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Abstract: Recently, deep learning has been reported to be an effective method for improving
hyperspectral image classification and convolutional neural networks (CNNs) are, in particular,
gaining more and more attention in this field. CNNs provide automatic approaches that can learn
more abstract features of hyperspectral images from spectral, spatial, or spectral-spatial domains.
However, CNN applications are focused on learning features directly from image data—while the
intrinsic relations between original features, which may provide more information for classification,
are not fully considered. In order to make full use of the relations between hyperspectral features and
to explore more objective features for improving classification accuracy, we proposed feature relations
map learning (FRML) in this paper. FRML can automatically enhance the separability of different
objects in an image, using a segmented feature relations map (SFRM) that reflects the relations between
spectral features through a normalized difference index (NDI), and it can then learn new features
from SFRM using a CNN-based feature extractor. Finally, based on these features, a classifier was
designed for the classification. With FRML, our experimental results from four popular hyperspectral
datasets indicate that the proposed method can achieve more representative and objective features to
improve classification accuracy, outperforming classifications using the comparative methods.

Keywords: hyperspectral image classification; deep learning; convolutional neural network; feature learning;
feature relations map learning

1. Introduction

As the spectral resolution of remote sensing (RS) sensors has improved, hyperspectral technology
has exhibited great potential for obtaining land use information with fine quality. Hyperspectral RS
images capture the spectrum of every pixel within observed scenes at hundreds of continuous and
narrow bands. In comparison with multispectral images, which have wide wavelength, hyperspectral
images can provide features hidden in narrow wavelengths in order to distinguish objects that are
difficult to detect [1,2]. Since hyperspectral RS images have powerful capabilities, they have popularly
been used in many fields, such as mining, precision agriculture, water pollution treatment, etc. [3–5].

Hyperspectral RS image classification is an important process for transforming hyperspectral
information from the ground’s surface into attribute information. It is an extension of the conventional
multiple spectral RS image classification, which aims at assigning a pixel to a unique class [6,7]. Hyperspectral
images differ significantly from multiple spectral images because they have high-dimensional features
and the correlation between adjacent bands is often high. Along with other aspects, such as noise and
mixed pixels, hyperspectral image classification also suffers from data redundancy, dimensional disaster,
and uncertainty, making this type of classification more complex and challenging [8,9].

Various methods have been proposed for hyperspectral RS image classification. Classification
methods for traditional multiple spectral images, such as support vector machine (SVM), k-nearest
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neighbor (KNN), naive Bayesian (NB), and decision tree (DT), have early on been transformed into
hyperspectral image classification [10,11]. However, influenced by the high data dimension, most of
these methods have the drawback of accuracy improvement and are complexed in operation [9,11,12].
Thus, more advanced classifiers are needed to better fit hyperspectral image classification that typically
include ensemble learning (EL), such as rotation-based deep forest, cascaded random forest, hybridized
composite kernel boosting, canonical correlation forests, and other versions, have been reported
as effective approaches to overcoming the shortage of high dimension data classification [8,13–16].
However, due to the complexity of spatial and spectral factors, the capability of classifier generalization
still needs to be improved.

In addition to using advanced classifiers, reducing the complexity of hyperspectral data
and extracting new features are other important approaches to improving classification accuracy.
These methods focus on solving the classification problem though data processing methods. Up until
now, many such methods have been proposed. One popular method is to convert the spectral
vector of pixels into a low-dimensional feature space, such as principal component analysis
(PCA), independent component analysis (ICA), regularized linear discriminant analysis, and Fisher
discriminant analysis [17–19]. Another popular method is to extract features with filters that contain
different discriminations, such as extended extinction profile, Gabor filters, scatting wavelet transform,
and local binary pattern (LBP) [20–22]. All these methods have achieved excellent performance
in different classification fields. However, most of them heavily depend on hand-crafted features,
which are usually designed for a specific task and need a complex parameter setup phase, and the
extracted features are not enough to discriminate the land use in more detail [7,23].

Deep learning (DL), a new breakthrough in machine learning (ML), is proven to be one of the most
excellent RS classification methods. Unlike other classification methods, DL provides feature learning
and deep architecture to model higher-level feature representations without human-designed features
or rules [23–25]. Convolutional neural network (CNN), a very popular DL method, has produced
state-of-the-art results for object detection and RS image classification. It focuses on bridging low-level
features to high-level semantics of an image scene and on extracting the intrinsic features from
RS images automatically [26]. Recently, CNNs have been reported to be one of the most effective
methods for hyperspectral image classification and to show different points of view in their application,
including spectral-based, spatial-based, and spectral-spatial based [27–29].

