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Abstract: High resolution satellite imagery and modern machine learning methods hold the potential
to fill existing data gaps in where crops are grown around the world at a sub-field level. However,
high resolution crop type maps have remained challenging to create in developing regions due
to a lack of ground truth labels for model development. In this work, we explore the use of
crowdsourced data, Sentinel-2 and DigitalGlobe imagery, and convolutional neural networks (CNNs)
for crop type mapping in India. Plantix, a free app that uses image recognition to help farmers
diagnose crop diseases, logged 9 million geolocated photos from 2017–2019 in India, 2 million of
which are in the states of Andhra Pradesh and Telangana in India. Crop type labels based on
farmer-submitted images were added by domain experts and deep CNNs. The resulting dataset
of crop type at coordinates is high in volume, but also high in noise due to location inaccuracies,
submissions from out-of-field, and labeling errors. We employed a number of steps to clean the
dataset, which included training a CNN on very high resolution DigitalGlobe imagery to filter for
points that are within a crop field. With this cleaned dataset, we extracted Sentinel time series at
each point and trained another CNN to predict the crop type at each pixel. When evaluated on
the highest quality subset of crowdsourced data, the CNN distinguishes rice, cotton, and “other”
crops with 74% accuracy in a 3-way classification and outperforms a random forest trained on
harmonic regression features. Furthermore, model performance remains stable when low quality
points are introduced into the training set. Our results illustrate the potential of non-traditional,
high-volume/high-noise datasets for crop type mapping, some improvements that neural networks
can achieve over random forests, and the robustness of such methods against moderate levels of
training set noise. Lastly, we caution that obstacles like the lack of good Sentinel-2 cloud mask,
imperfect mobile device location accuracy, and preservation of privacy while improving data access
will need to be addressed before crowdsourcing can widely and reliably be used to map crops in
smallholder systems.

Keywords: crop type mapping; deep learning; Sentinel-2; Sentinel-1; crowdsourcing; weak
supervision; classification; agriculture; food security; land cover classification; India

1. Introduction

Smallholder farms—commonly defined as holdings smaller than 2 ha in size [1]—make up
84% of the world’s 570 million farms [2], provide a living for two-thirds of the world’s 3 billion
rural population [3], and produce an estimated one-third of global food consumed [4,5]. In the
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developing nations of Asia and Africa, smallholder agriculture is vital to achieving food security under
growing populations [3]. Relative to this global significance, there is a scarcity of data on smallholder
crop production, starting at the fundamental questions of which crop types smallholders grow and
where they grow them. Both pieces of information are needed to track smallholder yield progress,
study management strategies, and design targeted agricultural policies [6,7]. The data gap exists
because most smallholders are located in countries where infrastructure to conduct surveys—the
traditional way of obtaining farm-level information—is still nascent or under development [8].
Where official statistics on crop area and production do exist, they are aggregated to regional or national
levels [9], or, in the case of the World Bank’s Living Standards Measurement Study, available for a
random sample of a country’s villages [10].

Remote sensing data offers a low-cost, large-scale, and continuously-updated supplement to
surveys [11]. In the past decade, advances in the resolution of satellite sensors, data storage and
processing, and machine learning algorithms have enabled the development of annual crop type maps
in the United States [12], Canada [13], and Europe [14] at sub-field levels. They have the potential to
do the same in areas dominated by smallholder agriculture, if two main challenges can be overcome.
First, field-level ground data are still required to train, or at least validate, models that can relate
remote sensing data to crop types. As mentioned, many countries lack the infrastructure to conduct
surveys to obtain these ground truth labels at a national scale. Second, smallholder systems are more
heterogeneous than the industrial agriculture that dominates North America and Europe, where most
crop type mapping methods have focused to date. Fields are smaller, on-farm species are more
diverse, management practices are more variable, and intercropping and multi-crop rotations are
common [2,15,16]. These attributes complicate the use of moderate-resolution satellite imagery and
increase variability within the same field, making it difficult to distinguish crop types from each other.

Without publicly-available, government-led field surveys, researchers have either organized their
own surveys [14,17–19] or mobilized citizen science efforts [20,21] to obtain ground truth labels in
smallholder systems. Most often, these labels are used in conjunction with supervised machine learning
methods [14,17–19,21] or classification rules designed by crop experts [22,23]. These approaches have
shown that supervised machine learning methods like random forests can achieve some success
discerning crop types in smallholder systems, but small field size, high within-crop variation, and low
training set size continue to limit map accuracies and the generalizability of models. In works where no
field-level ground truth is available [24,25], maps have been validated against sub-national production
statistics, but their field-level accuracies are unknown.

In India, no national field-level crop type map exists for public use at the time of writing.
Large-scale crop type mapping efforts have mostly focused on rice (paddy), which covers the most
cultivable land in India [9] and has a distinct spectral time series due to periodic flooding of fields.
Examples of rice maps include moderate-resolution MODIS- or SPOT-based maps across South
Asia [24,26,27] and a 10 m-resolution Sentinel-1-based map in northeast India [21]. Due to the small size
of Indian crop fields [28], only the latter can be considered field-level mapping. Maps of wheat [19,29]
and sugarcane [30,31] have also been created at local scales, illustrating the potential of remote
sensing-based crop mapping across India’s diverse agricultural landscape. However, to create national
or state-wide multi-crop maps and validate them against field observations requires expansive ground
truth datasets that have thus far been unavailable.

In this study, we demonstrate the use of crowdsourced ground data, high resolution Sentinel and
DigitalGlobe satellite imagery, and neural networks to map kharif rice and cotton at 10 m resolution in
southeast India. To fill the gap in field-level crop labels, we used over 1.8 million geotagged submissions
from local farmers to Plantix, a free Android application that uses image recognition to diagnose crop
diseases and classify crop types. The high volume of data was possible because, unlike previous
efforts at crowdsourcing crop labels that enlisted researchers and volunteers [20,21], Plantix offers
farmers a service at a time when 18% of rural India has access to mobile internet [32]. With high data
volume, however, comes high levels of noise and sampling bias not present in well-designed surveys.
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To render the Plantix data usable, we filtered and resampled the submissions to 10,000 geographically
representative points spanning the major monsoon-season crops—a dataset comparable in size to the
ground truth collected by Indian state agriculture departments annually (11,469 points nationally in
kharif and rabi from 2017–2018) [33].

Next, to address the second challenge of classifying crop types in a heterogeneous landscape
with very small fields, we used multi-temporal radar (Sentinel-1) and optical (Sentinel-2) images
at 10 m resolution, augmented with very high resolution (0.3 m) static DigitalGlobe images to
ensure that labeled Sentinel pixels are within a crop field. We compared classification using Fourier
transform coefficients [34–36] and random forests [37] with classification using raw time series input to
convolutional neural networks [38]. We tested whether classification was robust to moderate amounts
of training set and validation set noise, and validated model predictions against both a hold-out set
of farmer submissions and sub-national crop area statistics. Our final crop type map covers rice and
cotton at 10 m resolution across Andhra Pradesh and Telangana for the 2018 kharif season.

2. Study Region

India is comprised of 29 states, whose climates range from tropical in the south to arid in the
northwest and support a large diversity of crop types. In this study, we focus on developing crop type
mapping methodology in two states: Andhra Pradesh and Telangana, where the Plantix app received
the largest number of user submissions between 2017 and 2019 (Figure 1).

Andhra Pradesh (AP) lies on the southeastern coast of India, bordering the Bay of Bengal. It is the
seventh largest Indian state (160,200 sq km) and accounts for 7.3% of the country’s total irrigation [39].
The state is dominated by a semi-arid tropical climate; districts experience annual rainfalls of 700 mm
to 1200 mm falling mostly within July to October and temperatures varying from 15 ◦C to 45 ◦C [40].
In 2014, the Ministry of Agriculture reported that 40% of the state is cropped, while another 22% is
forest [40]. Like much of India, AP has two main cropping seasons: kharif, from June to November
coinciding with the southwest monsoon, and rabi, from November to May in drier months and
requiring irrigation. Rice (paddy), cotton, and peanut (groundnut) account for over 70% of cropped
area in the kharif season, while rice, chickpea (gram), and black gram (urad) dominate the rabi
season [9]. The 2015–2016 Indian Agriculture Census revealed that the average operational holding
size in AP was 0.94 ha [28].

Telangana borders Andhra Pradesh to the northwest, and until 2014 was part of Andhra Pradesh.
Today it is the eleventh largest Indian state (112,077 sq km). Situated on the Deccan Plateau in
central-south India, its climate is semi-arid and drier than that of AP, with district average annual
precipitation more variable from 500 mm to 1200 mm and temperatures from 15 ◦C to 45 ◦C. Forty-three
percent of the state is cropped, and 24% is forest [40]; cotton, rice, and maize are major kharif crops,
while rice, maize, and peanut comprise the major rabi crops [9]. The average operational holding size
in Telangana was 1.00 ha in 2015–2016 [28].
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Figure 1. Map and submission times of Plantix dataset. (a) Geographic distribution of farmer
submissions for rice, cotton, pepper, and peanut. These four crops have the most Plantix submissions
within the states of Andhra Pradesh and Telangana (for maps of all ten crop types, see Figure A1).
(b) Farmer submissions per day from 1 April 2017 to 31 December 2019 for the same four crops.

