017 census (http://www.pbs.gov.pk/ last access: 13 July 2020).

2.2. Data Collection and Preprocessing

For the analysis of the LULC dynamics and the effect of the LULC transition on the thermal
environment in Lahore and Peshawar, satellite imagery including Landsat 5 Thematic Mapper (TM)
and Landsat 8 (Operational Land Imager (OLI) was collected (Table 1). The temporal resolution of
the images is 16 days and the spatial resolution is 30 m. All images were freely downloaded from the
USGS earth explorer website (http://earthexplorer.usgs.gov/, last access: 4 January 2020). After the
preparation of the satellite images vector layer of the administrative boundary of the study area, Lahore
and Peshawar were utilized as masks to subset the images for clipping the area of interest (AOI) from
the Tagged Image File Format (TIFF). No atmospheric corrections were executed since the Landsat
images were cloud-free [75,76]. After this, the thermal bands were used to derive the LST [77,78]. First,
the digital number (raw data) of Landsat images thermal bands was converted into radiance and then
surface temperature. For LULC maps, visible, near-infrared and shortwave infrared bands of Landsat
products were stacked and mosaicked using ARDAS Imagine [79,80]. Supervised classification was
used to classify the pixels into four different LULC classes [81]: vegetation, water bodies, built-up,
and barren land. After the preparation of LULC maps for each year, the error matrix was constructed to
evaluate the accuracy of LULC classes. To this end, ground truth samples for each land-use class were
taken from random locations using Google Earth [82] and compared with the collocated LULC pixel.
The percentage accuracy of each class was evaluated in ArcGIS using frequency analysis and error
matrix [83]. The results are presented in Section 3. The LST retrieval is visualized in the flowchart of
Figure 2, with details described below.

Table 1. Satellite images used in this study.

Study Region Row/Path Year 1998 2003 2008 2013 2018

Lahore
149/036 Date 25 May 31 May 05 June 19 June 01 June

Sensor TM TM TM OLI OLI

Peshawar
151/036
151/037 Date 8 June 13 May 19 June 01 June 30 May

Sensor TM TM TM OLI OLI

http://www.pbs.gov.pk/
http://www.pbs.gov.pk/
http://earthexplorer.usgs.gov/
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2.2.1. Conversion of Raw Landsat Data into Radiance

The Landsat data are downloaded as raw data (digital numbers) which needs to be converted to
spectral radiances (Lλ) by using the information in the LANDSAT metadata header file [16]:

Lλ =
LMAXλ − LMINλ

(Qcalmax − Q calmin )
× (Qcal − Q calmin ) + LMINλ (1)

where Lλ is the spectral radiance (Wm−2 sr−1µm−1), LMAXλ is the spectral radiance scaled to QCalmax

(W m−2 sr−1 µm−1). LMINλ is the spectral radiance scaled to QCalmin (W m−2 sr−1 µm−1). QCalmax is
the maximum quantized calibrated pixel value (DN = 255) that corresponds to LMAXλ. The minimum
quantized calibrated pixel value (DN = 0) corresponds to LMINλ. QCal is the quantized calibrated
pixel value (DN) [84,85].
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2.2.2. Conversion of Radiance to Reflectance

The radiances calculated using Equation (1) were converted into reflectance using Equation (2) [85]:

r =
π× Lλ × r2

Esun ×Cos
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(2)

where r is the planetary reflectance (dimensionless), Lλ is the spectral radiance at the sensor aperture
(W m−2 sr−1 µm−1), dr = 1 + 0.033cos (D × 2 × 3.14)/365), where D is the day of the year, Esun is the
mean solar atmospheric irradiance (W m−2 µm−1), θ is the solar zenith angle (degree), θ = (90 − B),
and B is the Sun elevation angle. dr is the inverse square of the earth-sun distance (astronomical unit).

2.3. Land Surface Temperature (LST) Retrieval

For the retrieval of LST, Landsat images were used with a temporal resolution of 16 days and a
spatial resolution of 30m. The LST was derived from the Landsat thermal bands using the methodology
recommended by [86]. In the first step, the radiance of the thermal band calculated using Equation (1)
was converted into brightness temperature (TB) using Equation (3):

TB =
K2

ln
[(K1

Lλ

)
+ 1

] (3)

where; K1 and K2 are conversion constants. For Landsat8 OLI, K1 = 774.89 mW cm−2 sr−1 µm−1 and
K2 = 1321.08 K; Landsat5 TM, K1 = 607.76 mW cm−2 sr−1 µm−1 and K2 = 1260.56 K. In the second step,
the land surface temperature was derived using the following relation [87]:

LST =
TB

1 +
(
λ TB
ρ

)
ln ε

(4)

where λ (≈ 11.5 µm) is the effective wavelength of the thermal bands. ρ = (hc)/σ = 1.438 × 10−2 mK,
where σ is the Boltzmann constant (1.38 × 10−23 JK−1), h is the Planck constant (6.626 × 10−34 Js) and
c is the speed of light (3.0 × 108 ms−1), ε is the land surface emissivity with values of 0.95, 0.92 and
0.9925 for vegetation, build-up and water surfaces, respectively [88]. Land surface emissivity (
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s is the soil emissivity, F = 0.55 is the shape factor (Lim et al., 2012),
and Pv is the vegetation proportion, which was obtained using Equation (6) [87]:

Pv =

(
NDVI− NDVImin

NDVImax − NDVImin

)2

(6)

where NDVI is derived by using Equation (7) [89]:

NDVI =
(NIR−RED)

(NIR + RED)
(7)

In Equation (7), NIR and RED are reflectances. For Landsat5 (TM), NIR is the reflectance measured
in band 4 at wavelength λ = 0.76–0.90 µm and RED is the reflectance measured in band 3 with
λ = 0.63–0.69 µm. In Landsat8 (OLI), NIR is the reflectance measured in band 5 with λ = 0.85–0.87 µm
and RED refers to the reflectance measured in band 4 with λ = 0.64–0.67 µm. NIR and RED values
were retrieved using Equation (2).
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In this study, the focus is the effect of LULC transition on LST, which is stronger in the hottest
months in Pakistan, i.e., May, June, and July. Therefore, LST trends over the study period were
evaluated using averages over these 3 months.

2.4. Simulation of LULC Changes Using the CA-Markov Model

The CA-Markov model was used for LULC simulations [90] because it provides a powerful
technique to study urban growth trends and future predictions [54,91–93] and detailed information on
a synoptic scale [50–54]. The CA-Markov model can be applied to simulate future LULC distributions.
It consists of two parts, the CA model and a Markov chain model. The Markov chain model estimates
the state of the LULC change between two time intervals to predict future changes. This model not
only describes the conversion states between the land use types but can also account for the transfer
rate among different land use categories. It can be used in spatial modeling for forecasting future
LULC [94]. The CA model consists of a regular grid of cells, with properties that can change in time
according to fixed rules and depend on the current state of a cell and its neighboring cells. Because
of these characteristics, it has also been applied for simulating the LULC process [95,96]. In the CA
model used here, the specific transition rules apply to 3 × 3 neighboring cells, i.e., a central cell with 8
neighbors which affect the properties of the central cell. For the application of the CA model to simulate
the future LULC, the properties of LULC types should be considered, for instance, the built-up area
cannot transfer into water in the near future [50]. The Markov model can be mathematically described
as Equation (8):

S (t + 1) = Pij ∗ S(t) (8)

where S represents the land use status at time t, and S (t + 1) is the land-use status at time t + 1, while
Pij is the transition probability matrix in a state which is calculated as Equations (9) and (10) [97]

||Pij|| =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

P1,1 P1,2 P1,N

P2,1 P2,2 P2,N

PN,1 PN,2 PN,N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (9)

(0 ≤ Pij ≤ 1) (10)

where P is the transition probability; Pij stands for the probability of converting from current state i to
another state j in next time; and PN is the state probability of any time. The Low transition will have a
probability near (0) and high transition have probabilities near (1) [97].

2.5. Validation of the LULC Prediction Model

The Kappa Index of Agreement (KIA) approach was used to check the validity of the CA-Markov
model. The Kappa statistic measures the accuracy of a classification relative to a completely random
classification on a scale from 0 (utterly random assignment of class labels) to 1 (100% accuracy of class
label assignment) [98,99]. KIA can be calculated using Equation (11):

KIA = Pr(a) − Pr(e) /1− Pr(e) (11)

where Pr (a) represents the observed agreement, and Pr(e) represents chance agreement. The process is
described in more detail in Section 3.2.

2.6. Relationship between LST and LULC:

The relation between LST and LULC was calculated by linear regression, using the linear regression
expression in the Curve Fit tool by using ARC GIS; Curve Fit is an extension of the GIS application
ArcMap that allows the user to run regression analysis on a series of raster datasets (geo-referenced
images) (https://www.umesc.usgs.gov/management/dss/curve_fit.html/, last access: 19 January 2020).

https://www.umesc.usgs.gov/management/dss/curve_fit.html/
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Later on, the zonal statistic was applied to get the values. The equation of linear regression is
described below:

Y = aX + b (12)

where Y is the dependent variable, X is the independent variable, b is the slope of the line and a is
the y-intercept.