Spectral-based methods are conceptually simple and easy to implement, with most of them using
one-dimensional CNN (1-D CNN) architectures to extract features from spectral bands. However,
these methods ignore spectral contexts, resulting in an unsatisfactory classification performance [7,27].
Spatial-based approaches consider the neighboring pixels of a certain pixel within a scan to extract
spatial information using two-dimensional CNN (2-D CNN) architectures. As they are more focused
on spatial contexts, most of these methods use pre-processing methods, such as PCA and autoencoders,
to first reduce image dimension—however, this process would lose some details in the spectrum,
and reduce the capability of these methods to distinguish different objects [27,30,31]. Spatial-spectral
approaches fuse the spatial and spectral information using three-dimensional CNN (3-D CNN)
architectures and combining the advantages of both 1-D and 2-D CNNs. As they can learn features
both in the spatial and spectral domains of hyperspectral cubes, the methods have received more and
more attention in order to improve hyperspectral image classification quality in recent research [32–34].

CNN has powerful feature learning capability, which could provide more discriminative features
for hyperspectral image classification with higher quality. If the learned features are more discriminative,
then classification problems would be simpler to solve [35–37]. However, CNNs have shortcomings for
extractions of global features because most of them extract features from hyperspectral images layer by
layer using convolutional filters that cover the neighboring bands and pixels [7,23,32,38]. In addition,
in hyperspectral image classification, the existing CNN based methods are focused on extracting hidden
features from the spectral, spatial, or spatial-spectral domains [24,39,40], while the rich information
that could be generated by the interactions between different original features are not fully considered.
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Thus, from a global perspective, utilizing all original features to establish relations between them and
then learning the features from their relations would be a novel approach to discovering more intrinsic
and representative features.

Beyond having the existing CNN methods learn features from original hyperspectral images,
it is relatively rare to convert spectral or spatial information into regular texture pictures for feature
learning with the CNNs. In fact, extensive literature reports that CNNs have more powerful capability
to learn features from pictures with regular textures [26,41–44]. Therefore, it could be assumed that
converting spectral information of each pixel in hyperspectral images into regular texture scan images
and using CNNs for feature learning would greatly improve classification accuracy.

For the reasons given above, we propose a new approach—called feature relations map learning
(FRML)—for improving hyperspectral image classification. Here, the feature relations mean the
correlations between features under certain function or mapping. First, for a pixel on the image,
the relations between each two spectral features are calculated by a specific function and are recorded
using a 2-D matrix. Then, the matrix is converted into a picture, which can describe the relations
between different spectral features with regular textures. Finally, new features are learned from the
picture based on CNN architecture and the current pixel is classified and a predicted class label is
signed. After FRML is performed on the entire image, a more accurate land use map is produced.
Specifically, the remainder of this paper is organized as follows. Section 2 introduces FRML and related
work. Section 3 describes data sets and experimental designs. In Section 4, we analyze the experimental
results and present the discussion. Finally, conclusions and suggestions are provided in Section 5.

2. Methods

2.1. Feature Relations Map Learning

Figure 1 illustrates a hyperspectral image classification framework with the use of FRML.
The framework includes an input layer, a feature relations map (FRM) establishing layer, a feature
learning layer, and a classifier layer. In the first layer, each pixel in an image can be recorded as a
high-dimensional vector whose entries correspond to the spectral features in each band. In the second
layer, the value of each two entries can be calculated with a normalized difference index (NDI) to
build a 2-D matrix—called the feature relations matrix—and then the matrix can be transformed into
a picture to build FRMs that continue regular textures. In the third layer, the convolution layers of
CNN can be used as a feature extractor (FE) to extract new features from the picture. In the fourth
layer, the new features can be used as the input of the classifier and the final result can be predicted
and signed with a class label. The classifier in the FRML can be established by any supervised
classification algorithm. In this paper, we used classification and regression trees (CART) [45], random
forests (RF) [46], and deep belief network (DBN) [35], respectively, to construct the classifier of FRML
framework in order to compare and find the existing regulations in the FRML.
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2.1.1. Feature Relations Map Establishment

With the relations of different features, classification rules can be established. However, it is
relatively complex to decide how features should be selected for a hyperspectral image classification
target [6,47]. To avoid this complexity, in our experiments, we neglected feature selection and had all
spectral features build relations between one another.