3. Datasets

3.1. Plantix User Submissions

Plantix is a free Android application created by Progressive Environmental and Agricultural
Technologies (PEAT) in 2015 to help farmers identify pests, diseases, and nutrient deficiencies using
a mobile phone camera and image recognition software. The user—usually a farmer, sometimes a
hired plant expert—takes a photo of his or her crop with a mobile phone and uploads the photo to
PEAT servers for a diagnosis of plant health. The photo is then run through a deep neural network,
which returns predicted plant ailments. This information, along with corresponding treatments,
are sent back to the user’s Plantix app.
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Between 1 January 2017 and 1 January 2019, the Plantix app received 8.6 million geolocated
submissions from India, 1.8 million of which were in Andhra Pradesh and Telangana. When a photo
was taken via Plantix, the time of capture and the location of the phone were recorded. Figure 1
shows that most of the submissions were logged between September and November, which is during
the harvest of the kharif season. While submissions were not tagged with a crop type by the farmer,
crop scientists at PEAT assigned a crop type label to a subset of the submissions based on the uploaded
photos, and a deep convolutional neural network (Plantix-DNN) was trained on expert labels to predict
the crop type of all million submissions.

Details of how Plantix submissions were filtered and used to construct training, validation,
and test sets for crop type classification are described in Section 4.1.

3.2. Sentinel-2 Time Series

Sentinel-2 was chosen for its high spatial resolution and public availability, and prior work has
shown that optical features can be used to distinguish crop types [14,18,27,41]. Sentinel-2A was
first launched by the European Space Agency (ESA) in June 2015 as part of the European Union’s
Copernicus Programme for Earth observation, and captures high-resolution (10–60 m) optical imagery
to serve a wide range of scientific applications on land and in coastal waters. Since March 2017,
with the launch of Sentinel-2B, images have been collected on a 5-day cycle. ESA distributes a top
of atmosphere reflectance product (Level-1C) for Sentinel-2, while a higher-level surface reflectance
product (Level-2A) can be derived using a toolbox provided by ESA [42]. At the time of this work,
pre-generated Level-2A imagery was not available for download from either ESA or Google Earth
Engine (GEE) over India before December 2018. Since the ESA Toolbox was also not available in
GEE, one would have to compute the Level-2A product and ingest it into GEE in order to obtain time
series of surface reflectance. Such an approach is hugely expensive computationally and storage-wise,
and does not scale well to a study region as large as Andhra Pradesh and Telangana. Furthermore,
prior work showed that land cover classification using top-of-atmosphere reflectance is comparable
to using surface reflectance, since relative spectral differences drive classification [43,44]. For these
reasons, we used the Level-1C product, with the recognition that this imperfect input will still place
some limits on the performance of a crop classifier.

Using Google Earth Engine [45], we exported all Sentinel-2 Level-1C images at each submission
coordinate for the corresponding crop year, where a crop year is defined to be from 1 April of one
year to 31 March of the next. For example, a Plantix submission from 1 September 2017—during
the kharif season—generates a time series of Sentinel-2 readings from 1 April 2017 to 31 March 2018,
which encompasses the fall 2017 kharif season and winter 2017–2018 rabi season. 1 April was chosen
as the cutoff date to avoid truncating early kharif or late rabi satellite data that could be relevant for
crop type classification. All spectral bands were sampled at 10 m ground resolution; the 20 m and 60 m
bands were resampled using the GEE default nearest neighbor algorithm. In addition to the 13 spectral
bands, we also computed the green chlorophyll vegetation index (GCVI = NIR/green − 1) [46] as
previous work has shown GCVI to correlate well with leaf area index [47] and be a strong feature for
crop type classification [18,48]. Figure 2 visualizes GCVI time series of the 10 crop types and shows the
high levels of noise due to clouds in Sentinel-2 imagery.
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Figure 2. Raw Sentinel-2 time series. For each crop type, the green chlorophyll vegetation index
(GCVI) of Sentinel-2 time series at 5 randomly sampled submissions are shown from 1 April of the
crop year to 31 March of the next year. GCVI is defined as NIR/green − 1 and measures chlorophyll
concentration in vegetation.

Across the dataset of Plantix submissions, the median number of Sentinel-2 images for the
2017–2018 crop year was 42, with minimum and maximum image counts of 36 and 143. In 2018,
the median image count was 71, with minimum and maximum of 67 and 143. Of these images,
many are affected by clouds and cloud shadows, especially during the monsoon season; since the
Sentinel-2 Level 1-C cloud mask has a high omission error at the time of writing [49], we describe
methods to minimize the impact of clouds in Section 4.3.2. Although we will show that it is possible to
make progress in distinguishing crop types in the presence of cloudy imagery, the lack of high-quality
cloud mask remains a major challenge to mapping crop types in smallholder systems, and we expect
the improvement of such masks to enable better classification performance in the future.

3.3. Sentinel-1 Time Series

The Sentinel-1 constellation is composed of two satellites, Sentinel-1A and Sentinel-1B, launched
April 2014 and April 2016, respectively. The satellites carry a C-band synthetic-aperture radar (SAR)
instrument that captures 5–40 m resolution imagery with a revisit period of 12 days. We used the
Interferometric Wide swatch mode, which acquires images with dual polarization (vertical transmit,
vertical receive (VV) and vertical transmit, horizontal receive (VH)). In addition to using backscatter
coefficients as features, we computed their ratio and difference (RATIO = VH/VV = VHdB − VHdB
and DIFF = VV − VH) based on previous work that indicated the suitability of such transformations
for agricultural applications [18,50,51]. Unlike optical imagery, radar is not affected by weather
conditions and can monitor the Earth’s surface through clouds, making it a useful complement to
optical imagery during the wet season. The median number of Sentinel-1 images available was 30 in
both 2017 and 2018, with minimum and maximum of 21 and 78.

Sentinel-1 Ground Range Detected (GRD) scenes are available in GEE, which processes the
imagery using ESA’s Sentinel-1 Toolbox to reduce noise and standardize bands at 10 m spatial
resolution. We note that after this processing Sentinel-1 imagery still contains speckle-noise, which is
caused by backscatter interference. While speckle is highly disruptive for interpreting individual
images taken at one point in time [52], its effect on a SAR time series over the course of a year is
dampened by the feature extraction methods described in Sections 4.3.2 and 4.3.3. We used GEE to
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export Sentinel-1 GRD observations at each submission coordinate for the corresponding crop year,
where a crop year is defined to be from 1 April of one year to 31 March of the next (Figure A2).

3.4. DigitalGlobe Static Satellite Imagery

Due to Android phone location inaccuracy and users taking photos of crops while not standing in
their fields (e.g., from the road next to their field or in an urban area with internet access), we employed
very high resolution satellite imagery to filter for points within a crop field. A single DigitalGlobe image
was downloaded using the company’s Web Map Service application for each submission location,
for all 72,000 kharif season submissions (see Section 4.1 for how we arrived at 72,000). Images have
0.3 m ground sample distance, are RGB, and span 256 × 256 pixels (76.8 m × 76.8 m) around the
submission location. This ground resolution is high enough for humans to visually determine whether
any pixel in the image belongs to a crop field or not.

Since we used time series of Sentinel imagery for crop type classification, we were interested
in whether the Sentinel pixel covering each submission location is within a crop field. We therefore
drew a 10 m ×10 m square centered within each DigitalGlobe image to approximate the bounds of the
corresponding Sentinel-2 pixel.

3.5. Sub-National Crop Area Statistics

District-wise, season-wise crop production statistics were available from 1997 to 2016 on India’s
Crop Production Statistics Information System and Open Government Data (OGD) Platform [9,53].
We compared the kharif crop area data in 13 districts of Andhra Pradesh and 30 districts of Telangana
against our aggregated crop type predictions. Note that the number of districts in Telangana increased
from 10 to 33 upon redistricting in 2016. In the latest government crop statistics (2016–2017), data were
only available for 30 of the 33 districts (Hyderabad is urban, Mulugu and Narayanpet missing).

4. Methods

For a graphical overview of the methods presented in this paper, please see Figure 3.

4.1. Measuring and Reducing Noise in Crowdsourced Data

4.1.1. Initial Filtering by PEAT

To extract usable data and minimize noise, our collaborators at PEAT applied several filtering
steps to the original 1.8 million submissions. First, photos had to show a crop (1.3 million samples)
and be labeled by an expert or with a Plantix-DNN prediction consistent with disease prediction
(1.0 million samples). Second, the predicted crop type had to be one of a pre-selected list of crops:
rice, cotton, peanut, pepper, tomato, eggplant, maize, gram, millet, and sorghum (620,000 samples),
which account for about 70% of the region’s kharif crops (Table 1). Third, Android location accuracy
had to be available and within 200 m (213,000 samples). Lastly, only one image of each crop type was
permitted per user (102,000 samples). This minimized the overrepresentation of very active users and
submissions from the same field.

Since there are two growing seasons in southeast India, we chose to focus on kharif crops
to simplify the classification task. We defined kharif samples as those submitted between 1 June
and 1 December, which filtered the dataset further to 72,000 samples. A geographic and temporal
distribution of Plantix submissions in our study region is shown in Figure 1, and a quantitative
summary by crop type, with comparisons to government statistics, can be found in Table 1. Rice is by
far the most highly represented crop type in Plantix submissions with over 32,000 points, followed by
cotton with over 10,000. All other crop types have below 10,000 submissions. It is worthwhile to note
that, between the selection bias of submission through the Plantix app and filtering for usable samples,
this dataset is likely to contain biases; we discuss these in more detail in Section 6.
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The dataset of 72,000 kharif samples, though filtered, still included many noisy submissions.
Below, we describe methods to further filter the dataset on Android location accuracy, how much of
the Sentinel-2 pixel is within a crop field, whether crop type was assigned by a human expert or by the
Plantix-DNN, and spatial uniformity across the study region.