3. Results

3.1. Land Use Land Cover (LULC) Dynamics

Maps of the LULC in Lahore and Peshawar, for one selected day in each of the years 1998,
2003, 2008, 2013 and 2018 (Table 1), were obtained after preprocessing and supervised classification.
The results are presented in Figure 3. The accuracy of the LULC classification was assessed using ground
truth data obtained from Google Earth and the results are presented in Table 2. The data in Table 2
show that all LULC classes were classified with an accuracy of better than 70%. The classified images in
Figure 3 for the years 1998, 2003, 2008, 2013, and 2018 capture the spatial and temporal characteristics
of the LULC changes. Table 3 summarizes the LULC for each type for each year. These data show
that in Lahore city, the area covered by water bodies, vegetation, and barren area decreased gradually,
while the built-up area increased. However, the LULC in Peshawar city experienced an increase in
vegetation and a decrease in the barren land from 1998 to 2018.
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Table 2. Accuracy assessment of land use classification in Lahore and Peshawar (%).

Study Region LULC Classes 1998 2003 2008 2013 2018

Lahore

Water 0.80 0.78 0.82 0.80 0.77
Vegetation 0.72 0.76 0.73 0.79 0.80

Built-up 0.83 0.79 0.80 0.78 0.77
Barren Land 0.79 0.70 0.78 0.77 0.70

Overall Accuracy (%) 0.78 0.76 0.78 0.79 0.76

Peshawar

Water 0.77 0.80 0.74 0.77 0.71

Vegetation 0.80 0.72 0.70 0.70 0.75

Built-up 0.71 0.83 0.77 0.81 0.76

Barren Land 0.74 0.71 0.73 0.78 0.78

Overall Accuracy (%) 0.77 0.75 0.74 0.77 0.76

Table 3. LULC in two major cities of Pakistan.

1998 2003 2008 2013 2018

Study Region LULC km2 % km2 % km2 % km2 % km2 %

Lahore City

Water 50.41 2.70 27.21 1.50 23.48 1.30 18.51 1.00 11.41 0.60
Vegetation 458.73 24.90 432.77 23.50 431.65 23.40 426.98 23.20 416.55 22.60

Built-up 549.77 29.80 665.77 36.10 685.78 37.20 709.71 38.50 755.91 41.00
Barren 783.44 42.50 716.61 38.90 701.44 38.10 687.20 37.30 658.59 35.70

Total 1842.4 100 1842.4 100 1842.4 100 1842.4 100 1842.4 100

Peshawar City

Water 22.38 1.80 29.64 2.30 37.65 3.00 53.25 4.20 29.90 2.40
Vegetation 316.30 25.00 457.43 36.20 475.64 37.60 479.39 37.90 640.02 50.60

Built-up 65.13 5.20 135.38 10.70 173.39 13.70 227.19 18.00 272.07 21.50
Barren 860.14 68.10 641.55 50.80 577.32 45.70 504.17 39.90 322.03 25.50

Total 1264 100 1264 100 1264 100 1264 100 1264 100

Spatial land transition analysis and change detection matrices were prepared by using the land
change models for both cities to understand the land encroachment during the last decades. Figure 4
and Table 4 show the LULC transition of each LULC class from 1998 to 2018 in the cities of Lahore
and Peshawar. The results show that in Lahore city, a water area of 23.33 km2 (1.27%) has been
turned into built-up land, and a water area of 11.84 km2 (0.64%) area has been turned into barren land.
Likewise, 150.13 km2 (8.15%) of the vegetation area has been converted into built-up land. From 1998
to 2018, the built-up area in Lahore city has substantially increased, mostly from vegetation land
(8.15%) and barren land (16.26 %). The transition between LULC classes in Peshawar city from
1998 to 2018 shows that most of the barren land has been turned into vegetation, while at the same
time the city experienced an increase in the built-up area. In addition, barren land has been turned
into built-up area. From 1998 to 2018, 381.80 km2 (30.21 %) of barren land has been converted into
vegetation, and 208.57 km2 (16.50 %) area of barren land has been turned into built-up area.

Table 4. LULC class changes from 1998 to 2018 for Lahore city (top) and Peshawar city (bottom).
The table shows the change of the LULC in the left column to the LULC in the top row in both km2

and %. For instance, in Lahore, 150.13 km2 of vegetation was turned into built-up area. See the text for
more examples.