Normalized indices, such as the normalized difference vegetation index (NDVI), the normalized
difference water index (NDWI), and the normalized difference built-up index (NDBI), can generate
new features by taking spectral features as input to enhance recognizability of objects [48]. To some
extent, these new features can be used to reflect the interrelations between different spectral features.
Thus, in this paper, we used the NDI to establish relations between different spectral features. The NDI
is shown in (1):

NDIi j =
a·Bandi−b·Band j

a·Bandi+b·Band j
(1)

where i = 1, 2, . . . , n; j = 1, 2, . . . , n; n is the band count of a hyperspectral image; a and b are two
mutually unequal constants. When it comes to each pixel, a 2-D matrix with an n × n dimension would
be calculated with the index and a and b would then be used to adjust the matrix into an asymmetric
matrix. We defined a + b = 2, and a of 0.25, 0.5, and 0.75 were tested to optimize the parameters,
and finally, we found that when a = 0.75, b = 1.25 FRML had the best performance. Therefore, the default
values of a and b are set as 1.25 and 0.75, respectively.

With the NDI, pixels of different classes would, respectively, correspond to different feature
relation matrices. To covert these matrices into pictures, FRMs of different classes would be formed.
In theory, pixels belonging to the same class would have similar textures in FRMs. Thus, the process of
constructing an FRM can be considered to be a process that converts a classification that uses complex
spectral features into a classification that uses regular texture pictures, which offers more features for
the classification target.

Obviously, the number of hyperspectral bands determines the size of an FRM—a high dimension
would enlarge the data size, which would affect data processing efficiency. To reduce the potentially
large size of data, a separate strategy was designed here, as shown in Figure 2. For each pixel,
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the spectral dimension was divided into m segments and each segment contained s features (bands).
If the band count was not an integer multiple of m, then the values in the forepart continuous bands
would be copied and appended on the spectrum vector to make all segments have the same band
size. The feature relation matrix of each segment was calculated to obtain the m of different FRMs and
then they were combined into one multi-channel picture, which is called the segmented FRM (SFRM).
In comparison with the unsegmented FRM (UFRM), which uses full spectral features to build a feature
relation matrix, the SFRM has a smaller picture size and its colorful textures in the RGB color space
could be used to provide more discriminative information in order to distinguish a current pixel from
pixels of other classes.
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2.1.2. Feature Learning Method

CNN provides a powerful feature extractor, which consists of alternative convolution and pooling
layers, to generalize the features towards deep and abstract representations [37]. As it is characterized
by autonomous feature learning and it provides the necessary premise for more high-precision
classification, the feature extractor was also previously used in this paper to learn features from the
FRM. The descriptions of the convolution and pooling layers are as follows.

Convolution layers: In the FRML, a convolution layer is fed by kernels that have a two-dimensional
array of weights and a bias, which scan across an image to capture different feature representations at local
and global scales. The kernels provide sharable weights for different feature maps so that the features can
be learned through a reduced amount of parameters and an activation function with enhanced nonlinearity
operations. Mathematically, assuming X is the input cube with a size of h × w × c, where h × w is the
spatial size of X and c is the number of channels, xi means ith feature map of X. Supposing that the current
convolution layer had n kernels, then the jth kernel is characterized by the weight of wj and a bias of bj.
The jth feature extracted by the current layer can be expressed as (2):

y j =
c∑

i=1

f
(
xi∗w j + b j

)
j = 1, 2, . . . , k, (2)

where * is the convolutional operator and f (•) is an activation function that is used to strengthen the
nonlinear expression. ReLU is considered to be an effective activation function, which has advantages
of fast convergence and robustness for gradient vanishing [7]. Thus, in this paper, we used ReLU as
the activation function of the convolution layer.
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Pooling layers: The pooling layers are periodically inserted after several convolution layers for
down-sampling, while retaining the invariance of features to scale, offset, and shape. With the pooling
operation, the parameters and feature map size are reduced for computation and the representation
of the extracted feature becomes more abstract. Generally, the common pooling functions include
max-pooling, average-pooling, L2-norm pooling, and weighted pooling [7,39]. In this paper, we used
the most popular max-pooling function to establish pooling layers.

With the convolutional and pooling layers, we designed a three-layer convolutional network as
the FRML feature extractor (the construct of the feature extractor is further illustrated in Section 3) and
expected to discover FRM laws that would improve classification accuracy. In order to ensure that our
experiment would be performed with high efficiency, we used TensorFlow’s Application Programming
Interface (API) for programming. TensorFlow is a very famous open-source software library that was
developed by the Google Brain Team for machine learning applications [48]. It provides sophisticated
DL approaches, including the necessary FRML support, and is compatible with our graphics processing
unit (GPU) for speeding up the operation.

