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Abstract: We present in this work an advanced processing pipeline for continental scale differential
synthetic aperture radar (DInSAR) deformation time series generation, which is based on the parallel
small baseline subset (P-SBAS) approach and on the joint exploitation of Sentinel-1 (S-1) interferometric
wide swath (IWS) SAR data, continuous global navigation satellite system (GNSS) position time-series,
and cloud computing (CC) resources. We first briefly describe the basic rationale of the adopted
P-SBAS processing approach, tailored to deal with S-1 IWS SAR data and to be implemented in
a CC environment, highlighting the innovative solutions that have been introduced in the processing
chain we present. They mainly consist in a series of procedures that properly exploit the available
GNSS time series with the aim of identifying and filtering out possible residual atmospheric artifacts
that may affect the DInSAR measurements. Moreover, significant efforts have been carried out to
improve the P-SBAS processing pipeline automation and robustness, which represent crucial issues
for interferometric continental scale analysis. Then, a massive experimental analysis is presented.
In this case, we exploit: (i) the whole archive of S-1 IWS SAR images acquired over a large portion
of Europe, from descending orbits, (ii) the continuous GNSS position time series provided by the
Nevada Geodetic Laboratory at the University of Nevada, Reno, USA (UNR-NGL) available for
the investigated area, and (iii) the ONDA platform, one of the Copernicus Data and Information
Access Services (DIAS). The achieved results demonstrate the capability of the proposed solution to
successfully retrieve the DInSAR time series relevant to such a huge area, opening new scenarios for
the analysis and interpretation of these ground deformation measurements.

Keywords: Sentinel-1; DInSAR; P-SBAS; deformation time series; GNSS; DIAS

1. Introduction

The Sentinel-1 (S-1) constellation of the Copernicus Program represents a big revolution within the
Earth Observation (EO) scenario, providing an unprecedented operational capability for intensive radar
mapping of the Earth surface thanks to its two satellites (Sentinel-1A and B, launched on April 2014 and
April 2016, respectively) sharing the same polar-orbit plane and performing C-band synthetic aperture
radar (SAR) imaging [1]. In particular, with respect to previous C-band space-borne SAR systems
(like those on board the ERS-1/2, ENVISAT, and RADARSAT-1/2 missions [2,3]), the S-1 constellation is
characterized by enhanced revisit frequency, spatial coverage, and reliability for operational services
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and applications requiring long SAR data time series. Moreover, the S-1 constellation archive is available
with a free and open access policy, thus easing the data access and enlarging the scientific community
interested in its use. Another key element of the S-1 constellation is its main acquisition mode on
land, referred to as interferometric wide swath (IWS), which implements the terrain observation by
progressive scans (TOPS) technique [4] that guarantees a very large spatial coverage, with a nominal
footprint extending for about 250 km, and is specifically designed for interferometric applications.
In addition, the S-1 constellation has stringent requirements based on a high attitude and orbit accuracy,
and it is intrinsically characterized by small spatial and temporal baselines, with an “orbital tube” of
about 200 m nominal diameter and a revisit time of six days (12 days in the case of only one operating
satellite).

These characteristics make the S-1 IWS data particularly suitable for exploitation through
(conventional and advanced) differential SAR interferometry (DInSAR) techniques [5–7], thus opening
the possibility to investigate Earth surface deformation phenomena at unprecedented spatial and/or
temporal scales. Among the advanced DInSAR techniques, a well-known and widely used one is
the small baseline subset (SBAS) approach [8] that investigates surface displacements through the
generation of deformation time series and the corresponding mean velocity maps. The SBAS technique
has extensively proven its effectiveness to perform analyses with centimeter- to millimeter-level accuracy
in several scenarios [2,9–11] and is capable of carrying out investigations at different spatial scales
and with multi-sensor data [12–15]. Moreover, a parallel algorithmic solution for the SBAS approach,
referred to as the parallel small baseline subset (P-SBAS) technique, was recently developed [16].
It was first applied to process ENVISAT [16–18] and COSMO-SkyMed SAR data archives [18] and was
subsequently extended to S-1 IWS data [19,20]. In particular, this approach permits the generation of
DInSAR time series by taking full benefit of the structure of the S-1 IWS data, which are composed
of bursts that can be considered as separate acquisitions and then independently processed up to
DInSAR interferogram generation [19,20]. Accordingly, the processing is intrinsically parallelizable
with respect to such independent input data portions and, therefore, the P-SBAS approach exploits this
coarse granularity parallelization strategy in the majority of the steps of the processing chain [19,20].
Moreover, more sophisticated parallelization approaches are implemented for the steps that are
particularly intensive from the computational viewpoint, by exploiting both multi-node and multi-core
programming techniques on parallel computing architectures such as cluster, grid, and above all,
cloud computing infrastructures [18,21,22].

In this work we present an automatic processing pipeline that exploits cloud computing (CC)
resources, based on an advanced version of the P-SBAS processing chain for continental scale
deformation time series generation, which benefits from the joint exploitation of S-1 IWS SAR data
and global navigation satellite system (GNSS) position time series. Starting from the original P-SBAS
processing chain, we describe the implemented innovative solutions that have been introduced.
They mainly consist of a series of procedures that benefit from the available GNSS time series, which are
properly selected and filtered in order to identify the stations whose signals are not altered by steps,
are sufficiently extended in time, and are not affected by local displacement effects, thus accounting for
regional (often tectonic) phenomena only. Based on these data, the implemented procedure allows
us to identify and filter out possible residual atmospheric artifacts that may affect the DInSAR
measurements [23,24]. Moreover, significant efforts have been carried out to improve the P-SBAS
pipeline automation and robustness, which represent crucial issues for interferometric continental scale
analysis. Subsequently, we present a massive experimental analysis based on the implemented solution.
In this case we consider the whole archive of S-1 IWS SAR images and continuous GNSS position time
series, the latter provided by the Nevada Geodetic Laboratory at the University of Nevada, Reno, USA
(UNR-NGL) [25], collected over a large portion of Europe. Concerning the exploited CC resources,
we use the ONDA DIAS platform [26], one of the Copernicus Data and Information Access Services
(DIAS), selected through a public tender, for the download and processing of the S-1 images, and for
subsequently storing the generated interferometric products. Finally, we present a discussion on
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the effectiveness of the proposed processing pipeline to successfully retrieve DInSAR time series at
continental scale in an automatic, efficient and robust way.

The paper is organized as follows. Section 2 describes the S-1 IWS P-SBAS processing chain
and the relevant pipeline implemented within CC environments, highlighting the main automation
aspects and algorithmic advancements; the latter have been introduced to effectively exploit the GNSS
position time series for the generation of continental scale deformation time series, and are fully
detailed in Section 3. Section 4 describes the set of S-1 IWS and GNSS data, as well as the CC resources
exploited for the massive experimental interferometric analysis presented, whose results are shown in
Section 5. Section 6 is devoted to some conclusive remarks about the developed pipeline and to the
new perspectives related to this kind of advanced DInSAR analysis.

2. The S-1 P-SBAS Approach: Basic Rationale and Cloud Computing Implementation

We present in this section a short overview of the exploited S-1 IWS P-SBAS processing chain,
whose block diagram is sketched in Figure 1. Note that it represents a modified version of the one
reported in [20], since we have introduced an additional step aimed at identifying and filtering
out possible residual atmospheric artifacts that may affect the DInSAR measurements. This result is
achieved through the proper exploitation of the available GNSS position time series, whose details
are provided in the following section. Moreover, we have improved the automation and robustness
of the S-1 P-SBAS processing chain from the algorithmic point of view by introducing several check
mechanisms to guarantee its fully unsupervised execution.

In the following, we briefly describe the main blocks characterizing this approach and the basic
rationale of its implementation in the exploited CC environment, without detailing the implemented
algorithmic solutions and the parallelization techniques exploited for each processing step, which are
extensively discussed in [19,20]. In this sense, it is worth noting that the black and blue colors used
to outline the different blocks shown in Figure 1 allow us to easily discriminate the processing steps
that are intrinsically sequential (black) from those where the concurrent jobs are executed in parallel
(blue) by distributing the input data processing among different computing nodes. Among the latter,
the steps that benefit from the aforementioned burst partitioning granularity, which represents a key
element of the parallelization strategy of the exploited S-1 processing chain [19,20], are marked by red
color texts.