Figure 3. Explanatory diagram of the methods presented in this paper. Raw datasets are shown on
the left; the data are cleaned and input to feature extraction and machine learning models, and the
methods output crop type predictions that are validated against both a hold-out set of ground labels
and government statistics on crop area.

Table 1. Kharif season crop type distribution. Submission counts are shown for the filtered Plantix
dataset and compared to government crop area statistics for Andhra Pradesh and Telangana in
2016–2017. For comparison, Indian state agriculture departments collected 11,469 points nationally in
both kharif and rabi seasons in 2017–2018 [33].

Crop Type # Plantix % Plantix Govt Stats (2016–2017):
Submissions Submissions % of Cropped Area

Rice 32,107 44.3% 25.6%
Cotton 10,639 14.7% 19.9%
Pepper 7341 10.1% 3.0%
Peanut 5592 7.7% 10.2%
Tomato 4657 6.4% <1.0%
Maize 4410 6.1% 7.7%

Eggplant 3010 4.2% <1.0%
Gram 2193 3.0% <1.0%
Millet 1695 2.3% 1.0%

Sorghum 850 1.2% <1.0%

Total 72,494 100% 68.2%
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4.1.2. Android Location Accuracy

Information on the location accuracy of submissions was available via the Android platform.
The Android Location API supplied the horizontal accuracy of a location as the radius of 68%
confidence. In general, higher accuracy in location required higher battery drain, so preservation of
battery life compromised location accuracy and therefore the majority of submissions’ usefulness for
crop type mapping. Filtering for submissions with accurate locations is a crucial step in de-noising
crowdsourced data.

A histogram of submission location accuracy across a random sample of the 1.8 million dataset is
shown in Figure 4a. The distribution is bimodal, with one small peak at 5 m and a second, much larger
one at 3000 m. In comparison, the average operational holding size in AP and Telangana is 0.94 ha
and 1.00 ha, respectively [28], and we observed individual fields as small as 10 × 10 m in DigitalGlobe
imagery. This implies that a location accurate to 200 m is unlikely to still be inside the field of the
submitted photo. We filtered for location accuracies at the 10 m, 20 m, and 50 m level in our sensitivity
analyses; submissions with accuracies >50 m were discarded. Note that, since the Android location
service seeks to preserve battery at the expense of accuracy, the ≤50 m criterion alone removes 61% of
all submissions.

Figure 4. Sources of error in crowdsourced locations and crop type labels. (a) Android location
accuracy varies from 1 m to 10 km depending on battery life preservation. Histogram shows accuracy
distribution with 50 m as cutoff for inclusion in our analyses. (b) Sentinel-2 pixel (denoted by 10× 10 m
white box) may range from entirely inside to entirely not inside a crop field. (c) Plantix photo-based
deep convolutional neural network (DNN) crop type prediction is imperfect and varies by crop type.
(d) Clustered submissions from active locations overrepresent some geographic subregions.

4.1.3. Pretrained CNN for In-Field Classification

A second source of label error is the farmer taking a photo of a plant without standing inside
their field. They often take the photo from a road at the edge of their field, pick off a diseased leaf,
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and photograph it in an urban area (i.e., in a place with WiFi), or stand under trees in fields while
using the app. Though the crop type labels may be correct for the submitted photos, the satellite time
series at these non-field locations do not correspond to those labels.

We used the DigitalGlobe (DG) imagery described in Section 3.4 and a 2D CNN to classify
each submission into one of four classes: “in field”, “more than half”, “less than half”, and “not in
field” (Figure 4b). The rationale for finer-grained labels “more than half” and “less than half” is that
the spectral reading at a pixel that is mostly in a field may be dominated by the crop in that field,
whereas pixels mostly not in one field are too mixed or contaminated.

Since the DG images are RGB, we classified them using well-established network
architectures designed for natural images. We tried two commonly-used CNN architectures:
VGG and ResNet [54,55], each with two network depths (VGG-11, VGG-19, ResNet-18, and ResNet-50).
Their weights were initialized by pretraining on the large RGB image database ImageNet to boost
classification accuracy with small training sets [56]. All four pretrained initializations were available
off-the-shelf in the deep learning framework PyTorch [57]. We also tried two resolutions of DG
imagery: 0.3 m and 0.6 m, the latter of which was downsampled from the 0.3 m imagery. At both
resolutions, images were cropped to 224 × 224-pixels to fit the pretrained models.

We sampled 3000 submissions from the 72,000 kharif points obtained at the end of Section 4.1.1 in a
geographically uniform manner (Figure A3). Through manual inspection of the DG images, which took
a total of 4 hours, two human labelers generated in-field labels to train the CNNs. Figure A4 shows the
agreement between the two labelers to give a sense of the task difficulty. Of these 3000 DG images,
2000 were placed in the training set, 500 in the validation set, and 500 in the test set; each split was
constructed so that no points in one split were within 200 m of any points in the other two splits (to
ensure non-overlapping DG images). Table 2a summarizes the distribution of labels.

Table 2. Sentinel-2 pixel in-field classification using DigitalGlobe imagery. (a) Label distribution
for the training, validation, and test images used to train and evaluate the VGG and ResNet models.
(b) Classification accuracy, precision, and recall for the 4-class task and a simpler binary task (more
than half vs. less than half in field).

(a)

Field Location Training Set Validation Set Test Set

In field 507 121 131
More than half 525 133 126
Less than half 192 62 51

Not in field 776 184 192

Total 2000 500 500

(b)

Classification Task
Test Set Metrics

Accuracy Precision Recall

4-class problem 0.742 0.733 0.742
More vs. less than half 0.890 0.890 0.890

The CNNs were trained to minimize cross entropy loss (Equation (2)) with C = 4 for the four
classes. During training, common data augmentation strategies were used to increase the diversity of
the training set: random horizontal flips, vertical flips, rotations, and color jitters. The best model was
selected via the highest validation set accuracy, and test set accuracy was evaluated using this model.
Details of the network architectures and optimization parameters are shown in Table A1, training loss
and accuracy over epochs are shown in Figure A5, and pretrained networks’ validation set accuracies
are shown in Table A2.
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We note that this data cleaning step significantly reduces noise found in the Plantix dataset,
but remains imperfect. CNN misclassifications aside, it is unclear which field a submission is from
when it is on the boundary between two fields, but the submission may still be considered “more
than half” in a field. Geolocation errors of Sentinel-2 images (especially Sentinel-2B prior to mid-2018),
which we did not correct, may also add noise to the time series of submissions near field boundaries [58].
We therefore tested different in-field thresholds for inclusion in the training set and report their effect
on performance in the results.

4.1.4. Expert vs. Plantix-DNN Labeling

Since the vast majority of crop type labels were assigned by Plantix’s deep neural network (DNN)
trained on expert labels, the use of these imperfect labels introduces another source of noise. Figure 4c
shows the DNN accuracy by crop type, evaluated on the expert labels. The overall accuracy is 97%,
while crop-specific recalls range from 48% for gram to 99% for peanut. Accuracies for rice and cotton
are 97% and 93%, respectively. In the sensitivity analyses, we compared the performance of models
trained on expert-labeled submissions to those trained on DNN-labeled submissions.

4.1.5. Spatial Distribution of Submissions

The geographic distribution of submissions is heavily concentrated around urban areas
(e.g., Hyberadad) and locations of highly-active users (Figure 1), likely due to differences in
smartphone ownership, internet access, and knowledge of the Plantix app. One field may generate
multiple submissions when its farmer is an active user. We introduced another filtering step in which
submissions within 20 m of another were considered duplicates and removed (Figure 4d).

4.2. Constructing Training, Validation, and Test Sets

Identifying a good crop type classifier and providing an unbiased out-of-sample estimate of
classification performance requires validation and test sets that (1) have high label accuracy and (2) are
representative samples of the region. To generate cleaned validation and test sets, we first filtered for
the set of points that satisfied the following criteria.

1. The location accuracy is deemed to be ≤10 m by the Android platform.
2. The Sentinel-2 pixel at the submission location has been classified as either “in field” or “more

than half” inside a field.
3. A crop scientist, not the DNN, assigned the crop type label based on the submission photo.

The resulting dataset was heavily skewed toward the eastern part of the study region (Figure A8a),
undermining the ability of the validation set to select a good model for the entire region and of the
test set metrics to represent the entire region. To achieve greater spatial uniformity, we started
with an empty set, randomly sampled coordinates within the study region, and added the “clean”
submission closest to the sampled coordinate until the validation and test sets each reached 400 samples
(Figure A8b).

In these cleaned validation and test sets, the median location accuracy was 4.6 m and 4.1 m,
respectively. This means that the sample has on average a 68% chance of being within 4.6 m (or 4.1 m)
and a 95% chance of being within 9.2 m (or 8.2 m) of the submission location. Forty-one percent
of the validation set were classified as completely inside a field, while 43% of the test set were
completely in-field.