Water Vegetation Built-Up Barren

Study Region LULC km2 % km2 % km2 % km2 %

Lahore City

Water 4.93 0.27 10.31 0.56 23.33 1.27 11.84 0.64
Vegetation 1.26 0.07 134.31 7.29 150.13 8.15 173.04 9.39

Built-up 4.42 0.24 19.13 1.04 283.11 15.37 143.11 7.77
Barren 0.81 0.04 152.75 8.29 299.3 16.25 330.58 17.94

Peshawar City

Water 13.03 1.03 7.58 0.60 0.11 0.01 1.59 0.13
Vegetation 3.3 0.26 834.12 65.99 19.01 1.50 56.54 4.47

Built-up 0.7 0.06 14.07 1.11 44.45 3.52 5.75 0.45
Barren 9.87 0.78 381.8 30.21 208.57 16.50 258.3 20.43



Remote Sens. 2020, 12, 2987 10 of 23

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 23 

 

 
Figure 4. Transition between LULC classes (1998–2018) for Lahore and Peshawar city. 

3.2. Future Land Use Dynamics  

LULC maps for 2003 and 2008 were used as a starting point for future predictions using the CA-
Markov model (Section 2.4) to produce the transition probability matrix. The transition probability 
matrix for the period 2003–2008 is presented in Table 5. The numbers in Table 5 indicate the 
probability that one LULC class was converted into another one between 2003 and 2008. Table 5 was 
used to predict the LULC maps for Lahore and Peshawar city in 2013. The results are presented in 
Figure 5. The comparison with satellite-derived LULC maps shows that the spatial patterns of all 
land use categories in the predicted LULC maps are similar to those in the satellite-derived LULC 
maps. Kappa statistics were used to assess the accuracy of the predictions for each LULC category. 
The results in Tables 6 and 7 show that the kappa values are larger than 0.78 for each land use 
category and the average kappa value for Lahore is 0.95 and for Peshawar 0.89. These high kappa 
values indicate that the CA-Markov model is suitable for future predictions of LULC maps for the 
study region. 

Table 5. Transition probability Matrix for different land use classes from 2003 to 2008 in Lahore (top) 
and Peshawar (bottom). 

Study Regions LU classes Water Vegetation Built-Up Barren 

Lahore city 

Water 0.769 0.0672 0.0995 0.0634 
Vegetation 0.0006 0.6112 0.089 0.2991 
Built-Up 0.0033 0.0602 0.8249 0.1115 
Barren 0.0001 0.1747 0.1331 0.6922 

Peshawar city 

Water 0.9894 0.01 0 0.0006 
Vegetation 0.0046 0.8126 0.0071 0.1757 
Built-Up 0.0092 0.0181 0.9072 0.0655 
Barren 0.0078 0.1581 0.0738 0.7604 

Figure 4. Transition between LULC classes (1998–2018) for Lahore and Peshawar city.

3.2. Future Land Use Dynamics

LULC maps for 2003 and 2008 were used as a starting point for future predictions using the
CA-Markov model (Section 2.4) to produce the transition probability matrix. The transition probability
matrix for the period 2003–2008 is presented in Table 5. The numbers in Table 5 indicate the probability
that one LULC class was converted into another one between 2003 and 2008. Table 5 was used to
predict the LULC maps for Lahore and Peshawar city in 2013. The results are presented in Figure 5. The
comparison with satellite-derived LULC maps shows that the spatial patterns of all land use categories
in the predicted LULC maps are similar to those in the satellite-derived LULC maps. Kappa statistics
were used to assess the accuracy of the predictions for each LULC category. The results in Tables 6
and 7 show that the kappa values are larger than 0.78 for each land use category and the average kappa
value for Lahore is 0.95 and for Peshawar 0.89. These high kappa values indicate that the CA-Markov
model is suitable for future predictions of LULC maps for the study region.

Table 5. Transition probability Matrix for different land use classes from 2003 to 2008 in Lahore (top)
and Peshawar (bottom).

Study Regions LU Classes Water Vegetation Built-Up Barren

Lahore city

Water 0.769 0.0672 0.0995 0.0634
Vegetation 0.0006 0.6112 0.089 0.2991
Built-Up 0.0033 0.0602 0.8249 0.1115
Barren 0.0001 0.1747 0.1331 0.6922

Peshawar city

Water 0.9894 0.01 0 0.0006
Vegetation 0.0046 0.8126 0.0071 0.1757
Built-Up 0.0092 0.0181 0.9072 0.0655
Barren 0.0078 0.1581 0.0738 0.7604
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Table 6. Overall kappa statistic between each class of satellite-derived LULC maps and CA-Markov
estimated maps for 2013 in Lahore city.

Water Vegetation Built-Up Barren kappa

Water 20,217 856 721 1173 0.9825
Vegetation 27 441,709 8986 26,310 0.9209
Built-Up 313 6517 760,143 10,598 0.9544
Barren 18 25,341 18,726 725,483 0.9371

Total 20,575 474,423 788,576 763,564 0.9487

Table 7. Overall kappa statistic between each class of satellite-derived LULC maps and CA-Markov
estimated maps for 2013 in Peshawar city.