In the first block of the diagram in Figure 1 (block A) we implement the operations for handling
and ingesting the input data, represented by the sequence of S-1 single look complex (SLC) burst images,
the orbital information associated to each SAR acquisition, the digital elevation model (DEM) of the
investigated zone, and the GNSS position time series available for the area that, in our case, are provided
by the Nevada Geodetic Laboratory at the University of Nevada, Reno, USA (UNR-NGL) [25].

Once the input data are correctly ingested, block B performs a series of sequential operations,
comprising the selection of the reference SAR geometry for the registration of the entire SAR dataset,
the identification of the area of interest, as well as of the burst images to be processed. Moreover, a first
list of interferometric data pairs involving the available SAR acquisitions is created, which is then
exploited within the subsequent interferograms generation and noise filtering operations [27].

Block C performs the conversion of the available DEM into the radar (azimuth and range)
coordinates through the range Doppler equations [7], followed by the estimation, for each pixel of each
SAR scene, of the range and azimuth distances with respect to the reference orbital position.

Block D concerns the co-registration of each burst image with respect to the reference acquisition,
the burst interferogram generation, and subsequent correction to compensate the effects of possible
residual azimuthal misregistration errors. Note also that a spatial multi-look operation is carried out to
mitigate the decorrelation noise effects within the generated burst interferograms and to reduce the
amount of data to process.

At this stage, in block E the corrected multi-look interferograms (and the corresponding spatial
coherence maps) of adjacent bursts are accurately assembled through an interferogram mosaicking
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operation to generate the differential interferograms of the whole investigated area, which is hereafter
referred to as “frame”. Moreover, on these interferograms, the noise filtering procedure discussed
in [27] is applied.

Subsequently, a selection, among all the considered small baseline interferometric pairs, of an optimized
triangular network within the perpendicular baseline/time plane is computed in block F [27]. In particular,
regarding the temporal and spatial baselines, we select a maximum value of 150 days for the former and of
200 m for the latter. This implies that essentially no constraint is applied to the spatial baselines because
the orbital tube diameter is about 200 m.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 29 
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The sequence of the so-identified multi-look noise-filtered small baseline interferograms of the
frame is then unwrapped through the extended minimum cost flow (EMCF) phase unwrapping (PhU)
algorithm [28] (block G). Then, in block H, a first estimate of the deformation time series is retrieved
by applying the SVD method, following the lines of the original SBAS approach [8]. This block also
implements a procedure for the compensation of possible topographic phase residuals. Moreover,
it includes the estimation and removal of atmospheric artifacts by taking into account that they are
typically correlated in space and poorly in time [8], as well as by benefiting from their correlation with
topography [29].

Block I represents an additional step implemented within the presented P-SBAS processing chain,
which is discussed in details in the following section. In this block, the available GNSS measurements
are used to identify and filter out possible residual atmospheric artifacts that may affect the DInSAR
measurements [23,24].

Lastly, block J computes the final displacement time series and the corresponding mean deformation
velocity map of the investigated frame, generated in a geographic/cartographic reference system.

Concerning the CC implementation of the S-1 IWS P-SBAS processing chain shown in Figure 1,
and the corresponding job scheduling, we remark that they are carried out through a fully automatic
pipeline able to exploit the available resources, which follows the lines of the solution presented
in [19,20] and is sketched in Figure 2. In particular, it starts by downloading and unpacking the S-1
input data in parallel, from the input data archive, by ingesting as inputs the list of S-1 IWS SLC burst
images relevant to the investigated frame, and identified by the vertexes of the area of interest to be
analyzed. Then, it distributes the S-1 IWS data among the available computing nodes and manages
their parallel processing by using both multi-node and multi-core programming techniques. We also
stress that different parallelization strategies are adopted throughout several steps of the processing
chain of Figure 1, depending on the implemented algorithm structure, as well as on the amount and
the type of data they process and on the available computing resources required (RAM, I/O bandwidth,
CPUs consumption, etc.) [18,21,22].
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Figure 2. Workflow of the automatic CC-based pipeline implementing the S-1 IWS P-SBAS processing. Green,
blue and red arrows represent information exchange, data transfer and results visualization, respectively.

At the end of each processing, the developed pipeline performs the upload of the generated
DInSAR results on the storage archive dedicated to their preservation. Moreover, as soon as the
processing of one frame is completed on a computing node, it launches a new query to the archive in
order to proceed with the next S-1 frame. The final results can be visualized and analyzed through
appropriate GIS and WebGIS platforms [30].
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The overall pipeline is written through a set of bash scripts, which allow exploiting any kind of
Linux-based computing environment [19].

Moreover, we remark that in the context of massive DInSAR analyses an effective automation of
the input data ingestion and efficient processing, and of the storing of the achieved results represents
a crucial point to be addressed. Accordingly, in order to guarantee the fully unsupervised execution of
the S-1 P-SBAS processing, we have introduced several check mechanisms at the algorithmic level to
guarantee the robustness and the reliability of the pipeline.

In particular, once selected the area of interest relevant to the frame to be processed, there is a first
algorithm check verifying that the selected burst images fully cover the selected area, thus avoiding
gaps in the DInSAR coverage. Another check mechanism is implemented to investigate if an S-1 input
data has been processed more than once with different IPF version [31] in order to select the more
recent one. Additional checks are focused on automatically identifying the reference coherent pixel
on each frame by also exploiting the available GNSS information or, if unavailable, the triangular
coherence [20].

3. Joint Exploitation of GNSS and DInSAR Measurements

The GNSS measurements can provide three-dimensional information, with millimetre accuracy,
on the ongoing deformations (East, North, and vertical components) through the accurate evaluation
of the receiver stations position. However, the spatial distances among the GNSS stations are often
too large to capture localized displacement patterns, while they are typically appropriate for the
study of the low spatial frequency deformation fields, often due to regional (tectonic, in several
cases) phenomena. On the other hand, the DInSAR techniques provide, for SAR data acquired from
a single illumination geometry, one-dimensional surface deformation measurement along the radar
Line of Sight (LOS), but with a wide spatial density; this peculiarity makes DInSAR an incomparable
technology for reconstructing high spatial frequency deformation patterns. Accordingly, the joint use of
GNSS and DInSAR technologies appears to be particularly effective for the retrieval of the deformation
signals affecting a specific area of interest [23,24], and is even more important for continental scale
analysis like the one presented in this work. Accordingly, this is the key task of the approach discussed
in the following.

To clarify the basic rationale of the presented solution, let us first focus on the LOS DInSAR
displacements, whose expression can be written as follows:

dLoS = dHF + dLF + ηAPS + ηHF + ηLF (1)

where dHF is the high spatial frequency deformation component due to localized deformation patterns
(such as landslides, local subsidence, etc.), dLF represents the low spatial frequency deformation
relevant to possible regional displacements, ηAPS is due to the tropospheric noise affecting the DInSAR
signals, ηHF accounts for high spatial frequency deformation effects due to PhU errors, i.e., 2πmultiples
that were wrongly estimated within the unwrapping operation of the interferometric phase [27,28],
and ηLF is relevant to low spatial frequency artefacts due to atmospheric residuals. It is worth noting
that possible DEM errors have been estimated and compensated for in block H although, because the
S-1 system is characterized by a very narrow orbital tube [20], the corresponding phase errors can
be considered negligible and therefore they are not included in Equation (1). Starting from the dLoS
measurements, we want to correctly retrieve the dHF and dLF signals in Equation (1).

Concerning the P-SBAS processing chain, we remark that it already includes methods for
the PhU errors mitigation (factor ηHF, in Equation (1)) [32] and for the APS removal (factor ηAPS,
in Equation (1)) [8]. Accordingly, our main efforts have been focused on the mitigation of the impact of
the factor ηLF (see Equation (1)). In particular, the overall analysis is focused on the identification and
removal of the mean rate of the signal component ηLF, which is referred hereinafter as vηLF , through
the profitable exploitation of the low pass frequency deformation signals retrieved from the GNSS



Remote Sens. 2020, 12, 2961 7 of 27

measurements. To do this, we have developed a rather simple solution, which is depicted in the block
diagram of Figure 3 and discussed in detail as follows.
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3.1. GNSS Data Screening and Selection

The starting point of our algorithm is a preliminary screening of the measurements accessible
through the available GNSS stations. In particular, this allows the identification of the GNSS stations
whose measurements can be effectively used to filter out the signal component vηLF .