To see how much validation set noise affects the ability to choose good training data and models,
we also constructed a noisy validation set comprised of 400 points sampled at random from the original
dataset. It therefore includes submissions with GPS accuracy from 10–50 m, submissions not taken
inside a crop field, and submissions labeled by the Plantix-DNN. Note that, to avoid overfitting and
inflated metrics, no samples in the validation or test sets were within 500 m of samples in the other
two sets.
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The training set was derived from the remaining points in the dataset not in the validation and test
sets (Figure A8c). Training points were filtered to be at least 500 m from all points in the validation and
test sets (45,000 samples), to have Sentinel-2 pixels in field or more than half in a field (21,000 samples),
and to not contain points within 20 m of each other. The final training set used to train the classifiers
contained 9079 samples, a very large reduction from the 1.8 million raw submissions.

4.3. Crop Type Classification

As a result that smallholder systems are highly heterogeneous and simple rules to separate
crop types are not immediately apparent (Figure 2), we tested the performance of three machine
learning algorithms for feature extraction and crop type classification (Figure 5). The first is a random
forest using features derived from harmonic regressions on satellite time series, an algorithm that
has performed well at crop type classification in previous studies [18,36]. The second is a 1D CNN
with kernels convolving over the temporal dimension of the time series. The advantage of a CNN
is that features are learned, not prescribed, and can take useful forms that the harmonic coefficients
cannot. The third model is a 3D CNN with kernels convolving over two spatial and one temporal
dimension of the time series for an entire image tile. The 3D CNN can see a broad spatial context that
the previous two methods cannot, but it contains more parameters, is much more computationally
intensive to train, and is more prone to overfitting on small datasets. A comparison of the data storage
and computational runtime required for each model is provided in Table A3.

Figure 5. Feature extraction methods for Sentinel-2 time series. For the same example rice submission,
(a) third-order harmonic regression with six recursive fits, (b) 1D convolutional neural network (CNN)
time series input, and (c) 3D CNN time series schematic for an entire tile surrounding the submission
are shown for the green chlorophyll vegetation index (GCVI) band. In (b,c), days without a Sentinel-2
image are filled in with the most recent previous image. In (c), the yellow box encircles the labeled
submission pixel; all other pixels are unlabeled.

4.3.1. Choosing Crop Types to Predict

The Plantix dataset contains ten crop types, whose distribution is shown in Table 1. Ideally,
a classifier would achieve high precision and recall on all ten crops; in reality, the minor crop types
do not have enough label quantity or signal in their time series for accurate classification. We first
show results for 10-crop classification to demonstrate the difficulty of mapping minor crops over
large geographic extents with only small label quantities. We then simplify the classification to a
3-class problem of distinguishing rice and cotton from all other crops (lumped into one “other” class).
Rice and cotton were chosen because they are the two major kharif crops in Andhra Pradesh and
Telangana (Table 1), had label accuracy exceeding 90% from the Plantix DNN (Figure 4c), and had high
precision and recall in the 10-crop classification task (Figure A13).
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4.3.2. Random Forest with Harmonic Features

In order to use the phase and amplitude of plant phenology to differentiate crop types, a method
is needed to transform variable-length discrete time series into features that can be input into machine
learning algorithms. One such method whose features have been successfully used to classify crop
types is the harmonic regression, or regression using a Fourier basis [18,34–36]. The harmonic
regression decomposes a function of time into its frequencies, yielding a compact representation
of the time series at each satellite band or vegetation index (VI). Mathematically, it is equivalent to
performing a discrete Fourier transform [59].

We viewed each satellite band or VI as a time-dependent function f (t) and performed the
harmonic regression

f (t) = c +
n

∑
k=1

[ak cos(2πkt) + bk sin(2πkt)] (1)

for each band/VI independently, where ak are cosine coefficients, bk are sine coefficients, c is the
intercept term, and n is the order of the harmonic series. The independent variable t represents
the time an image is taken within a crop year expressed as a fraction between 0 (1 April) and 1
(next 31 March).

Due to the presence of clouds, the harmonic regression fit naively to a Sentinel-2 time series
does not capture crop phenology well. In the absence of an accurate cloud mask, we followed a
recursive curve fitting procedure similar to that implemented in the TIMESAT program [60], which has
been shown to reduce the bias introduced by clouds. The algorithm recursively fits the harmonic
regression to the time series, and then imputes the cloud-free values of the time series by taking the
maximum (or minimum) of the band/VI and the regression fit if clouds appear as low (or high) values
for that band/VI. For example, since clouds appear as low GCVI values, one iteration of the recursive
algorithm would regress the raw GCVI values on the harmonic terms, then take the maximum of the
fitted curve and the raw GCVI values. This can be repeated for a total of r recursive fits (Figure 5a).

The values of n and r are hyperparameters that must be tuned via cross-validation for a given
dataset and task. A larger n (more cosine and sine terms) increases model flexibility but risks the
model overfitting to spurious patterns. Meanwhile, r should minimize the influence of clouds on the
coefficients without obscuring real phenological signal. We picked n = 3 and r = 2 by minimizing
crop type classification error on a hold-out set (Table A4).

After performing this regression recursively, we extracted coefficients a1, a2, a3, b1, b2, b3, and c
for each of the 18 bands and VIs, giving us a total of 126 features on which to classify crop types.
Since the model has seven parameters to fit, it requires at least seven cloud-free observations at a
pixel to extract meaningful coefficients, a criteria that is met at all Sentinel-1 and Sentinel-2 pixels
(Section 3.2). An example regression is shown in Figure 5a for GCVI on a rice submission time series.

Finally, to perform crop type classification, we trained random forest models with the harmonic
coefficients as input and Plantix-labeled crop type as output. Random forest is an ensemble machine
learning method comprised of many decision trees in aggregate [37], and has frequently been used
in the field of remote sensing to perform land cover classification and crop type mapping [61,62].
It often yields higher accuracy than maximum likelihood classifiers, support vector machines,
and other methods for crop type mapping [14,34,63,64]. We used the default parameters of Python’s
scikit-learn [65] package RandomForestClassifier with the exception of increasing n_estimators
(the number of decision trees in the random forest) from 10 to 500 to reduce model variance. Error bars
on classification metrics were obtained by fitting the classifier on multiple bootstrapped training sets
(sampled with replacement).
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4.3.3. 1D Convolutional Neural Network

While random forests are commonly used for crop type mapping in the literature [14,18,36],
obtaining features for the model still require the user to assume a functional form to summarize time
series data. In contrast, neural networks learn both the feature representations from the raw data
as well as how to use them to perform classification. If harmonic coefficients fail to capture some
information that is helpful for classifying crop types, or random forests are not well-suited to learn the
types of nonlinearities that characterize decision boundaries, a neural network has the potential to
perform better.

To classify satellite time series, we constructed a 1D convolutional neural network. The time series
for each sample was represented as an 18 row × 365 column matrix, where each row is a band/VI
and each column is a day of the year. The first 14 rows are Sentinel-2 bands and GCVI, and the last
4 rows are Sentinel-1 VV, VH, RATIO, and DIFF. This encoding was chosen to standardize Sentinel-1
and Sentinel-2 time series with different observation dates to the same neural network input size.
If a satellite took an observation on day D, then column D in the matrix will be filled with that
satellite’s band values (Figure 5b). Since the revisit times of Sentinel-1 and Sentinel-2 are 6 and 5 days,
respectively, the values on days with no observation were imputed with values from the previous
observation (known as “forward imputation” [66]). Lacking a high quality cloud mask for Sentinel-2,
we again were not able to remove cloudy observations. As a result that neural networks can learn
which parts of an input are relevant to the task at hand [67–69] and have previously been shown
capable of ignoring cloudy observations [70], we did not further process the time series to reduce
the influence of clouds, as we did for the random forest classifier. An occlusion sensitivity analysis,
shown in Figure A15, shows that the 1D CNN indeed learns to rely largely on clear observations
for classification.

In image classification, convolutions are 2D and are performed across the two spatial dimensions
of the image. Here, each submission is comprised of one pixel and there are no spatial dimensions;
the CNN instead convolves over the temporal dimension with kernels of size 3. The 1D CNN
architecture is comprised of multiple convolutional blocks, each of which is a stack of 1D convolution,
batch normalization, rectified linear unit (ReLU), and 1D max pooling layers (Figure A11). The final
prediction is output by a few fully connected layers.

Training was performed by minimizing the cross entropy loss, defined as a function of the ith
input sample as

`(θ, x, y) = −
C

∑
c=1

yc log ŷc (2)

for model parameters θ, number of classes C, the input time series x, crop type probabilities ŷ = fθ(x),
and one-hot ground truth label y. The notation yc denotes the cth element of the vector y, which is
equal to 1 if the sample belongs to class c and 0 otherwise. The element ŷc is the predicted probability
that the sample belongs to class c. Minimizing cross entropy incentivizes the network to maximize the
value of ŷc for the correct class c. Figure A12 shows a typical training curve for the 1D CNN.

Hyperparameters, such as the number of convolutional blocks and the number of filters per
layer, were chosen to maximize prediction performance on a validation set and are shown in Table A6.
The model that performed the best on the validation set was a CNN with 4 layers, 64 filters in the
first layer, a learning rate of 0.001, and a batch size of 16. Other implementation details can be found
in Table A5.

4.3.4. 3D Convolutional Neural Network

A limit of the 1D CNN is that it is only able to use temporal information to classify crop types;
it does not “see” the spatial context that includes clues like field size and shape, surrounding vegetation,
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and proximity to buildings and roads. To see whether spatial information can improve crop type
classification, we built a 3D U-Net, modeled after the popular 2D U-Net for image segmentation [71].