Water Vegetation Built-Up Barren kappa

Water 44,409 1676 12 1080 0.7858
Vegetation 3837 488,020 4251 13,635 0.9471
Built-Up 2341 13 212,662 864 0.8704
Barren 5558 18,217 23,480 517,513 0.959

Total 56,145 50,7926 240,405 533,092 0.8905
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For the prediction of the LULC for the year 2023, the transition probability matrix was calculated
from the satellite-derived maps for 2013 and 2018; for 2028, the probability matrix calculated from the
satellite-derived map for 2018 and the predicted map for 2023 were used. Figure 6 illustrates the LULC
maps for Lahore and Peshawar city simulated for the years 2023 and 2028 and the LULC for each class
are summarized in Table 8. The results for Lahore city show that the barren land area will gradually
decrease in 2023 and 2028 due to its conversion to built-up area, while the area of vegetation land will
remain almost the same. The area covered by barren land was 658.59 km2 (35.7%) in 2018 and will
decrease to 580.10 km2 (31.49%) in 2028, while the area of built-up land was 755.91 km2 (41.0%) in 2018
and will increase to 840.67 km2 (45.63%) in 2028. For Peshawar city, the area covered by water bodies
will decrease between 2018 and 2028, i.e., in 2018, the water bodies covered an area of 29.90 km2 (2.4%),
which decreases to 9.86 km2 (0.78%) in 2028. Vegetation and built-up land covered about 640.59
(50.6%) and 272.13km2 (21.5%), respectively, in 2018 and will gradually increase to 732.38 (57.94%) and
285.73 km2 (22.60%) in 2028. The area of barren land will gradually decrease from 322.03 km2 (25.5%)
in 2018 to 233.66 km2 (18.49%) in 2028.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 23 
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Table 8. Predicted LULC for different classes in 2023 and 2028 for Lahore (top) and Peshawar City (bottom).

Study Region LU Class 2018 2023 2028

km2 % km2 % km2 %

Lahore city

Water 11.41 0.6 8.19 0.44 7.41 0.40
Vegetation 416.55 22.6 403.14 21.88 390.27 21.18

Built-up 755.91 41.0 806.84 43.79 851.37 46.20
Barren 658.59 35.7 624.29 33.88 593.35 32.20

Peshawar city

Water 29.9 2.4 16.34 1.29 9.87 0.78
Vegetation 640.02 50.6 690.05 54.59 732.38 57.94

Built-up 272.07 21.5 280.77 22.21 285.73 22.60
Barren 322.03 25.5 274.52 21.72 233.66 18.49

3.3. Land Surface Temperature (LST) Variations from 1998–2018

The LST patterns for Lahore and Peshawar for three months (May-July) in the years 1998, 2003,
2008, 2013 and 2018 were calculated as described in Section 2.3. Figure 7a shows the increase in the
three-months averaged (May- July) LST in Lahore city during these 20 years. Both the minimum
and maximum LSTs are higher in 2018 than in 1998, with maximum LST values of 35.31, 37.63, 38.87,
40.73 and 41.39 ◦C for 1998, 2003, 2008, 2013 and 2018, respectively. For these years, the minimum LST
values were 18.56, 20.69, 21.11, 21.88 and 23.54 ◦C.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 23 
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In contrast, Figure 7b indicates that in Peshawar city the LST has decreased during the study
period, for both the minimum and maximum values. For the years 1998, 2003, 2008, 2013 and 2018 the
maximum LST was 40.65, 37.37, 35.48, 36.17 and 34.05 ◦C, respectively, with a similar tendency for the
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minimum LST values which were 21.44, 20.22, 18.38, 18.66 and 17.84 ◦C for the years 1998, 2003, 2008,
2013 and 2018.

3.4. Correlation between LST and T (Air)

For evaluation of the Landsat-derived LST trend, it is compared to the corresponding 3 months
(May–July) air temperatures (Ta) measured at meteorological stations in Lahore and Peshawar (Table 9).
The data in Table 9 show the increase in both LST and air temperature in Lahore, whereas in Peshawar,
both the air temperature and the LST decrease during the study period.

Table 9. Comparison of 3 months (May-July) of mean LST and air temperature T(a) in Lahore (top) and
Peshawar (bottom).