To do this, as detailed in the following, it is essential to identify the stations whose signals are:

1. Sufficiently extended in time (in our case at least 2 years) and “cleaned” of possible jumps and
artefacts, which may affect the correct estimation of the mean deformation rate components;

2. Affected by regional scale signals only, which are therefore spatially correlated and that do not
account for high spatial frequency deformation signals (i.e., localized displacements).

To clarify the need of the above-mentioned data screening, we remark that the GNSS stations
time series can sometimes be perturbed by the presence of gaps in the data acquisitions and by steps,
which can be generated by different causes, both anthropogenic and natural. In particular, software
modifications or physical changes of the antenna receiver, as well as the occurrence of a seismic
event, are the main reasons for the presence of these steps within the time series that, unfortunately,
are not always identified through the auxiliary files, where the dates in correspondence of these issues
are highlighted.

Accordingly, our data screening step identifies first the stations whose signals have a significant
temporal extension that, in our case, corresponds to at least two years. Then, from each of them we
extract the time interval that, with respect to the presence of possible steps in the time series, is reliable
concerning the evaluation of the mean rate component. Accordingly, the GNSS stations whose signals
are not consistent with the above characteristics are rejected from the procedure.

In Figure 4, five examples of the GNSS stations time series selection are shown. In particular,
the plots on the left side show the original time series (we consider the East/West component as
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provided by the UNR-NGL web-site (http://geodesy.unr.edu)), while on the right, the corresponding
ones following the automatic data screening procedure, are represented. Note that the plots 1 and
2 are representative of GNSS stations affected by seismic events: in particular, these two stations
show the steps due to the 2016 Central Italy seismic sequence (24 August 2016, 30 October 2016,
and 18 January 2017). Plots 3 and 4 outline some anthropic operations performed on the GNSS stations,
which in some cases corrupts the GNSS station deformation rate estimation. Finally, we show that plot
5, although not supported by the auxiliary information, is filtered by the algorithm, which identifies
the large temporal gap in the data and rejects the shorter part of the available time series, thus allowing
a proper mean deformation rate estimation.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 29 
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Figure 4. Examples of the GNSS stations position time series screening operation. Plots (1)–(5) are
relevant to the five GNSS stations named ASCC, CESI, ALDB, BARY and GINA, respectively. On the
left side the original time series (East-West component) are shown, while on the right side there are the
corresponding ones following the data screening procedure. The dashed blue vertical lines identify the
dates for which the GNSS auxiliary files report the presence of gaps and/or steps in the time series.

http://geodesy.unr.edu
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At this stage, the implemented procedure identifies the GNSS stations affected by regional signals
only. To do this we exclude the GNSS stations characterized by a significant vertical deformation velocity
(greater than 0.5 cm/year), because this is not consistent with long-term regional deformation signals
and we take advantage of the strong spatial correlation of these phenomena, whose planar component
velocities are spatially correlated for tens of squared kilometres [33]. In particular, we evaluate
a similarity rate index of the GNSS stations that fall within a specific spatial window that in our case
is empirically set to ~30 × 30 km2. This similarity index, which we estimate for each GNSS station,
is expressed as follows:

Ri =
1

n− 1

n−1∑
j=1

[viv j

vi2

]
=

1
n− 1

n−1∑
j=1

[v j

vi

]
(2)

where n represents the total number of the GNSS stations that fall within the above-mentioned spatial
window, v is the GNSS mean displacement rate, while i is the station where we are calculating the
similarity index, and j is the index relevant to the remaining n × 1 stations that we compare with i.
The spatial similarity rate index is designed to be equal to 1 when the deformation velocities of the
stations falling within the spatial window are the same, while the similarity becomes worse for values
of this index that move away from 1.

The evaluation of the similarity index in Equation (2) is typically carried out only on the planar
components of the GNSS-based estimate of the mean deformation rate, which are expressed as follows
for the ith GNSS station:

Rewi =
1

n− 1

n−1∑
j=1

[vewivew j

vewi
2

]
=

1
n− 1

n−1∑
j=1

[vew j

vewi

]
(3)

Rnsi =
1

n− 1

n−1∑
j=1

[vnsivns j

vnsi
2

]
=

1
n− 1

n−1∑
j=1

[vns j

vnsi

]
(4)

In particular, only the GNSS stations for which
(
Rewi , Rnsi

)
∈ [0.95, 1.05] are considered, within the

DInSAR deformation signals refinement step discussed in the following paragraph.
In Figure 5, we represent the planar components (East-West and North-South) of the GNSS stations

of the NGL catalogue, located in the entire European territory under investigation in this work. It is
evident from the visual inspection of Figure 5 that the stations selected for our processing are highly
spatially correlated and with no evident singularities present.

3.2. DInSAR Deformation Signals Refinement

In this paragraph, we describe the last steps of our procedure for the refinement of the DInSAR
deformation signals relevant to each investigated SAR frame. In particular, this procedure aims to
identify and remove possible low spatial frequency displacements artefacts, mainly due to residual
atmospheric phase errors.

In Figure 6, we show a panel describing, step by step, the implemented procedure applied to the
P-SBAS results generated for a selected frame that is relevant to a large portion of the Central-Northern
Italy regions, included in the processing experiment presented in Section 5. Note that we select this
frame because it is affected by different displacement phenomena, thus highlighting the efficacy of
the implemented algorithm. In particular, the included Po Valley is historically affected by intense
subsidence phenomena, as well as the city of Bologna [34]. Moreover, in the same frame we
can appreciate the well-known displacements relevant to the Firenze–Prato–Pistoia basin [35,36],
the subsidence phenomena affecting the Northern Adriatic Sea coastline [37], and in the South-East
corner of the frame the impact of the August–October 2016 seismic sequence [38,39].
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Figure 5. Planar components of the GNSS stations identified through our data screening and selection
procedure, superimposed on the 1-arcsec STRM DEM of the investigated area. (A,B) The East/West
velocity components before (A) and after (B) the implemented procedure. (C,D) The same as (A,B) but
for the North/South velocity components.

Figure 6A shows the starting point for the developed procedure. In particular it represents the
mean displacement velocity map obtained from the original P-SBAS approach (see block H in Figure 1).
Figure 6B depicts the low spatial frequency deformation pattern retrieved from the interpolation
(Kriging interpolation [40]) of the GNSS stations planar displacement velocities projected along the
satellite radar LOS. Clearly, for this step, we exploit only the GNSS stations returned by the screening
operation and for values of the similarity rate index close to 1, as described in Section 3.1.

The mean deformation velocity retrieved by subtracting the GNSS-derived regional deformation
pattern (Figure 6B) from the starting velocity (Figure 6A) corresponds to the input for the velocity
calibration procedure. Such a procedure is equivalent to apply a simple low pass spatial filter for the
estimation and removal of possible artefacts. Figure 6C shows the result of the calibration step that
allows us to correct the retrieved deformation signals.

At this stage, to reconstruct the overall displacement field affecting the area of interest, we can add
the low and high spatial frequency deformation components (Figure 6B,C, respectively). The mean
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deformation velocity map corresponding to the final result is shown in Figure 6D. Moreover,
the above-described procedure is also graphically summarized with a block diagram at the bottom of
Figure 6.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 29 
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Figure 6. Pictorial example of the implemented DInSAR deformation results refinement procedure
applied to an S-1 IWS frame relevant to a portion of the Central-Northern Italy. (A) Mean deformation
velocity map following the straightforward application of the P-SBAS approach. (B) Mean deformation
velocity map obtained by interpolating the data relevant to the GNSS stations selected following the
lines of Section 3.1. (C) Mean deformation velocity map of the high spatial frequency component.
(D) Mean deformation showing the velocity map of the overall signals. The white star in panels A and
B identifies the reference pixel, while the white arrows in the lower right corners show the SAR sensor
azimuth/range directions. At the bottom a block diagram of the implemented procedure is shown.
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As an additional remark, we underscore that both results shown in Figure 6C,D can be separately
exploited for different scientific purposes, thus increasing the range of the value-added results offered
by these advanced DInSAR analyses.

We finally present the results of the comparison between the refined DInSAR deformation time
series and those of the available GNSS stations relevant to the frame of Figure 6. Obviously, we exploit
in this comparison only the GNSS stations that have not been accounted within the DInSAR signals
refinement step.