A 21 × 21 pixel tile of each Sentinel-2 image was exported around each submission coordinate
to allow spatial features to inform crop type classification. We did not export Sentinel-1 tiles, as the
additional storage and computational runtime (Table A3) was high compared to the marginal benefit
SAR brought to CNNs in this setting (Table A7). The input to the 3D U-Net is therefore a 4D tensor
of size 14 × 365 × 21 × 21, where days with no Sentinel-2 observation are imputed with the previous
observation. Thus the network sees not only the labeled pixel’s time series, but also the time series
of pixels up to 200 m away (Figure 5c). The tensor is first downsampled (encoded) via blocks of
3D convolution, batch normalization, ReLU, and 3D max pooling operations in the first half of the
network, then upsampled (decoded) back to its original resolution in the second half. A diagram of
the network is shown in Figure A16.

The output of the network is a 21× 21-pixel segmented prediction in which every pixel is assigned
a crop type label. Since we only observed the label at one pixel in the image (Figure 5c), we only
computed the loss and performance metrics at that pixel. Like the 1D CNN, the 3D U-Net was trained
using a cross entropy loss with C classes (Equation (2)). Figure A17 shows a typical training curve for
the 3D CNN.

4.4. Feature Importance via Permutation

We performed experiments to determine the relative importance of features to crop classification
by permuting each feature across all samples, as suggested in [37]. The algorithm is as follows.

1. Fit a classifier to the training set (e.g., harmonic coefficients and random forest, 1D CNN).
2. Record the baseline predictive performance of the model on the validation set (i.e., accuracy).
3. For each feature j, randomly permute feature j in the validation set, thereby breaking the

association between feature j and the label y. Apply the model to this modified validation
set, and record the model performance.

4. The feature importance is the difference between the baseline performance and the
permuted performance.

We applied this algorithm to the 126 harmonic coefficient features with the random forest classifier
to see which bands and Fourier frequencies decrease classification accuracy the most when permuted.
With the 1D CNN, the spectral and temporal dimensions were permuted independently to study
which bands and times of year are most important to distinguishing crops. Band b was permuted
across all time steps with the same band from another sample, or, for each time step t, all bands were
permuted with those of another sample from 1 April to date t.

Note that a feature’s importance via permutation is not the same as how much worse a model
would perform if trained without that feature, due to correlations between features. That is, a model
trained without a particular feature can rely more on other correlated features to compensate. For a
correlation matrix of the harmonic coefficients, see Figure A9.

4.5. Assessing the Additional Value of Sentinel-1

As a result that the use of Sentinel-1 for crop type mapping is relatively recent and its utility is not
fully known, we performed experiments in which we classified crop types using only Sentinel-2 time
series and compared performance to using both Sentinel-2 and Sentinel-1. We compared results for
both the harmonics/random forest model and the 1D CNN.

4.6. Validation Against District-Wise Production Data

We sampled ten thousand points uniformly at random from the study region in areas classified
as cropland by the Global Food Security-support Analysis Data (GFSAD) Cropland Extent 30 m
map [72] and exported all images taken at these points by Sentinel-2 and Sentinel-1 in the period 1
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April 2018–31 March 2019. We then used the highest-performing 1D CNN trained on Plantix labels to
classify the unlabeled samples into 3 classes (rice, cotton, and other), where rice and cotton had the
highest precision and recall among all 10 crops. We compared the percent of samples classified as each
crop to the percent of cropland devoted to each crop in 2016–2017 district-level statistics. At the time of
writing, statistics were not yet available for 2017–2019, so they predate our classified samples by two
years. We exported samples for the 2018–2019 kharif season instead of 2017–2018 because the former
has more frequent Sentinel imagery.

4.7. Study Region-Wide Crop Type Map

Using Google Earth Engine, we computed harmonic features on Sentinel-1 and Sentinel-2 bands
(Section 4.3.2) across Andhra Pradesh and Telangana for the crop year 1 April 2018 to 1 April 2019.
Ten thousand Plantix points from the 2017–2019 kharif seasons were sampled as described in Section 4.2
and used as training points in an Earth Engine random forest classifier with 500 trees. The points were
labeled with one of three kharif crop classes: rice, cotton, and other crops. The trained random forest
was then applied to all Sentinel pixels in the rest of the region to predict among the three crop classes.
We used the harmonic features and random forest for map creation due to their ease of scalability in
Earth Engine, as the entire study region contains over 2.7 billion Sentinel pixels. Lastly, we masked out
pixels that were not deemed to be cropland by the GFSAD cropland product [72].

5. Results

5.1. DigitalGlobe Images for In-Field Classification

Pretrained convolutional neural networks fit to our in-field dataset (n = 2000) were able to classify
whether the center boxes are in-field with high accuracy. The best model, a pretrained ResNet with
18 layers using 0.3 m resolution DigitalGlobe imagery (Table A2), distinguished between center boxes
that are completely, more than half, less than half, and not in a field with 74.2% test set accuracy
(Table 2b). Comparison to the baseline accuracy (guessing majority class) of 38.4% and human labeler
agreement of 82.5% (Figure A4) indicates that the ResNet performed considerably better than the
baseline on a task that can often be confusing to humans.

When classification errors occurred, they came mostly from difficulty telling adjacent classes apart,
rather than confusing boxes not in a field with those entirely in a field (Figure A6). Grouped together
into a binary “more than half” versus “less than half” classification, the corresponding test set accuracy
was 89.0%. Examples of correctly and incorrectly classified images are displayed in Figure A7. We see
that boxes in urban areas and boxes entirely in rectangular fields were easy to identify as “not in field”
and “in field”, respectively, while irregularly-shaped fields, lone trees, and dirt roads occasionally
confused the classifier.

We applied the trained ResNet-18 model to predict whether Sentinel-2 pixels are in a field on
the remaining submissions without in-field labels, thereby allowing all submissions to be filtered on
this attribute. Of the unlabeled submissions, over 55% had Sentinel-2 pixels more than half in a field.
These “more than half” in field Sentinel-2 pixels were used to train the crop type classification models.

5.2. Crop Type Classification with Multi-Temporal Satellite Imagery

Both neural networks and harmonic coefficients with random forests were able to distinguish rice
and cotton from other crops with overall accuracy above 70% (Table 3b); for comparison, a baseline
model that classifies everything as the most common class (rice) would achieve 39% accuracy. However,
both models struggled to classify minor crops for which there is less data. The 1D CNN, with its
highly flexible feature-learning algorithm, consistently outperformed the harmonics and random
forest classifier by a small but statistically significant amount (3-class test set accuracy: 74.2 ± 1.4%
CNN versus 71.5 ± 0.7% harmonics/random forest). On the 10-crop task, however, the recall of
non-rice/cotton crops ranged from 20–50% (maize, peanut, pepper, tomato) to 0% (eggplant, gram,
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millet, and sorghum) (Table 4, full confusion matrix in Figure A13). For all models, the precision and
recall were positively correlated with the number of samples available in the training set (Figure 6).
The 3D CNN, which has a 21 × 21-pixel contextualized view of each sample, achieved accuracy lower
(3-class task: 72.7%) than the 1D CNN at the cost of much greater data storage and computational
runtime (Table A3), which may be due to the much larger number of parameters in the 3D CNN
(6.1 × 106) compared to the 1D CNN (2.6 × 106).

Table 3. Summary of crop type classification results. Overall accuracy and precision, recall, and F1
scores (weighted average across classes) are shown for models trained on Sentinel-1 and -2 combined
features to classify (a) all 10 crops and (b) simplified 3-class task of rice, cotton, and other crops.

(a) 10-crop classification

Features and Classifier
Test Set Metrics

Accuracy Precision Recall F1 Score

Most common class (rice) 0.393 0.154 0.393 0.221
Harmonics + random forest 0.660 ± 0.006 0.595 ± 0.033 0.660 ± 0.006 0.599 ± 0.008

1D CNN 0.677 ± 0.011 0.612 ± 0.028 0.677 ± 0.011 0.632 ± 0.017
3D CNN 0.642 0.638 0.642 0.595

(b) 3-crop classification

Features and Classifier
Test Set Metrics

Accuracy Precision Recall F1 Score

Most common class (rice) 0.393 0.154 0.393 0.221
Harmonics + random forest 0.715 ± 0.007 0.732 ± 0.006 0.715 ± 0.007 0.715 ± 0.007

1D CNN 0.742 ± 0.014 0.759 ± 0.017 0.742 ± 0.014 0.737 ± 0.014
3D CNN 0.727 0.743 0.727 0.728

Figure 6. F1 score versus training set size by crop type. Precision and recall from Table 4 are
summarized as one F1 score for each crop type.
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Table 4. Training set size, precision, and recall on the 10-crop task. Training set sizes are shown for
the Plantix submissions that have <50 m GPS accuracy and are ≥50% in a crop field. Precision and
recall are displayed for the 1D CNN trained on combined Sentinel-2 and Sentinel-1 features.

Crop Type # Cleaned Precision RecallSubmissions

Rice 2923 0.740 0.924
Cotton 2068 0.699 0.789
Pepper 1299 0.636 0.500
Peanut 813 0.600 0.333
Tomato 684 0.375 0.434
Maize 564 0.250 0.192

Eggplant 315 0.000 0.000
Gram 303 0.000 0.000
Millet 89 0.000 0.000

Sorghum 21 0.000 0.000

Total 9079 — —

Spatial patterns emerge when we map our crop type predictions against the test set labels.
Broadly, rice is common among submissions (and in government statistics) in eastern Andhra Pradesh,
cotton in Telangana and northern Andhra Pradesh, and other crops in southwestern Andhra Pradesh.
Our models recreate these spatial patterns well (shown for 1D CNN in Figure A14), and are also biased
toward these patterns in their errors. For instance, the recall of rice is high in eastern Andhra Pradesh,
but at the expense of cotton and other crop recall; rice and other crops misclassified as cotton appear
more frequently in Telangana and northern Andhra Pradesh, and misclassified rice and cotton tend to
be put in the other class in southwestern Andhra Pradesh. Despite the existence of spatial bias in the
model, predictions of all three classes appear throughout the entire study region.