Study Region Year Latitude Longitude T(a) ◦C LST ◦C

Lahore city

1998 31.35 74.24 31.7 34.7
2003 31.35 74.24 31.8 35.8
2008 31.35 74.24 32.3 36.4
2013 31.35 74.24 32.9 36.9
2018 31.35 74.24 33.5 37.8

Peshawar city

1998 71.56 327.56 32.5 37.6
2003 71.56 327.56 31.92 36.9
2008 71.56 327.56 30.78 35.1
2013 71.56 327.56 31.02 35.8
2018 71.56 327.56 30.12 32.3

The correlation of 3 months (May–July) of mean LST and air temperature T (a). The results in
Figures 8 and 9 show a good comparison with high correlation coefficients between LST and Ta.
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3.5. Changes in LST in Response to Different Land-Use Classes

The change in LST in response to the transformation between different land-use classes was
studied by determining relationships between LULC transition from 1998 to 2018 and LST using the
curve fit tool and zonal statistic in ArcGIS (Section 2.6).

The results presented in Table 10 and Figure 10 show the correlation between LST and LULC, i.e.,
the regression coefficient (r). The average change in LST (◦C) from 1998 to 2018 due to the transitions
between the four different LULC classes is presented in Table 10 for each type of change: the transition
from built-up and barren land to vegetation and water cover results in a decrease in LST, whereas
a change from water or vegetation cover to built-up or barren land results in an increase in LST.
The results presented in Table 10 show that in Peshawar city, the LST was reduced by 0.25 and 0.27 ◦C
in response to the transition from built-up and barren land to vegetation, respectively. In contrast,
in Lahore city, the LST increased by 0.17 ◦C in response to the transition from vegetation to buildup
land and 0.13 ◦C in response to the transition from water cover to built-up area.

Table 10. Average contribution rate of LULC class transition to LST (◦C) from 1998 to 2018.

Study Region LU Classes Water Vegetation Built-Up Barren

Lahore city

Water 0.1 0.08 0.13 0.14
Vegetation −0.09 0.1 0.17 0.16

Built-up −0.11 −0.19 0.19 0.17
Barren −0.01 −0.19 0.16 0.06

Peshawar city

Water 0.1 −0.20 0.36 0.26
Vegetation −0.05 0.1 0.32 0.31

Built-up −0.13 −0.25 0.26 0.21
Barren −0.13 −0.27 0.25 0.09
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4. Discussion

This research was carried out to quantify the individual contribution of different LULC
transformations to LST in Lahore and Peshawar city (metropolitan areas of Pakistan) from 1998-2018,
and future predictions of LULC for 2023 and 2028 by using CA-Markov model. Figure 3a highlights
the land cover pattern for Lahore city and shows that the area covered by water bodies, vegetation,
and barren land decreased gradually from 1998 to 2018, while built-up area increased. In Lahore city,
the area covered by water bodies, vegetation, and barren land was 2.7%, 24.9% and 42.5% in 1998,
which decreased to 0.6%, 22.6% and 35.7% in 2018, while built-up land gradually increased from 29.8%
in 1998 to 41% in 2018, due to the transformation of different land-use categories into built-up areas.
These conversions were mainly due to different housing and other projects by the Lahore Development
Authority (LDA) and local developers [68,69], mega-development projects (including Metro Bus,
Orange Train) [68,69,100].

However, Figure 3b shows, in Peshawar city, that the area covered by water, vegetation, and built-up
land was about 1.8%, 25.0%, and 68.1%, respectively in 1998, and gradually increased to 2.4%, 50.6%
and 21.5% in 2018. Barren land was found to decrease gradually with a higher rate (from 68.1% to
25.5%) due to its transformation into other land use classes. The increase in vegetation area was
promoted by the “Billion trees project” (2013) of the KPK local government [72]. The increase in
built-up area was needed because of bulk migration of people from Afghanistan toward the KPK
Province in 2000–2005 during war-time [70].

Changes in the LULC also cause changes in the temperature [73,74], because different classes of
LULC have different properties of reflectance and evapotranspiration [101]. Results of LST (Figure 7)
indicate that in Lahore city during these 20 years, both the minimum and maximum LSTs are higher in
2018 than in 1998. These data confirm the results from earlier studies indicating that the LST rises in
Lahore city [101,102], which may be due to the increasing use of artificial materials, such as asphalt and
concrete, for urban expansion [103,104]. Our results from Figure 3a highlight that in Lahore city, the
built-up area is increasing. The LST increases with the increase in urban built-up and barren land [105].
Meanwhile, in Peshawar city, the LST has decreased during the study period, for both the minimum
and maximum values. Our results from Figure 3b highlight that in Peshawar city, the vegetation cover
of the city has gradually increased in 2018 compared to 1998. The increase in vegetation area was
promoted by the “Billion trees project” (2013) of the KPK local government [72]. Conversion between
different LULC classes, especially the transformation of vegetation into built-up land, can effectively
influence the land surface temperature [8–10].