In Figure 7 we show the DEM of the area, highlighting the sites of all the GNSS stations that
have been investigated in our study; they are identified by blue and yellow triangles, representing the
stations exploited for and excluded from the DInSAR deformation signals refinement step, respectively.
In Figure 8, we report a selection of plots showing the comparisons between the deformation time
series retrieved through the developed S-1 IWS P-SBAS processing pipeline (black triangles) and the
corresponding LOS-projected GNSS ones (red stars) for the stations labelled in Figure 7 with capital
letters from A to R. We remark that, since the GNSS time series themselves are affected by noise
(although they are assumed as reference), we considered a smoothed version of the GNSS time series
in our comparative analysis.
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for and excluded from the DInSAR deformation signals refinement step, respectively.
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Figure 8. (A–R) Comparison between the P-SBAS (black triangles) and the LOS-projected GNSS
(red stars) deformation time series relevant to the stations labelled in Figure 7 with capital letters
from A to R. The standard deviation values (in cm) of the difference between the two time series are
also reported.

Figure 8A–O show the plots relevant to some GNSS stations that were excluded from the DInSAR
deformation signals refinement procedure. The good agreement between the P-SBAS and LOS-projected
GNSS measurements is evident, as also testified by the standard deviation values of the difference
between the two time series, computed in the temporal window common to both measurements,
ranging from 0.23 and 0.49 cm. Moreover, we also show in Figure 8P–R the plots for three GNSS stations
where, for different reasons, the performed comparison is not satisfactory. In particular, Figure 8P is
relevant to a GNSS station located in the area that was strongly struck by the 2016 Central Italy seismic
sequence. In this case, the discontinuity characterizing the DInSAR time series in correspondence to
the earthquake is clearly underestimated due to PhU errors [41,42]. In addition, Figure 8Q,R present
the plots of two GNSS stations where the effects of the antenna code changes, as reported in the GNSS
auxiliary files, are evident.

4. Exploited SAR and GNSS Data and Cloud Computing Resources

We describe in this section the input SAR and GNSS data we exploit in this study. Moreover,
we briefly describe also the cloud computing resources and architecture we use to perform the whole
P-SBAS processing.

4.1. SAR and GNSS Data

As stated already, the SAR images we analyze have been acquired by the Sentinel-1A and
Sentinel-1B satellites. The overall investigated area has been divided in 175 frames, from 21 descending
orbit tracks, with an average size of almost 200 × 250 km (azimuth and range, respectively). An overlap
between frames has been preserved, covering almost 20% of the frame size for two subsequent ones in
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the azimuth direction. This overlapping area allows us to perform consistency tests on the analyzed
zone, in order to guarantee an additional check for the continuity preservation of the achieved result.
In Figure 9, we show the footprint of the 175 S-1 frames processed in this study.
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Figure 9. SRTM DEM of the investigated area with the locations of the analyzed S-1 IWS frames.
Note that the red and blue colors identify the frames whose images have been collected during the
March 2015–September 2018 and March 2015–March 2020 time intervals, respectively.

The time series of every frame have been retrieved by using data acquired from March 2015 to
September 2018 with the average number of SAR images for each frame varying between 400 and 450,
depending on the different regions. Moreover, for the frames relevant to Italy, our analysis has been
extended to March 2020, since this study also supports a project led by the Italian Ministry of Economic
Development aimed at investigating the deformation phenomena affecting the Italian territory.

Globally we have used almost 72,000 SAR images covering a whole area of about 4,500,000 km2,
including the overlap among the considered frames.

Concerning the GNSS stations, we have used, as previously mentioned, the data provided by
UNR-NGL [25] in the framework of the “Plug and Play GPS” project that takes the raw GNSS data
from more than 17,000 stations all around the world and makes publicly available via a web-site
(http://geodesy.unr.edu) the data products (including metadata, plots of position coordinates, etc.)
for all the geodetic quality GNSS stations. The starting number of GNSS stations, whose data have
been downloaded and analyzed in this study, is 4227. Following the data screening and selection
procedure described in Section 3, we have exploited 2477 stations relevant to the investigated area.
In Figure 10, we show the position of the stations: blue markers represent the stations used after the
screening, while the yellow ones represent the stations whose data have been neglected because they
are considered unsuitable for the implemented DInSAR deformation signals refinement operation.

http://geodesy.unr.edu
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Figure 10. Overall GNSS stations analysed in the presented study. Blue and yellow markers represent
the exploited and the discarded stations, respectively, following the screening and selection procedure
discussed in Section 3.

4.2. Cloud Computing Resources

As anticipated before, we perform the CC implementation of the S-1 IWS P-SBAS processing
pipeline discussed in Section 2, by exploiting the computing resources provided by the ONDA DIAS
CC platform [26]. In particular, we use six computing nodes, each one equipped according to the
characteristics reported in Table 1. Note that the six nodes are connected to the S-1 IWS data archive,
which is located on an object storage, via NFS with a guaranteed download bandwidth of 2 Gb/sec
(see Figure 11). As mentioned, having the data archive close to the computing resources and accessible
through a dedicated and fast connection is a key requirement when the processing of such a huge data
volume is envisaged, because of the data transfer overhead. In this framework we also remark that we
fully benefit from the specific APIs made available by ONDA in order to effectively and automatically
perform the S-1 images query and download operations.

Table 1. ONDA DIAS Computing Nodes Configuration.

ONDA DIAS Computing Nodes Configuration

Architecture 64 bit
vCPU/vCores * 64

RAM 512 GB
Internal Disks 18.5 TB (5 SSD in RAID 0 configuration)

Network 2 Gb/s

* vCPU and vCores are acronyms of virtual CPU and virtual Cores, respectively.
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5. Experimental Results

We processed through the CC-based S-1 P-SBAS pipeline described in Section 2 the S-1 IWS data-set
acquired over the wide portion of the European territory detailed in Section 4.1. As stated before,
the data-set considered is composed of 175 frames (see Figure 9) and for each of these, the selected SAR
image temporal sequences were individually processed. We remark that no spatial baseline constraint
was imposed in the interferometric pair selection exploited in our processing thanks to the narrow
orbital tube characterizing the S-1 constellation [20]. Moreover, we exploited the 1-arcsec SRTM DEM to
generate the analyzed DInSAR interferograms on which we performed a complex multi-look operation
with twenty looks in the range direction and five looks in the azimuth one, thus obtaining a pixel
dimension of about 80 × 80 m. The same DEM was also used to geocode the computed deformation
time series and the corresponding mean velocity maps.

In Figure 12 we present the mosaicking of the obtained mean deformation velocity maps of the
overall investigated area, geocoded and superimposed on an optical image. The displayed overall mean
velocity map provides information on the ongoing deformation mean values of the coherent pixels,
identified by considering those with a temporal coherence value [28] greater than a selected threshold
that in our analysis is set equal to 0.9 for all the analyzed data-sets. Overall, we detect ~120,000,000
coherent pixels for which the corresponding deformation time series are available. Moreover, the zones
exhibiting lower temporal coherence values are properly masked out. The velocity maps in Figure 12
show a large variety of localized deformation patterns due to different phenomena (volcanic activities,
earthquakes, subsidence phenomena, slope instabilities, man-made activities, etc.), with the most
evident one being the well-known deformation pattern associated with the seismic crisis that struck
Central Italy during the August–October 2016 period, already extensively discussed in [38,39].

Starting from the results of Figure 12, and to provide a clearer idea about the generated products,
we present in the following the zoom-in views of the mean deformation velocity map relevant to six
areas characterized by significant ground displacements related to natural phenomena (Figures 13–15)
and man-induced activities (Figures 16–18), which are outlined by white rectangles. Moreover, for each
area, we show the plots of the deformation time series of some selected coherent pixels.

In particular, in Figure 13a, we show the zoom-in view of the mean deformation velocity map
portion relevant to the Campi Flegrei caldera (Southern Italy), an active volcanic area located West of
the city of Napoli. It is characterized by the bradyseism phenomenon consisting in a slow lifting and
lowering movement of the ground; since late 2005 [43–47] the caldera has been experiencing an almost
continuous uplift of the ground surface. Indeed, the map in Figure 13a shows a spatially extended
deformation pattern involving the whole caldera with a maximum LOS deformation rate of about
7.5 cm/year. We also present the plot (Figure 13b) of the displacement time series of a pixel located in
the maximum deformation area, identified by a white star and labeled as P1 in Figure 13a, characterized
by a cumulative displacement of about 37 cm. The temporal evolution of the displacement for the
selected pixel shows the deformation behavior characterizing the caldera since 2015. As a matter of
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fact, we observe a rather continuous uplift typified by different deformation rates within the whole
period of observation. In addition, a decrease of the deformation rate, approximately spanning from
mid-2016 to mid-2017, is also clearly visible. Finally, in Figure 13c, we report the mean deformation
velocity values for the coherent pixels deployed along the section crossing the maximum uplifting
zone and identified in Figure 13a by a dashed white line. It is evident that the caldera shows a general
uplift characterized by an almost radial symmetry with respect to the maximum displacement located
in the Rione Terra area (P1 in Figure 13a).Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 28 
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Figure 12. Mosaicking of the LOS mean deformation velocity maps (cm/year), geocoded and
superimposed on an optical image of Europe (Mapbox Satellite Streets source). The white rectangles
identify the zoom-in areas that are analyzed in more details in the following. Note that the red color
corresponds to a sensor-target range increase, while the blue one to a sensor-target range decrease.
The inset in the upper right corner reports the SAR sensor azimuth/range and the North/East directions.