5.3. Combined Sentinel-1 and -2 Imagery Versus Sentinel-2 Only

In our comparison of classification accuracy under models using both Sentinel-1 and -2
imagery versus only Sentinel-2 imagery, we found that adding Sentinel-1 improves performance,
especially when features are harmonic coefficients (Table A7). Indeed, on the 3-crop task,
adding Sentinel-1 improves overall accuracy on the validation set from 69.4± 0.6% to 75.0± 0.8% when
using harmonic features. Permutation experiments also show a number of VV and VH coefficients
in the top 30 most important harmonic features (Figure A10). However, the additional value of
Sentinel-1 bands on 1D CNN accuracy is not statistically significant relative to the variance introduced
by bootstrapping the training set. This may be because the neural network is able to extract more
information from the raw Sentinel-2 time series, thereby diminishing the returns from adding Sentinel-1
data. Permutation experiments on the 1D CNN reveal that the neural network relies strongly on the
red edge bands (especially around 740 nm, RDED2), short wave infrared, and the difference of VV
and VH polarizations (DIFF) to differentiate crop types (Figure 7). This is consistent with prior work
showing that red-edge bands are sensitive to leaf and canopy structure [73–75] and SWIR bands are
sensitive to leaf and soil water content [75,76]. Surprisingly, the VH/VV ratio did not emerge as the
top SAR feature despite prior evidence suggesting its sensitivity to crop growth [50]. Instead, the DIFF
feature, which is sparsely documented to date, was favored by the model. Permutation of times of
year also shows that the most important months to have satellite data are October and November,
which correspond to the harvest of kharif crops.
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Figure 7. CNN feature importance. Importance was computed as the decrease in validation set
accuracy when the feature was permuted across samples, breaking the association between the feature
and the label. For the 1D CNN, permuted features were (a) optical and SAR bands and (b) times of
year. Error bars were obtained over 10 runs with 10 different bootstrapped training sets.

5.4. Robustness to Location and Label Noise

Crowdsourced data can contain many sources of error, and efforts to reduce noise can be costly.
To understand whether a noisy Plantix dataset can still be useful for crop type mapping and how
much investment should be made to clean it, we tested the sensitivity of 1D CNN performance to both
training and validation set quality. Figure 8a shows the effect of increasing training set noise along three
axes (GPS accuracy, label origin, and in-field threshold) on a cleaned validation set, while Figure 8b
shows the same effects as they appear on a noisy validation set. We use overall accuracy as the metric,
but obtained the same analysis for F1 scores.

The conclusions concerning training set quality are similar from both validation sets. First, holding
training set sizes constant, training sets with moderate levels of noise did not yield significantly worse
validation set accuracies than the highest quality training sets. For example, classifiers trained on
samples with GPS locations accurate to 50 m performed as well as those trained on samples with
GPS locations accurate to 10 m. Second, adding samples whose labels are noisy to the training set
can still boost classification performance. Adding samples labeled by the Plantix-DNN, samples with
GPS locations accurate to 50 m, and samples whose Sentinel-2 pixels are only partially in a crop field
all increased validation set accuracy (though not to a statistically significant extent in the last two
examples). Lastly, high levels of label noise do decrease classification performance, as seen when
submissions not in crop fields were added to the training set. However, even in this last setting,
validation accuracy degraded only a few percentage points, and the decrease disappeared when all
available data was used for training instead of a subsample with the same training set size.

While the CNN is robust to some training set noise, it requires a high quality validation set to
yield accurate error estimates on unseen data. Accuracies on the noisy validation set are consistently
10% lower than those on the clean validation set, so that a naive interpretation of results on a noisy
validation set would underestimate true classifier performance.
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Figure 8. Sensitivity of classification results to dataset noise. The effect of increasing label error is
shown along three dimensions of noise: GPS accuracy threshold (10 m, 20 m, 50 m), label source (expert
vs. DNN), and in-field threshold (in field, more than half, less than half, and not in field) for (a) a clean
validation set and (b) a noisy validation set.

5.5. Comparison to District-Level Data

In addition to validating the classifiers on a hold-out set of Plantix submissions, we also compared
the 3-class 1D CNN predictions on 2018–2019 GFSAD cropland samples (see Section 4.6) to the
2016–2017 district-level kharif season crop area statistics from the Indian Department of Agriculture [9].
Across 43 districts, R2 values between the fraction of samples predicted and the fraction of cropped area
in the official statistics were 0.58, 0.54, and 0.41 for rice, cotton, and other crops, respectively (Figure 9).
The classifier’s aggregated predictions captured broad district-level characteristics correctly—districts
like East Godavari, West Godavari, Krishna, and Srikakulam are dominated by rice; Adilabad,
Nalgonda, and Warangal are dominated by cotton, and Anantapur and Chittoor grow mostly peanut
(groundnut). However, our rice prediction for SPSR Nellore was much lower than the official statistic,
and our cotton prediction for Vikarabad was much higher. These discrepancies may be due to a
combination of classifier bias, error in the district statistics, and mismatch between the year of our
samples and the year of district statistics. Note that comparatively few training samples came from
SPSR Nellore (Figure A8), and historical changes in crop area statistics in this district have also been
large, suggesting statistics could also have changed between 2016–2017 and 2018–2019 (Figure A18).
Meanwhile, cotton dominated training samples in Vikarabad and could have biased the classifier
toward predicting cotton on similar time series. While the latitude and longitude of samples were not
explicitly provided as features to any classifiers, the 1D CNN could have learned to associate crop type
with, say, the satellite image acquisition schedule or regional phenology in addition to with meaningful
phenological characteristics. Without more updated district statistics, it is difficult to diagnose the
main source of discrepancy between our aggregated predictions and the statistics.
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Figure 9. Comparison of model predictions (y axis) to government statistics (x axis). Results are
shown for (a) rice, (b) cotton, and (c) other crops of the 2018–2019 kharif season. Predictions and r2

values are based on a random sample of cropland from the GFSAD product [72] on which Sentinel-1
and -2 features were extracted and run through the 1D CNN. The black line shows the y = x line,
while the blue line shows the line of best fit. The coefficient of determination (r2) and equation of best
fit line are provided. The size (area) of a point is proportional to the area of its corresponding district.

5.6. Study Region-Wide Crop Type Map

We produced a 10 m ground resolution map of rice, cotton, and other crop across the states
of Andhra Pradesh and Telangana for the 2018 kharif season (Figure 10). Three-crop classification
performance in Google Earth Engine mirrored the Python performance, achieving 72% accuracy on
the held-out test set. The predicted crop type map matches broad patterns of Plantix submission data
and government district statistics: rice dominates in the north and northeast regions, cotton dominates
in the northwest, and other crops dominate in the south. Sections of the map shown in Figure 11
illustrate these patterns, as well as the frequent prediction of rice along riverbanks. Sources of error in
the map include non-cropland regions being classified as cropland and vice versa (from the underlying
GFSAD product), and regions with very small field sizes exhibiting high prediction noise. In the latter
case, individual pixels differ in prediction from their neighbors, so smoothing techniques may help to
address this in future work.

Figure 10. Crop type predictions across Andhra Pradesh and Telangana. Classification results on the
three-crop task (rice, cotton, and other crops) are shown across the entire study region. Land designated
as non-crop by the Global Food Security-support Analysis Data (GFSAD) cropland product are
transparent (white) within the state boundaries. The classification map was created using harmonic
features and a random forest classifier in Google Earth Engine.
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Figure 11. Zooms of predicted crop type map. Classification results on the three-crop task (rice, cotton,
and other crop) are shown for three square regions sampled from the study area. From left to right,
each row shows (a) Google Maps satellite image, (b) false color of harmonic coefficients (GCVI_cos1,
GCVI_sin1, and GCVI_cos2) translated to hue-saturation-value (HSV) color space, and (c) crop type
classification results using the harmonic features and random forest performed in Google Earth Engine.

While numerous prior works have mapped paddy rice in South Asia, Plantix labels and Sentinel
data enabled us to create a map that is higher resolution than most existing large-scale products,
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which use MODIS or other medium-resolution imagery and therefore are not at the field level in
smallholder systems. An exception is Singha et al. [21], who use Sentinel-1 to map rice in Bangladesh
and northeast India and report accuracies exceeding 90%. The crop composition in northeast India
is, however, very different from that in AP and Telangana; in the northeast, paddy rice accounts for
about 80% of the total cultivated area. Accuracy would therefore appear quite high for a baseline
model that assumes all samples are rice. In AP and Telangana, rice is still the most dominant crop but
only accounts for 33% of cropped area (according to the government statistics) and comprises 39% of
Plantix samples. This highlights that, as more crop type maps are created throughout India and across
the world, it can be difficult to compare methodologies and results directly, and one should do so with
an understanding of the underlying diversity in cropping systems.