Climatological data can be developed for two kinds of surface temperatures: near-surface air
temperature Ta and the skin temperature, or land surface temperature (LST) [106]. Ta is measured
at official weather stations at 1.5 m above the surface with sensors protected from radiation and
adequately ventilated [107]. Hence, LST and air temperature are different parameters that cannot be
directly compared but do influence each other. For the evaluation of the LST, they were compared with
Ta from station data. The results in Figures 8 and 9 show a good comparison with high correlation
coefficients between LST and Ta and confirm our LST trends.

Furthermore, the change in LST in response to the transformation between different land-use
classes was studied by determining the relationships between LULC transition from 1998 to 2018 and
LST using the Curve Fit tool and zonal statistic in ArcGIS (Section 2.6). The results indicate that the
average change in LST (◦C) from 1998 to 2018 due to the transitions between the four different LULC
classes is presented in Table 10 for each type of change: the transition from built-up and barren land to
vegetation and water cover results in a decrease in LST, while the transition from vegetation and water
to built-up and barren land results in an increase in LST. LST variation can be associated with various
factors including LULC transition, population growth, and urban expansion [108], because the surface
reflectance and roughness of different LULC classes are different, and different LULC types have
unique properties in terms of the emission, reflection and absorption of radiation [11,12]. The future
predictions results indicate that urban growth in Lahore city continues, at the expense of vegetation
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and barren land (Table 8); these changes will also impact the LST because urban expansion has a
profound impact on local and regional climate [108,109].

5. Conclusions

Land use land cover (LULC) in Lahore and Peshawar, Pakistan, was determined using Landsat
data for selected dates with 5 year intervals between 1998 and 2018. The changes in LULC classes
during these 20 years and their impacts on urban thermal environments were determined. Markov
and CA-Markov models were used to predict future changes for 2023 and 2028. The results indicate
that much of the barren and vegetation land in Lahore has been converted into the urbanized area.
Additionally, Peshawar city has experienced an increase in the built-up area, but vegetation cover
and water have replaced barren land, which significantly changed the adverse effects of urbanization
observed in Lahore to cooling in Peshawar. The different LULC types have unique properties in terms
of the emission, absorption and reflection of radiation. Therefore, the gradual urban expansion and
other anthropogenic activities affect the surface temperature, which is reflected by the analysis of
the LST in response to the transition between LULC classes. Conversion from water or vegetation
into built-up or barren lands results in the increase in LST. Conversely, the transition of areas from
built-up or barren land into vegetation or water has helped to lower LST. The LST in Lahore city has
substantially increased, while the LST in Peshawar city has decreased over the 20 year study period.

The future scenarios indicate that severe environmental problems may be expected in Lahore city,
whereas the future scenarios of Peshawar show a way to improve living conditions in an expanding city.
These results indicate that Lahore policies are needed to control current environmental issues and
avoid further increase in these problems. This research provides the necessary information to
environmentalists and policymakers in developing greening strategies for megacities to minimize
future eco-environmental threats.

Author Contributions: Conceptualization, F.M.; Data curation, F.M. and B.B.; Formal analysis, D.W.; C.F. and B.B.;
Funding acquisition, T.Y.; Investigation, F.M.; Methodology, F. M., D.W., G.d.L. and Z.L.; Project administration, T.Y.;
Resources, A.E.; Software, C.F.; Supervision, T.Y.; Validation, A.E.; Visualization, G.d.L. and A.E.; Writing—original
draft, T.Y.; Writing—review & editing, G.d.L., G.W., L.L., S.N., D.W. and A.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the project of Aerospace information research institute, Chinese Academy
of Sciences. Evaluation on application technology of space earth integrated satellite, Project # Y7K00100KJ.

Acknowledgments: Authors, Faisal Mumtaz, Barjeece Bashir, Cheng Fan, Abdelrazek Elnashar, Genke Wang,
Lingling Li, Arfan Arshad and Shahid Naeem acknowledge to Aerospace Information Research Institute, Chinese
Academy of Sciences (AIRCAS) and University of Chinese Academy of Sciences (UCAS), Beijing, China.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. [CrossRef]
2. Mitchell, L.; Moss, N.H.O. Urban Mobility in the 1st Century. NYU Rudin Center for Transportation Policy.

2012. Available online: https://wagner.nyu.edu/files/rudincenter/NYU-BMWi-Project_Urban_Mobility_
Report_November_2012.pdf (accessed on 11 September 2020).