In Figure 14a, we highlight a sketch of the mean deformation velocity map relevant to the Lefkada
Island (Greece). It outlines a spatially extended deformation pattern, characterized by both negative
and positive LOS-projected displacement signals, which are related to the Mw 6.5 earthquake that
struck the island the 17 November 2015 [48,49]. Moreover, we present the corresponding displacement
time series relevant to two selected pixels (labeled as P1 and P2 in Figure 14a and marked by white
stars) located in the maximum co-seismic deformation zone. They clearly show the deformation signal
associated with the seismic event, see the discontinuity characterizing the time series of Figure 14b,c
in correspondence to the earthquake (highlighted by a vertical dashed red line).
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Figure 13. Zoomed-in view of the mean deformation velocity map relevant to the Campi Flegrei
caldera (Italy). (a) LOS mean deformation velocity map superimposed on the SRTM DEM of the zone.
(b) Displacement time series relevant to the pixel P1, marked by the white star in the map, located in
the maximum deforming area. (c) Plot of the mean deformation velocity along the section crossing the
maximum uplift zone and identified by the white dashed line in panel (a).
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Figure 14. Zoomed-in view of the mean deformation velocity map relevant to the Lefkada Island
(Greece). (a) LOS mean deformation velocity map superimposed on the SRTM DEM of the zone.
(b,c) Displacement time series relevant to the pixels P1 and P2, marked by the white stars in (a) and
located in the maximum deforming co-seismic areas. The vertical dashed red lines identify the
17 November 2015 earthquake.

In Figure 15, we show a zoomed-in view of the mean deformation velocity map relevant to the
Northern Black Sea coast, between the Varna and Kavarna towns (Bulgaria). This area is characterized
by numerous landslides, mainly due to soil over-moistening, marine erosion, slope cutting and seismic
impacts, which have caused serious damage to buildings and infrastructure over time [50]. Figure 15a
reports the LOS mean deformation velocity map of the area while Figure 15b,c display the corresponding
displacement time series relevant to two selected pixels (labeled as P1 and P2 in Figure 15a and marked
by white stars), located in Balchik town and in Kranevo village (both between Varna city and Kavarna
town), respectively. These plots clearly show the ground movements, characterized by different rates
(about 1 and 1.8 cm/year for P1 and P2, respectively), related to the landslides.
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Figure 15. Zoomed-in view of the mean deformation velocity map relevant to the Northern Black Sea
coast (Bulgaria). (a) LOS mean deformation velocity map superimposed on the SRTM DEM of the zone.
(b,c) Displacement time series relevant to the pixels, marked by the white stars in (a) and located in the
areas of Balchik town (P1) and Kranevo village (P2), both affected by landslides movements.

Moving from the ground deformation analysis related to natural phenomena to human-induced
activities, we benefit first from the DInSAR capability to investigate displacements caused by mining
activities [51,52]. In particular, we show in Figure 16a,b two zooms of the map of Figure 12 relevant
to rather wide zones located in Germany (a) and Poland (b), respectively, where significant mining
activities are carried out. In Figure 16c, we report a zoomed-in view in correspondence to the Nochten
coalmine and surroundings, located in the Saxony-Anhalt State (Germany), where the effects of the
sub-surface exploitation activities on the ground deformation are evident. In addition, we show in
Figure 16e the displacement time series relevant to a selected pixel (labeled as P1 in Figure 16c and
marked by a white star) that reveals cumulative displacements of more than 45 cm in the considered
time period. Similarly, in Figure 16d we show a zoomed-in view of the Katowice coalmines, located in
the Silesian Region (Southern Poland). As for the German case, the ground deformation related to
mining actions are clear. The plot of the displacement time series (see Figure 16f) relevant to a selected
pixel (labeled as P2 in Figure 16d and marked by a white star) located in the area shows a clear
non-linear deformation behavior, which is effectively retrieved through our P-SBAS-based analysis.

We remark that, following the deformation time series retrieval operation, the S-1 IWS P-SBAS
processing chain automatically supplies various value-added information on the ongoing deformation
phenomena. Indeed, in addition to the estimate of the mean deformation velocity, it also automatically
identifies possible deformation signals characterized by a periodic behavior with respect to time,
such as those relevant to oil and gas extraction/storage activities and water withdrawal, which represent
significant DInSAR applications in the energy source storage [53] and hydrogeological [54] fields. This is
done by computing the correlation coefficient of each pixel’s detrended time series with a sinusoid with
a one-year period. In Figure 17a we show the peak-to-peak amplitude of the sinusoid signal in an area
located in Northern Italy, close to the city of Milano. Note that pixels with peak-to-peak amplitude
values equal to 0 are those for which the correlation coefficient is smaller than 0.8. The oscillation
amplitude map clearly identifies three distinct areas that correspond to three gas storage sites located
in the zone. In Figure 17b,c we show the displacement time series relevant to three selected pixels,
labeled as P1, P2, and P3 in Figure 17a and marked by black stars, located in correspondence to the
Settala, Sergnano, and Ripalta Guerina sites, respectively. The displayed time series reveal periodic
deformation signals that correspond to the human-induced actions carried out to ensure gas supply
during the winter. Indeed, the plots clearly show the effect of the injection of gas into storage during
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periods of low demand (approximately from March to October), which produces a raising of the
soil over the reservoir area. Conversely, it is evident that a subsidence effect during periods of peak
demand (approximately from November to February) occurs due to the withdrawal of gas migration
from storage into the town’s gas supply system. As a further example of this kind of analysis, we show
in Figure 18 the oscillation amplitude map relevant to the Firenze-Prato-Pistoia basin (North Italy).
In this case, the displacement time series relevant to a selected pixel (labeled as P1 in Figure 18a and
marked by a black star) shows a clear subsidence signal, caused by the large amount of ground-water
extracted due to the industrial activities carried out in this area [35,36]. Moreover, this subsidence
trend is modulated by a seasonal oscillation, due to the groundwater withdrawal and recharge during
the summer and winter seasons respectively, see Figure 18b.Remote Sens. 2020, 12, x FOR PEER REVIEW 22 of 29 
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Figure 16. Zoomed-in views of the mean deformation velocity map relevant to two wide areas located in
Germany (a) and Poland (b), both affected by extensive mining activities. (a,b) LOS mean deformation
velocity map superimposed on the SRTM DEM of the zones; the white rectangles identify two areas that
are shown in the panels (c,d). (c) Zoom of the LOS mean deformation velocity map in (a) relevant to
the Nocthen coalmine (Germany). (d) Zoom of the LOS mean deformation velocity map in (b) relevant
to the Katowice coalmine (Poland). (e) Displacement time series relevant to the pixel P1 marked by the
white star in (c). (f) Displacement time series relevant to the pixel P2 marked by the white star in (d).
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Figure 17. Correlation map between DInSAR time series and an annual sinusoid relevant to an area
located in Northern Italy, close to the city of Milano. (a) Peak-to-peak oscillation amplitude map
superimposed on the SRTM DEM of the zone. Note that pixels with peak-to-peak amplitude values
equal to 0 are those for which the correlation coefficient is smaller than 0.8. (b–d) Displacement
time series relevant to the pixels P1, P2 and P3, marked by the black stars in the map, located in
correspondence to the Settala, Sergnano and Ripalta Guerina gas storage sites, respectively.
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Figure 18. Correlation map between the DInSAR time series and an annual sinusoid relevant to the
Firenze-Prato-Pistoia basin (North Italy). (a) Peak-to-peak oscillation amplitude map superimposed on
the SRTM DEM of the zone. Note that pixels with peak-to-peak amplitude values equal to 0 are those
for which the correlation coefficient is smaller than 0.8. (b) Displacement time series relevant to the pixel
P1, marked by the black star in the map, located in correspondence of the maximum deforming zone.
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It is also worth noting that the two examples reported in Figures 17 and 18 identify deformation
signals characterized by oscillations that peak in different periods: approximately in November for
the first case and February for the second one. This temporal peak location is a key parameter to
discriminate the occurrence of such different displacement phenomena.