6. Discussion

6.1. Contributions and Shortcomings of This Work

We draw the following lessons from cleaning Plantix submissions to supervise crop classification,
which are applicable to both crop type mapping in smallholder systems and land use mapping
more generally.

First, crowdsourced data, though very high in noise, can be cleaned and used to supervise remote
sensing tasks if data quality is measured for each sample. In this study, location accuracy, whether the
submission came from inside a field, and whether crop type was labeled by human experts were
important metadata on which to filter Plantix submissions. We discuss the challenges and potential of
crowdsourced data in detail in the next section.

Second, a high-quality hold-out set is crucial for assessing model performance accurately. For the
same classifier, our results indicate that a higher level of noise in the validation set biases the validation
accuracy downward, since the noise is random and follows no learnable pattern. Given that our
cleaned validation and test sets still contain non-zero noise, our reported metrics may in fact be
underestimates of model performance. At the same time, since conclusions drawn about training set
noise sensitivity were similar for both the clean and noisy validation sets, a noisy validation set can
still be useful for data filtering and model selection.

Third, classifiers can be robust to noise in the training set—for example, even when a majority
of training samples were not in a crop field, the 1D CNN performance degraded only slightly.
This observation is consistent with literature on image classification, in which CNNs are found to
achieve high classification accuracy even when the training set is scraped from the internet or diluted
with 100 noisy labels for each clean label [77,78]. In other words, CNNs can still learn appropriate
decision boundaries when trained on highly noisy data. These results suggest that, when researchers
face a choice between collecting few high quality labels (usually more expensive per unit) or many
noisy labels (cheaper per unit), broader spatial coverage and a larger, more diverse training set are
worth trading for moderate decreases in data quality.

Fourth, we tried multiple combinations of Sentinel data and machine learning methods to see
whether adding SAR imagery and increasing model capacity could improve crop type mapping.
We found that, while the 1D CNN outperforms random forest classifiers, the improvement was modest.
Similarly, using Sentinel-1 features slightly improves classification performance over Sentinel-2 features
alone. While the recursive harmonics and neural networks show evidence of being somewhat robust
to clouds ([18] and Figure A15), the lack of high-quality Sentinel-2 cloud mask remains a weakness of
this work and a barrier to global crop type mapping.

The relative performance of random forest, 1D CNN, and 3D CNN suggest that model
expressiveness is not the main hindrance to crop type mapping, at least in southeast India. Instead,
better features, high quality Sentinel-2 cloud masks, and larger sample sizes are likely needed. The last
is especially true for classifying minor crops. While the number of samples required depends on
the desired level of accuracy, the quality of satellite imagery, the quality of ground truth labels,
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the complexity of the agricultural system, and the uniqueness of a crop’s spectral reflectance, the trend
in Figure 6 suggests that achieving an F1 score above 0.8 requires at least 3000 cleaned Plantix
submissions for training. Future methodological work to map crop types in smallholder systems could
focus on leveraging different sensor data, removing clouds, developing data-efficient algorithms,
improving classification of minor crop classes, and incorporating prior knowledge to improve
classification, rather than more complex, data-hungry supervised learning methods.

6.2. Challenges of Crowdsourced Labels and Possible Ways Forward

The most challenging aspects of working with the Plantix data were (1) high dataset error,
which we took measures to reduce, and (2) sampling bias, part of which we mitigated via re-sampling
but which largely remained unaddressable post-data collection. Ongoing and future efforts to gather
crop type labels via crowdsourcing should consider how to reduce these two sources of error. At the
very least, GPS accuracy, location of submission inside a field, and crop label quality must be recorded.
Without these measures, high-quality hold-out sets cannot be constructed to accurately assess classifier
performance, and low-quality training sets will also degrade classifier performance. We took steps
to remove points that had high location uncertainty and were not inside a field to arrive at cleaner
subsets of Plantix data. This enabled the training of classifiers that performed much better than a
random guessing baseline. Even so, there remains some noise in the cleaned data, as the location
accuracy is a probabilistic metric, the in-field classifier has a 10% error rate, and human labelers are
also imperfect. Research is needed to further decrease the influence of these sources of noise, and could
involve re-weighting the training set based on inferred label accuracy [79], employing noise-tolerant
loss functions [80], or adding noise-adaptive layers to the neural network [81].

A second challenge of the Plantix dataset is the sampling bias inherent to using data submitted
to an Android application. Farmers had to have internet access and a smartphone to participate
in this form of crowdsourcing, while individuals without these resources were systematically
excluded from the data. Some of this bias was removed when we re-sampled the dataset to be
more geographically uniform; where the raw dataset was heavily concentrated around cities
(e.g., Hyberadad), the eventual training, validation, and test sets became more representative of
the entire study region. Still, submissions from farmers without access to or knowledge of Plantix are
not present in the dataset at all, and, since the agricultural circumstances of this group are likely to
differ from those of Plantix users, further work is needed to assess the accuracy of our maps in areas
with low mobile internet use.

Taken together, we see that obtaining crowdsourced data that can be used for mapping land use
requires nontrivial investments in representative sampling and quality control pre- and post-data
collection. For some tasks (e.g., generating crop type or in-field labels), this still entails initial input
from experts, albeit at a computer instead of in the field. Once the Plantix submissions were filtered,
we were left with 10,000 samples to train a classifier. This is a tiny fraction of total Plantix submissions,
and the future of crowdsourcing for label collection depends strongly on increasing the fraction of
usable submissions. Some progress in this vein will naturally follow existing technological trends;
for example, location accuracy will improve as internet connectivity expands globally. Others, such as
in-field classification, require active research.

Despite the large percentage of crowdsourced labels that end up discarded, Plantix has provided
more ground data than available previously in similar settings [14,17–19] and comparable in volume
to the ground truth collected by Indian state agriculture departments annually (11,469 points
nationally in kharif and rabi from 2017–2018) [33]. Therefore, despite the challenges of crowdsourcing,
the volume and coverage of datasets like Plantix, along with ever-improving data storage, processing,
and smartphone access, make crowdsourcing an increasingly viable and useful alternative to traditional
field work. In the future, one could imagine combining multiple data collection methods so that
validation and test sets are constructed from trusted survey-based methods while large crowdsourced
datasets are used to train classifiers. Lastly we note that, while this work focuses on technical feasibility,
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best practices to preserve data accessibility and privacy will also need to be defined for crowdsourcing
to be widely practicable.

7. Conclusions

This is the first study to explore the potential of crowdsourced data to augment or replace ground
surveys for land use mapping at a large scale. We derived a large but noisy crowdsourced dataset from
the Plantix mobile app to train and validate a crop type map in southeast India. Two million farmer
submissions were filtered to 10,000 higher-quality labels, and three machine learning models trained
on multi-temporal satellite imagery were able to differentiate rice and cotton from other crops with
70+% accuracy. We found classification performance to be robust to moderate levels of the label and
location noise common to crowdsourced data. Our 3-crop prediction (rice, cotton, other) for the 2018
kharif season was validated against a hold-out set of Plantix data and district-level crop area statistics
from the Indian Department of Agriculture, and is available upon request.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Andhra Pradesh
PEAT Progressive Environmental and Agricultural Technologies
GPS Global positioning system
SAR Synthetic-aperture radar
VV Vertical transmit, vertical receive
VH Vertical transmit, horizontal receive
DG DigitalGlobe
RGB Red, green, and blue
GFSAD Global Food Security-support Analysis Data
CNN Convolutional neural network
DNN Deep neural network
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Appendix A

Figure A1. Geographic distribution of submissions for each crop type. Crops are ordered by number
of submissions in the dataset, rice with the most and sorghum the least.
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Figure A2. Sentinel-1 time series. For each crop type, VH/VV of Sentinel-1 time series at 5 randomly
sampled submissions are shown from 1 April of the crop year to 31 March of the next year.

Figure A3. Map of 3000 submissions sampled for “in-field” labeling. The DigitalGlobe image
(500 × 500 pixels at 0.3 m resolution) centered at each location was downloaded and labeled for
whether the center 10 × 10 m box was inside a field.
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Figure A4. Labeler agreement. Confusion matrix of in-field labels generated by two labelers on a
subsample of 200 DigitalGlobe images. Percent agreement across 4 classes is 83%, and across 2 classes
(more than half, less than half) is 93%.

Figure A5. Pretrained ResNet-18 loss and accuracy across training epochs.
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Figure A6. In-field classification confusion matrix. Values are shown for test set.

Figure A7. From first row to last row: true positives, true negatives, false positives, and false
negatives of the binary in-field classification problem. Five examples were sampled at random from
each category. The box marks the size of a Sentinel-2 pixel.
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Figure A8. Maps of Plantix training, validation, and test sets for crop type classification.
(a) To build the validation and test sets, we started with the highest quality submissions (GPS accuracy
≤ 50 m, more than half of the Sentinel-2 pixel is in a field, crop type was assigned by a human expert).
These submissions were highly concentrated in the eastern half of Andhra Pradesh. (b) High quality
submissions were re-sampled in a spatially uniform way to form the validation and test sets (n = 400
for both). (c) The training set was filtered from the remaining dataset to be ≥500 m away from any
points in the validation and test sets, with GPS accuracy ≤ 50 m and more than half of the Sentinel-2
pixel in a field.

Figure A9. Correlation matrix of harmonic coefficients. The 14 Sentinel-2 bands and 4 Sentinel-1
bands are shown. Within each band, coefficients are shown in order of ascending Fourier frequency,
followed by the constant (a1, b1, a2, b2, a3, b3, c in Equation (1)).
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Figure A10. Harmonic coefficient feature importance via permutation. The permutation importance
is shown for the 30 most important features. Error bars are 1 standard deviation. Fourier terms are
shown in inset for reference.
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Figure A11. 1D CNN architecture.