3. Buhaug, H.; Urdal, H. An urbanization bomb? Population growth and social disorder in cities.
Glob. Environ. Chang. 2013, 23, 1–10. [CrossRef]

4. Dhar, R.B.; Chakraborty, S.; Chattopadhyay, R.; Sikdar, P.K. Impact of Land-Use/Land-Cover Change on
Land Surface Temperature Using Satellite Data: A Case Study of Rajarhat Block, North 24-Parganas District,
West Bengal. J. Indian Soc. Remote Sens. 2019, 47, 331–348. [CrossRef]

5. Choudhury, D.; Das, K.; Das, A. Assessment of land use land cover changes and its impact on variations of
land surface temperature in Asansol-Durgapur Development Region. Egypt. J. Remote Sens. Space Sci. 2019,
22, 203–218. [CrossRef]

http://dx.doi.org/10.1126/science.1153012
https://wagner.nyu.edu/files/rudincenter/NYU-BMWi-Project_Urban_Mobility_Report_November_2012.pdf
https://wagner.nyu.edu/files/rudincenter/NYU-BMWi-Project_Urban_Mobility_Report_November_2012.pdf
http://dx.doi.org/10.1016/j.gloenvcha.2012.10.016
http://dx.doi.org/10.1007/s12524-019-00939-1
http://dx.doi.org/10.1016/j.ejrs.2018.05.004


Remote Sens. 2020, 12, 2987 19 of 23

6. Das, S.; Angadi, D.P. Land use-land cover (LULC) transformation and its relation with land surface
temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sens. Appl.
Soc. Environ. 2020, 19, 100322. [CrossRef]

7. Ullah, S.; Ahmad, K.; Sajjad, R.U.; Abbasi, A.M.; Nazeer, A.; Tahir, A.A. Analysis and simulation of land
cover changes and their impacts on land surface temperature in a lower Himalayan region. J. Environ. Manag.
2019, 245, 348–357. [CrossRef]

8. Hope, A.S.; Mcdowell, T.P. The Relationship between Surface-Temperature and a Spectral Vegetation Index of
a Tallgrass Prairie—Effects of Burning and Other Landscape Controls. Int. J. Remote Sens. 1992, 13, 2849–2863.
[CrossRef]

9. Julien, Y.; Sobrino, J.A.; Verhoef, W. Changes in land surface temperatures and NDVI values over Europe
between 1982 and 1999. Remote Sens. Environ. 2006, 103, 43–55. [CrossRef]

10. Smith, R.C.G.; Choudhury, B.J. On the Correlation of Indexes of Vegetation and Surface-Temperature over
South-Eastern Australia. Int. J. Remote Sens. 1990, 11, 2113–2120. [CrossRef]

11. Hou, G.; Zhang, H.; Wang, Y.; Qiao, Z.; Zhang, Z. Retrieval and Spatial Distribution of Land Surface
Temperature in the Middle Part of Jilin Province Based on MODIS Data. Sci. Geogr. Sin. 2010, 30, 421–427.

12. Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human
health. Nature 2005, 438, 310–317. [CrossRef]

13. Solaimani, K.; Arekhi, M.; Tamartash, R.; Miryaghobzadeh, M. Land use/cover change detection based on
remote sensing data (A case study; Neka Basin). Agric. Biol. J. N. Am. 2010, 1, 1148–1157. [CrossRef]

14. Omar, N.; Sanusi, S.A.M.; Hussin, W.M.W.; Samat, N.; Mohammed, K.S. Markov-CA model using analytical
hierarchy process and multiregression technique. In IOP Conference Series: Earth and Environmental Science;
IOP Publishing: Bristol, UK, 2014.

15. Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531.
[CrossRef]

16. Chen, X.L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between
urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [CrossRef]

17. De Sherbinin, A. A CIESIN thematic guide to land-use and land-cover change (LUCC). In Center for
International Earth Science Information Network; Columbia University: New York, NY, USA, 2002.

18. Eastman, J.; Van Fossen, M.; Solarzano, L. Transition potential modeling for land cover change. GIS Spat.
Anal. Model. 2005, 357–386.

19. Rai, R.; Zhang, Y.; Paudel, B.; Li, S.; Khanal, N.R. A Synthesis of Studies on Land Use and Land Cover
Dynamics during 1930-2015 in Bangladesh. Sustainability 2017, 9, 1866. [CrossRef]

20. Briassoulis, H. Analysis of Land Use Change: Theoretical and Modeling Approaches; Regional Research Institute,
West Virginia University: Morgantown, WV, USA, 2019.

21. Sun, C.; Wu, Z.-F.; Lv, Z.-Q.; Yao, N.; Wei, J.-B. Quantifying different types of urban growth and the change
dynamic in Guangzhou using multi-temporal remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21,
409–417. [CrossRef]

22. Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Huang, K.; Wang, N. Assessing Spatiotemporal Characteristics of
Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data. Remote Sens.
2018, 10, 47. [CrossRef]
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