6. Conclusions

The amount and availability of remote sensing satellite data have exponentially grown in recent
years, significantly contributing to the on-going big data scenario. In particular, a key role is played by
the Copernicus program of the European Union through the Sentinel missions, characterized by its free
and open data policy [55]. In this framework, the wide spatial footprint, the high temporal acquisition
rate, the accurate synchronization among subsequent acquisitions, the selection of a unique acquisition
mode over land, and the accurate orbital information with a small tube diameter, which characterizes
the Sentinel-1 constellation [1], have already represented a revolution for the possibility to operationally
apply the DInSAR techniques to investigate Earth surface deformation phenomena at unprecedented
spatial and/or temporal scales. In this paper, we present a CC-based solution to perform, through the
P-SBAS processing chain, advanced DInSAR analyses from S-1 IWS SAR images and GNSS position
time series at continental scale in an automatic, efficient, and robust way.

To achieve such a task, processing and storing huge data flows, including GNSS, DEM, and orbital
information, in addition to very large S-1 IWS SAR data volumes, are required. To do this, there is a need,
on the one hand, for proper DInSAR processing algorithms and, on the other hand, for appropriate
computing architectures, wide storage capacity, and high performance processing resources. In this
framework, key problems to be addressed are also those relevant to the automation level and the
reliability of the entire processing strategy. Indeed, carrying out continental scale DInSAR analyses
results in the ability to process large volumes of SAR data, preventing algorithmic errors, processing
and computing failures, and hardware faults as much as possible.

From the algorithmic point of view the developed S-1 IWS P-SBAS processing chain has been
enriched with a processing step that, starting from the available GNSS measurements, following
a proper screening and selection operation, allows identifying and filtering out possible residual
atmospheric artifacts that may affect the DInSAR measurements, thus generating refined DInSAR
products (see Section 3). Moreover, regarding the automation and the robustness of the processing
chain and of the relevant CC-based pipeline, several check mechanisms have been introduced in order
to guarantee a fully unsupervised processing execution, as thoroughly discussed in Section 2.

With respect to the architectural issues, the main aspects impacting the efficiency of the S-1
P-SBAS pipeline are: i) proximity of data to the HPC infrastructure, ii) large storage capacity,
and iii) wide computing capability in order to handle the requested massive parallel computation.
Therefore, cloud computing, whose main characteristics are high availability, reliability, and robustness,
has revealed as a natural choice to implement the presented continental scale S-1 IWS P-SBAS
processing pipeline. In this case, we have successfully demonstrated that the European DIAS Cloud
Services, in particular the exploited ONDA Cloud Platform, are suitable to host our fully automated
pipeline for downloading and processing the analyzed S-1 images, and for storing the final S-1
interferometric products.

We further remark that, through our processing experiment, we have also successfully verified
the high reliability and compliance with respect to the defined formats of the S-1 images archives,
which represents another very relevant element supporting the possibility to operationally carrying
out such massive DInSAR data processing.

The presented results, obtained through an extensive experimental analysis on a large portion of
Europe (see Section 5), clearly show that the implemented CC-based S-1 P-SBAS pipeline has proved to
be successfully suitable for massive and automatic continental scale DInSAR processing, which has been
completed in six months and at relatively low computing costs amounting to about € 60k. In particular,
the presented pipeline allowed the production, for the presented experiment, of the deformation time
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series and the corresponding velocity maps relevant to each single frame in six days, on average.
Nevertheless, we underline that possible improvements of the proposed solution can already be
envisioned. For instance, we report that an enhancement for improving the storage connection and
performance could be very valuable. In addition to the above consideration, we remark that although
the presented analysis has been carried out by exploiting averaged (multi-look) interferograms, it can
be efficiently extended to the full resolution spatial scale by using graphics processing units (GPUs),
following the lines of the approach presented in [56]. Moreover, algorithmic improvements concerning
the compensation of residual phase unwrapping errors [32] and the integration of atmospheric
information [57] for improving the tropospheric artifacts removal can also be very important.

Generating updatable interferometric products at a continental scale provides the possibility to
access an unprecedented amount of results containing value-added information that is potentially
groundbreaking. For instance, an extensive analysis on the interferometric coherence, performed on
a country by country basis for land cover classification and mapping, or vegetation density detection,
or the study of the statistics of the retrieved DInSAR deformation time series (for instance, standard
deviation or root mean square values) and of their correlation with specific (linear, logarithmic,
exponential, periodic, etc.) signals, to identify different deformation phenomena or potential
changes that occurred during the observation period, could represent very relevant issues. Moreover,
the availability of spatially dense deformation time series over such large areas paves the way to new
kind of analyses and interpretation of such data. For instance, the idea of applying machine and deep
learning techniques [58,59] to follow the behavior of deformation signals and to automatically extract
significant patterns is becoming a very relevant issue but other innovative methodologies could be
devised for deeply exploiting these “new generation” sources of DInSAR measurements.

As a final remark, we underline that the results we achieved can be particularly relevant for
the Solid Earth community that promoted this experiment as a key study of the EPOSAR service
included in the Satellite Data Thematic Core Service of the European Plate Observing System (EPOS)
(https://www.epos-ip.org/). Moreover, our findings may also have a positive impact on the future
development of the European Ground Motion Service [60], which is expected to start in the near future.

Author Contributions: Conceptualization, R.L., M.B., F.C., C.D.L., M.M. (Michele Manunta), M.M. (Mariarosaria Manzo),
G.O., and I.Z.; methodology, R.L., M.B., F.C., C.D.L., M.M. (Michele Manunta), M.M. (Mariarosaria Manzo), G.O., and I.Z.;
validation, M.B., C.D.L., and M.M. (Mariarosaria Manzo); data curation, M.B., M.M. (Michele Manunta), and G.O.;
writing—original draft preparation, R.L., C.D.L., M.M. (Mariarosaria Manzo), G.O., and I.Z.; visualization,
F.C., G.O., and I.Z.; supervision, R.L. and F.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Italian Ministry of Economic Development, the Italian Civil
Protection Department, the I-AMICA (PONa3_00363) project, and the EPOS-SP, EOSC-hub, ENVRI-FAIR and
OpenAIRE-advance projects of the European Union Horizon 2020 for Research and Innovation Program under
Grant 871121, Grant 777536, Grant 824068, and Grant 777541, respectively.

Acknowledgments: This work is supported by the 2018-2019 IREA-CNR/DGS-UNMIG and the 2019-2021
IREA-CNR and Italian Civil Protection Department agreements. On the other hand, we remark that the contents of
this paper represent the authors’ ideas and do not necessarily correspond to the official opinion and policies of the
Italian Ministry of Economic Development and Italian Civil Protection Department. This study is also supported by
the I-AMICA (PONa3_00363) project and the EPOS-SP, EOSC-hub, ENVRI-FAIR and OpenAIRE-advance projects
of the European Union Horizon 2020 for Research and Innovation Program under Grant 871121, Grant 777536,
Grant 824068, and Grant 777541, respectively. The Sentinel-1 data have been provided through the Copernicus
Program of the European Union. The DEM of the investigated zone was acquired through the SRTM archive.
The authors thank Geoffrey Blewitt of UNR for his support in the access to the exploited GNSS data, Enrico Priolo
of OGS for the interesting discussions on the possible use of the presented results for monitoring oil and gas
extraction/storage activities and Paul R. Lundgren of JPL, California Institute of Technology, for proofreading the
paper. Finally, the authors thank S. Guarino, F. Parisi and M.C. Rasulo for their support.