Figure A12. 1D CNN loss and accuracy across training epochs.
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Figure A13. Crop type classification confusion matrices on the 10-class task and the 3-class task.
Values are shown for the test set (n = 400).

Figure A14. Map of 1D CNN predictions for rice, cotton, and other kharif crops. From left
to right: panels show our model’s predictions for test points whose true labels are rice, cotton,
and other, respectively.
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Figure A15. Occlusion sensitivity analysis. We blocked a 5-day sliding window of values in an
example time series and analyzed its effect on the probability score output by the 1D CNN. The time
series is originally correctly classified by the network as “rice”. The values substituted in the occlusion
window are the mean of the time series. Only GCVI is visualized, but all Sentinel-2 and Sentinel-1
values in the window were occluded. Cloudy observations appear as low values in GCVI. The greater
the decrease in log P(y = RICE) (more red), the more the 1D CNN relies on that segment of the time
series for classification. Conversely, greener segments are less important for classification.

Figure A16. 3D CNN architecture.
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Figure A17. 3D CNN loss and accuracy across training epochs.

Figure A18. District-level kharif crop area in Andhra Pradesh and Telangana from 1997–2014.
Area data were downloaded from data.gov.in and are shown for rice, cotton, and other, where other
shows the sum of non-rice and non-cotton crops.
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Table A1. Pretrained CNN implementation details. Hyperparameters for the pretrained 2D CNNs
used for in-field classification. We refer the reader to references [54,55] for descriptions of the
architectures of VGG and ResNet CNNs.

Model Hyperparameter Value

VGG [54]

Input size 224 × 224 × 3
Kernel size 3 × 3
Initial filters 16
Batch size 4

Epochs 200
Optimizer SGD

Learning rate 0.0001
Momentum 0.9

ResNet [55]

Input size 224 × 224 × 3
Kernel size 7 × 7, 3 × 3
Initial filters 64
Batch size 4

Epochs 100
Optimizer Adam

Learning rate 0.001
Betas (0.9, 0.999)

All

Brightness jitter 0.5
Contrast jitter 0.5

Saturation jitter 0.5
Hue jitter 0

Table A2. In-field model selection. VGG and ResNet training and validation accuracies are shown for
12 architecture and hyperparameter settings. Comparisons to guessing everything is in the majority
class (not in field) and human labeler accuracy are provided to gauge task difficulty and lower/upper
bounds for metrics. Test accuracy was computed for the model with highest validation accuracy.

Model Layers GSD Best Training Validation Test
L2-Reg Accuracy Accuracy Accuracy

Majority class – – – 0.388 0.368 0.384

VGG (pretrained)

11 0.3 m 0.0 0.704 0.708
0.6 m 0.0 0.794 0.730

19 0.3 m 0.0 0.727 0.722
0.6 m 0.0 0.837 0.736

ResNet (pretrained)

18 0.3 m 0.0 0.743 0.746 0.742
0.6 m 0.0 0.744 0.716

50 0.3 m 0.0 0.722 0.694
0.6 m 0.0 0.718 0.710

VGG 11 0.3 m 0.0 0.761 0.722
(not pretrained) 0.6 m 0.0 0.720 0.712

ResNet 18 0.3 m 0.0 0.770 0.680
(not pretrained) 0.6 m 0.0 0.771 0.686

Human labeler – 0.3 m – 0.825 0.825 0.825
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Table A3. Data storage and computational runtime required of the 3 machine learning algorithms.
Data storage is shown for 10,000 samples. Experiment runtimes are shown for the 3-class task for
training and validating on a single model. Random forest experiments were performed using sklearn’s
RandomForestClassifier with 500 trees on 8 CPUs with 52 GB RAM running Ubuntu 16.04. The CNNs
were run on the same machine on one NVIDIA Tesla K80 GPU, and runtimes are shown for 20 epochs.

Harmonics and 1D CNN 3D CNNRandom Forest

Sentinel-2 data storage 27 MB 406 MB 166 GB
Sentinel-1 data storage 8 MB 116 MB –
Number of parameters – 2.6 × 106 6.1 × 106

Runtime (HH:mm:ss) 00:00:40 00:02:22 44:00:00

Table A4. Harmonics hyperparameter tuning. Grid search was performed to find the best pair
of hyperparameters: the number of cosine and sine terms (order) and number of recursive fits.
Each combination of hyperparameters was trained with 10 random bootstrapped training sets to
obtain error bars (shown for 1 standard deviation). Random forest hyperparameters were kept at
default based on previous work [36], except number of trees was increased to 500.

Model Order Number Training Validation
of Fits Accuracy Accuracy

Majority class – – 0.322 0.399

Harmonic features and random forest

2 1 1.000 ± 0.000 0.739 ± 0.009
2 1.000 ± 0.000 0.741 ± 0.008
4 1.000 ± 0.000 0.735 ± 0.002
8 1.000 ± 0.000 0.734 ± 0.010
16 1.000 ± 0.000 0.734 ± 0.013

3 1 1.000 ± 0.000 0.746 ± 0.009
2 1.000 ± 0.000 0.750 ± 0.008
4 1.000 ± 0.000 0.726 ± 0.014
8 1.000 ± 0.000 0.728 ± 0.010

16 1.000 ± 0.000 0.708 ± 0.004

4 1 1.000 ± 0.000 0.748 ± 0.008
2 1.000 ± 0.000 0.749 ± 0.011
4 1.000 ± 0.000 0.740 ± 0.008
8 1.000 ± 0.000 0.722 ± 0.005

16 1.000 ± 0.000 0.721 ± 0.008

Table A5. 1D CNN implementation details. Hyperparameters for the 1D CNN yielding the highest
validation set accuracy.

Hyperparameter Value

Kernel size 3
Conv layers 4
Initial filters 64

L2 regularization 0.0
Batch size 4
Optimizer Adam

Learning rate 0.001
Betas (0.9, 0.999)
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Table A6. 1D CNN hyperparameter tuning. Due to the large search space, 24 sets of hyperparameters
were randomly sampled from the grid of options, and each set was trained with 5 random CNN weight
initializations and bootstrapped training sets to obtain error bars (shown for 1 standard deviation).

Model Encoding Layers Initial Learning Batch Training Validation
Filters Rate Size Accuracy Accuracy

Majority class – – – – – 0.322 0.399

1D CNN

Constant until updated

3 16 0.001 4 0.922 ± 0.058 0.672 ± 0.012
64 0.0001 4 0.952 ± 0.053 0.683 ± 0.013

4 8 0.0001 16 0.803 ± 0.048 0.764 ± 0.018
0.001 16 0.826 ± 0.051 0.783 ± 0.012

32 0.01 4 0.435 ± 0.020 0.399 ± 0.000
64 0.001 16 0.802 ± 0.083 0.787 ± 0.010

5 8 0.001 16 0.797 ± 0.086 0.758 ± 0.014
16 0.0001 4 0.754 ± 0.121 0.754 ± 0.006
32 0.0001 16 0.966 ± 0.044 0.768 ± 0.016

6 8 0.001 4 0.722 ± 0.055 0.753 ± 0.010
16 0.782 ± 0.083 0.754 ± 0.008

32 0.001 4 0.660 ± 0.117 0.687 ± 0.144

Zero for missing

3 16 0.0001 4 0.894 ± 0.068 0.632 ± 0.019
64 0.0001 4 0.967 ± 0.042 0.662 ± 0.016

4 8 0.001 4 0.727 ± 0.078 0.757 ± 0.008
5 8 0.0001 4 0.707 ± 0.078 0.750 ± 0.023

32 0.0001 16 0.889 ± 0.151 0.757 ± 0.013
0.001 16 0.849 ± 0.106 0.763 ± 0.012
0.01 16 0.446 ± 0.003 0.399 ± 0.000

64 0.001 16 0.776 ± 0.074 0.760 ± 0.010
6 8 0.001 16 0.764 ± 0.112 0.755 ± 0.013

32 0.0001 16 0.964 ± 0.049 0.758 ± 0.009
64 0.001 4 0.444 ± 0.003 0.399 ± 0.00

0.01 4 0.446 ± 0.003 0.399 ± 0.00

Table A7. The additional value of Sentinel-1. Training and validation accuracies for the 10-crop
classification problem and 3-class problem are compared between models using both SAR and optical
(Sentinel-1 and -2) satellite imagery and only optical satellite imagery (Sentinel-2).

Model Number Satellite(s) Training Validation
of Classes Accuracy Accuracy

Majority 10 – 0.322 0.399
class 3 – 0.450 0.388

Harmonics + random forest

10 Sentinel-1 and -2 1.000 ± 0.000 0.629 ± 0.007
Sentinel-2 1.000 ± 0.000 0.611 ± 0.012

3 Sentinel-1 and -2 1.000 ± 0.000 0.750 ± 0.008
Sentinel-2 1.000 ± 0.000 0.694 ± 0.006

1D CNN

10 Sentinel-1 and -2 0.615 ± 0.025 0.645 ± 0.013
Sentinel-2 0.629 ± 0.038 0.636 ± 0.015

3 Sentinel-1 and -2 0.802 ± 0.083 0.787 ± 0.010
Sentinel-2 0.754 ± 0.014 0.775 ± 0.008
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