Conflicts of Interest: The Authors declare no conflict of interest.

https://www.epos-ip.org/


Remote Sens. 2020, 12, 2961 24 of 27

References

1. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.;
Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

2. Bonano, M.; Manunta, M.; Pepe, A.; Paglia, L.; Lanari, R. From Previous C-Band to New X-Band SAR
Systems: Assessment of the DInSAR Mapping Improvement for Deformation Time-Series Retrieval in Urban
Areas. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1973–1984. [CrossRef]

3. Sansosti, E.; Berardino, P.; Bonano, M.; Calo, F.; Castaldo, R.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.;
Pepe, S.; et al. How second generation SAR systems are impacting the analysis of ground deformation. Int. J.
Appl. Earth Obs. Geoinf. 2014, 28, 1–11. [CrossRef]

4. De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens.
2006, 44, 2352–2360. [CrossRef]

5. Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface.
Rev. Geophys. 1998, 36, 441–500. [CrossRef]

6. Bürgmann, R.; Rosen, P.A.; Fieldingi, E. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface
Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [CrossRef]

7. Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 1999.
8. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based

on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383.
[CrossRef]

9. Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface
deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [CrossRef]

10. Lanari, R.; Casu, F.; Manzo, M.; Lundgren, P. Application of the SBAS-DInSAR technique to fault creep:
A case study of the Hayward fault, California. Remote Sens. Environ. 2007, 109, 20–28. [CrossRef]

11. Manzo, M.; Fialko, Y.; Casu, F.; Pepe, A.; Lanari, R. A Quantitative Assessment of DInSAR Measurements of
Interseismic Deformation: The Southern San Andreas Fault Case Study. Pure Appl. Geophys. 2012, 169, 1463–1482.
[CrossRef]

12. Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for
investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens.
2004, 42, 1377–1386. [CrossRef]

13. Manunta, M.; Marsella, M.; Zeni, G.; Sciotti, M.; Atzori, S.; Lanari, R. Two-scale surface deformation
analysis using the SBAS-DInSAR technique: A case study of the city of Rome, Italy. Int. J. Remote Sens.
2008, 29, 1665–1684. [CrossRef]

14. Pepe, A.; Sansosti, E.; Berardino, P.; Lanari, R. On the Generation of ERS/ENVISAT DInSAR Time-Series Via
the SBAS Technique. IEEE Geosci. Remote Sens. Lett. 2005, 2, 265–269. [CrossRef]

15. Bonano, M.; Manunta, M.; Marsella, M.; Lanari, R. Long-term ERS/ENVISAT deformation time-series
generation at full spatial resolution via the extended SBAS technique. Int. J. Remote Sens. 2012, 33, 4756–4783.
[CrossRef]

16. Casu, F.; Elefante, S.; Imperatore, P.; Zinno, I.; Manunta, M.; De Luca, C.; Lanari, R. SBAS-DInSAR Parallel
Processing for Deformation Time-Series Computation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2014, 7, 3285–3296. [CrossRef]

17. De Luca, C.; Zinno, I.; Manunta, M.; Lanari, R.; Casu, F. Large areas surface deformation analysis through a
cloud computing P-SBAS approach for massive processing of DInSAR time series. Remote Sens. Environ.
2017, 202, 3–17. [CrossRef]

18. Zinno, I.; Casu, F.; De Luca, C.; Elefante, S.; Lanari, R.; Manunta, M. A Cloud Computing Solution for the
Efficient Implementation of the P-SBAS DInSAR Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2017, 10, 802–817. [CrossRef]

19. Zinno, I.; Bonano, M.; Buonanno, S.; Casu, F.; De Luca, C.; Manunta, M.; Manzo, M.; Lanari, R. National
Scale Surface Deformation Time Series Generation through Advanced DInSAR Processing of Sentinel-1 Data
within a Cloud Computing Environment. IEEE Trans. Big Data 2018, 4, 1. [CrossRef]

20. Manunta, M.; De Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.;
Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation

http://dx.doi.org/10.1016/j.rse.2011.05.028
http://dx.doi.org/10.1109/tgrs.2012.2232933
http://dx.doi.org/10.1016/j.jag.2013.10.007
http://dx.doi.org/10.1109/tgrs.2006.873853
http://dx.doi.org/10.1029/97rg03139
http://dx.doi.org/10.1146/annurev.earth.28.1.169
http://dx.doi.org/10.1109/tgrs.2002.803792
http://dx.doi.org/10.1016/j.rse.2006.01.023
http://dx.doi.org/10.1016/j.rse.2006.12.003
http://dx.doi.org/10.1007/s00024-011-0403-2
http://dx.doi.org/10.1109/TGRS.2004.828196
http://dx.doi.org/10.1080/01431160701395278
http://dx.doi.org/10.1109/lgrs.2005.848497
http://dx.doi.org/10.1080/01431161.2011.638340
http://dx.doi.org/10.1109/jstars.2014.2322671
http://dx.doi.org/10.1016/j.rse.2017.05.022
http://dx.doi.org/10.1109/jstars.2016.2598397
http://dx.doi.org/10.1109/tbdata.2018.2863558


Remote Sens. 2020, 12, 2961 25 of 27

Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci.
Remote Sens. 2019, 57, 6259–6281. [CrossRef]

21. Zinno, I.; Elefante, S.; Mossucca, L.; De Luca, C.; Manunta, M.; Terzo, O.; Lanari, R.; Casu, F. A First
Assessment of the P-SBAS DInSAR Algorithm Performances Within a Cloud Computing Environment.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4675–4686. [CrossRef]

22. Zinno, I.; Mossucca, L.; Elefante, S.; De Luca, C.; Casola, V.; Terzo, O.; Casu, F.; Lanari, R. Cloud Computing for
Earth Surface Deformation Analysis via Spaceborne Radar Imaging: A Case Study. IEEE Trans. Cloud Comput.
2015, 4, 1. [CrossRef]

23. Parizzi, A.; González, F.R.; Brcic, R. A Covariance-Based Approach to Merging InSAR and GNSS Displacement
Rate Measurements. Remote Sens. 2020, 12, 300. [CrossRef]

24. Bischoff, C.A.; Ferretti, A.; Novali, F.; Uttini, A.; Giannico, C.; Meloni, F. Nationwide deformation monitoring
with SqueeSAR® using Sentinel-1 data. In Proceedings of the Proceedings of the International Association of
Hydrological Sciences; Copernicus GmbH: Göttingen, Germany, 2020; Volome 382, pp. 31–37.

25. Blewitt, G.; Hammond, W.C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, 99.
[CrossRef]

26. Nbsp. Available online: https://www.onda-dias.eu/cms/ (accessed on 10 July 2019).
27. Pepe, A.; Yang, Y.; Manzo, M.; Lanari, R. Improved EMCF-SBAS Processing Chain Based on Advanced

Techniques for the Noise-Filtering and Selection of Small Baseline Multi-Look DInSAR Interferograms.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 4394–4417. [CrossRef]

28. Pepe, A.; Lanari, R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of
Multitemporal Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383.
[CrossRef]

29. Shirzaei, M.; Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry
using wavelet transforms. Geophys. Res. Lett. 2012, 39. [CrossRef]

30. Buonanno, S.; Zeni, G.; Fusco, A.; Manunta, M.; Marsella, M.; Carrara, P.; Lanari, R. A GeoNode-Based
Platform for an Effective Exploitation of Advanced DInSAR Measurements. Remote Sens. 2019, 11, 2133.
[CrossRef]

31. The Sentinel-1 IPF Auxiliary Product Specification. Available online: https://sentinel.esa.int/web/sentinel/user-
guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-
product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%
2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%
3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_
lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_
count%3D1 (accessed on 10 September 2020).

32. De Luca, C.; Onorato, G.; Casu, F.; Lanari, R.; Manunta, M. A Genetic Algorithm for Phase Unwrapping
Errors Correction in the SBAS-DInSAR Approach. In Proceedings of the IGARSS 2019—2019 IEEE International
Geoscience and Remote Sensing Symposium; Institute of Electrical and Electronics Engineers (IEEE): Piscataway,
NJ, USA, 2019; pp. 266–269.

33. Serpelloni, E.; Faccenna, C.; Spada, G.; Dong, D.; Williams, S. Vertical GPS ground motion rates in the
Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the
Nubia-Eurasia plate boundary. J. Geophys. Res. Solid Earth 2013, 118, 6003–6024. [CrossRef]

34. Wegmuller, U.; Strozzi, T.; Bitelli, G. Validation of ERS differential SAR interferometry for land subsidence
mapping: The Bologna case study. In Proceedings of the IEEE 1999 International Geoscience and
Remote Sensing Symposium, IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999;
pp. 1131–1133. [CrossRef]

35. Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From
ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. Front. Earth Sci. 2018, 6, 149.
[CrossRef]

36. Del Soldato, M.; Farolfi, G.; Rosi, A.; Raspini, F.; Casagli, N. Subsidence Evolution of the Firenze–Prato–Pistoia
Plain (Central Italy) Combining PSI and GNSS Data. Remote Sens. 2018, 10, 1146. [CrossRef]

37. Gambolati, G. CENAS: Coastal Evolution of the Upper Adriatic Sea due to Sea Level Rise and Natural and
Anthropogenic Land Subsidence; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.

http://dx.doi.org/10.1109/tgrs.2019.2904912
http://dx.doi.org/10.1109/jstars.2015.2426054
http://dx.doi.org/10.1109/tcc.2015.2440267
http://dx.doi.org/10.3390/rs12020300
http://dx.doi.org/10.1029/2018eo104623
https://www.onda-dias.eu/cms/
http://dx.doi.org/10.1109/tgrs.2015.2396875
http://dx.doi.org/10.1109/TGRS.2006.873207
http://dx.doi.org/10.1029/2011gl049971
http://dx.doi.org/10.3390/rs11182133
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-ipf-auxiliary-product-specification;jsessionid=DA0DD0EF437909E50BA09E8F1FD22CD5.jvm1?redirect=https%3A%2F%2Fsentinel.esa.int%2Fweb%2Fsentinel%2Fuser-guides%2Fsentinel-1-sar%2Fdocument-library%3Bjsessionid%3DDA0DD0EF437909E50BA09E8F1FD22CD5.jvm1%3Fp_p_id%3D101_INSTANCE_1dO7RF5fJMbd%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1
http://dx.doi.org/10.1002/2013jb010102
http://dx.doi.org/10.1109/igarss.1999.774555
http://dx.doi.org/10.3389/feart.2018.00149
http://dx.doi.org/10.3390/rs10071146


Remote Sens. 2020, 12, 2961 26 of 27

38. Lavecchia, G.; Castaldo, R.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Pepe, S.; Brozzetti, F.; Solaro, G.;
Cirillo, D.; Bonano, M.; et al. Ground deformation and source geometry of the 24 August 2016 Amatrice
earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements
and structural-geological data. Geophys. Res. Lett. 2016, 43, 12389–12398. [CrossRef]

39. Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.;
Bonano, M.; Calcaterra, S.; et al. Geodetic model of the 2016 Central Italy earthquake sequence inferred from
InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [CrossRef]

40. Rutter, C.M.; Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics. J. Am. Stat. Assoc.
1991, 86, 548. [CrossRef]

41. Fornaro, G.; Franceschetti, G.; Lanari, R.; Sansosti, E.; Tesauro, M. Global and local phase-unwrapping
techniques: A comparison. J. Opt. Soc. Am. A 1997, 14, 2702–2708. [CrossRef]

42. Fornaro, G.; Franceschetti, G.; Lanari, R.; Rossi, D.; Tesauro, M. Interferometric SAR phase unwrapping
using the finite element method. IEE Proc.—Radar Sonar Navig. 1997, 144, 266. [CrossRef]

43. Trasatti, E.; Casu, F.; Giunchi, C.; Pepe, S.; Solaro, G.; Tagliaventi, S.; Berardino, P.; Manzo, M.; Pepe, A.;
Ricciardi, G.P.; et al. The 2004–2006 uplift episode at Campi Flegrei caldera (Italy): Constraints from
SBAS-DInSAR ENVISAT data and Bayesian source inference. Geophys. Res. Lett. 2008, 35. [CrossRef]

44. Manconi, A.; Walter, T.R.; Manzo, M.; Zeni, G.; Tizzani, P.; Sansosti, E.; Lanari, R. On the effects of 3-D
mechanical heterogeneities at Campi Flegrei caldera, southern Italy. J. Geophys. Res. Space Phys. 2010, 115.
[CrossRef]

45. D’Auria, L.; Giudicepietro, F.; Martini, M.; Lanari, R. The 4D imaging of the source of ground deformation at
Campi Flegrei caldera (southern Italy). J. Geophys. Res. Space Phys. 2012, 117. [CrossRef]

46. Samsonov, S.; Tiampo, K.F.; Camacho, A.G.; Fernández, J.; Gonzalez, P.J. Spatiotemporal analysis and
interpretation of 1993-2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR.
Geophys. Res. Lett. 2014, 41, 6101–6108. [CrossRef]

47. D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.;
Lanari, R.; Manzo, M.; et al. Magma injection beneath the urban area of Naples: A new mechanism for the
2012–2013 volcanic unrest at Campi Flegrei caldera. Sci. Rep. 2015, 5, 13100. [CrossRef]

48. Ganas, A.; Elias, P.; Bozionelos, G.; Papathanassiou, G.; Avallone, A.; Papastergios, A.; Valkaniotis, S.;
Parcharidis, I.; Briole, P. Coseismic deformation, field observations and seismic fault of the 17 November
2015 M = 6.5, Lefkada Island, Greece earthquake. Tectonophys. 2016, 687, 210–222. [CrossRef]

49. Bie, L.; Gonzalez, P.J.; Rietbrock, A. Slip distribution of the 2015 Lefkada earthquake and its implications for
fault segmentation. Geophys. J. Int. 2017, 210, 420–427. [CrossRef]

50. Evstatiev, D.; Evlogiev, Y. Landslides along the northern Black Sea coast between Varna city and Kavarna
town (Bulgaria). Geo-Eco-Marina 2013, 19, 39–58.

51. Tang, W.; Motagh, M.; Zhan, W. Monitoring active open-pit mine stability in the Rhenish coalfields of
Germany using a coherence-based SBAS method. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102217. [CrossRef]

52. Perski, Z. ERS InSAR data for Geological Interpretation of Mining Subsidence in Upper Silesian Coal Basin
in Poland. In Proceedings of the FRINGE’99 2nd International Workshop on SAR Interferometry, Liege,
Belgium, 10–12 November 1999.

53. Liu, X.; Hu, J.; Sun, Q.; Li, Z.W.; Zhu, J. Deriving 3-D Time-Series Ground Deformations Induced by
Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China. Remote Sens. 2017, 9, 1129.
[CrossRef]

54. Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal subsidence and rebound in Las Vegas
Valley, Nevada, observed by Synthetic Aperture Radar Interferometry. Water Resour. Res. 2001, 37, 1551–1566.
[CrossRef]

55. Schreier, G. Opportunities by the Copernicus Program for Archaeological Research and World Heritage Site
Conservation. Remote Sens. Archaeol. Cult. Landsc. 2020. [CrossRef]

56. Bonano, M.; Manunta, M.; Zinno, I.; Buonanno, S.; Ojha, C.; Lanari, R. A large scale exploitation of high
resolution satellite SAR data to analyze surface deformation in urban areas through the parallel full resolution
SBAS-DInSAR approach. In Proceedings of the 21st EGU General Assembly, Vienna, Austria, 7–12 April 2019.

57. Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for
hydrological modeling over North-America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544.

http://dx.doi.org/10.1002/2016gl071723
http://dx.doi.org/10.1002/2017gl073580
http://dx.doi.org/10.2307/2290613
http://dx.doi.org/10.1364/josaa.14.002702
http://dx.doi.org/10.1049/ip-rsn:19971259
http://dx.doi.org/10.1029/2007gl033091
http://dx.doi.org/10.1029/2009jb007099
http://dx.doi.org/10.1029/2012jb009181
http://dx.doi.org/10.1002/2014gl060595
http://dx.doi.org/10.1038/srep13100
http://dx.doi.org/10.1016/j.tecto.2016.08.012
http://dx.doi.org/10.1093/gji/ggx171
http://dx.doi.org/10.1016/j.jag.2020.102217
http://dx.doi.org/10.3390/rs9111129
http://dx.doi.org/10.1029/2000wr900404
http://dx.doi.org/10.1007/978-3-030-10979-0


Remote Sens. 2020, 12, 2961 27 of 27

58. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

59. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications:
A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

60. The European Ground Motion Service (EGMS). Available online: https://land.copernicus.eu/user-corner/
technical-library/european-ground-motion-service (accessed on 10 September 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/mgrs.2017.2762307
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service
https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The S-1 P-SBAS Approach: Basic Rationale and Cloud Computing Implementation 
	Joint Exploitation of GNSS and DInSAR Measurements 
	GNSS Data Screening and Selection 
	DInSAR Deformation Signals Refinement 

	Exploited SAR and GNSS Data and Cloud Computing Resources 
	SAR and GNSS Data 
	Cloud Computing Resources 

	Experimental Results 
	Conclusions 
	References