2.1.3. Classification Method

Based on the features extracted from FRMs, CART, RF, and DBN, which belong to a single classifier,
the EL and DL are separately used to train the FRML classifiers. CART is a decision tree-based
classification algorithm that was built by dividing the sample set layer by layer, where the split property
is the one that has the highest information gain ratio with the sample set and the optimal threshold
under the split property obtained by information entropy calculation [45,49,50]. The RF combines
the Bagging technique with the random subspace method and ensembles a set of CART classifiers to
improve classification accuracy. Since it reduces the classification bias and eliminates overfitting in the
decision tree construction, the RF has high accuracy and is reported to be an excellent EL method for RS
image classification [12,14,51]. DBN is a popular deep learning architecture in the field of classification,
consisting of several layers of restricted Boltzmann machines (RBMs) and one backpropagation neural
network layer [35,52]. In DBN, RBM is an unsupervised network that consists of both visible and
hidden layers. The hidden layer serves as a visible layer for the next and a pair of units from either of
the two layers have a symmetric connection between them. With RBMs, probability distributions over
their sets of inputs can be learned and used to train the backpropagation neural network [35]. In this
paper, these classifiers were realized by using the scikit-learn library in Python.

2.2. Measurement of the Feature Relations Map Difference

FRMs are different for different classes, which can be considered to be an important basis for
distinguishing between different objects. The structural similarity index measure (SSIM) is a full
reference metric that is used for measuring the similarity of two images [53]. It comprehensively
measures their differences through image brightness, contrast, and structure and it has advantages in
terms of image difference discrimination. Hence, it can be used to judge the FRMs difference. If the
SSIM of two FRMs is smaller, then there would be more difference between them, reflecting that
corresponding objects are more easily distinguishable. Supposing that x is the target image and y is the
reference image, then the SSIM of x and y can be defined as (3):

SSIM(x, y) =
(2µ xµy + C1)(2σ xy + C2

)
(µ 2

x + µ2
y + C1)(µ

2
x + µ2

y + C2
) (3)

where µx (or µy) represents the empirical mean of x (or y), σx (or σy) is the empirical standard deviation
of x (or y), σxy means the empirical correlation between x and y, and C1 and C2 are given constants.
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2.3. Measurement of the Separability of Different Class Samples

For classification problems, the quality of features determines the separability of different classes.
The higher the separability between different classes, the simpler the classification for ML would
be. The Jeffries-Matusita distance (JMD) is a very widely used statistical separability criterion,
which involves the covariance metrics of the separability measurement [54]. Since it can be used to
pairwise measure the separability between classes, the JMD provides an effective assessment of the
quality of different class samples in the available feature space. To evaluate the separability of samples
with features learned from FRMs, the JMD between class ci and cj, which are members of a set of n
classes, is defined as follows (i = 1, 2, . . . , n; j = 1, 2, . . . , n):

Ji j = 2(1− e−bi j
)

(4)

bi j =
1
8

(
M j −Mi

)T
[Ni + N j

2

]−1(
M j −Mi

)
+

1
2

ln

∣∣∣∣Ni+N j
2

∣∣∣∣√
|Ni|

∣∣∣N j
∣∣∣ (5)

where bij is the Bhattacharyya distance between ci and cj; Mi and Mj represent the mean values; Ni and
Nj denote the covariance matrices of classes ci and cj. Generally, the JMD is a transformation of the
Bhattacharyya distance from the [0, inf] range to the fixed [0,2] range—if the JMD is closer to 2, then the
separability of samples belonging to two different classes would be higher.

2.4. Accuracy Verification

Cross-validation is a primary method for estimating the skill of an ML model on a limited data
sample set. In this paper, to verify the classification performance of FRML, a five-fold cross-valuation
method was designed. First, the sample set was divided into five folds. Then, each fold was trained
and combined with the other four folds in order to be used for testing. By training the FRML modes
and verifying them, five evaluations were obtained. Finally, the highest of the five evaluation values
was taken as the final verification. In our experiment, the commonly used quantitative indices,
including overall accuracy (OA), kappa coefficients, and accuracy at per-class level, were used for the
vivification of the hyperspectral image classification.

3. Dataset Descriptions and Experimental Designs

In our experiments, four popularly used hyperspectral image datasets, including Indiana Pines
(IP), Salinas (SA), HyRANK-Loukia (HL), and Pavia University (PU) [55–57], were utilized to evaluate
the performance of FRML.

The IP dataset was gathered using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines test site in Northwest Indiana. After removing the bands that cover the
region’s water absorption, the dataset consisted of a total of 220 bands with a pixel size of 145 × 145,
a spatial resolution of 20 m, and spectral coverage from 400 to 2500 nm. The SA dataset was collected
by the 224-band AVIRIS sensor over the Salinas Valley in California. This dataset was characterized by
a high resolution of 3.7 m. It discarded 20 water absorption bands, this including a total of 204 bands.
The HL represented an image in the HyRANK dataset obtained using the Hyperion Earth Observing-1
sensor. It has a spatial resolution of 30 m and spectral coverage from 400 to 2500 nm. Following a
pre-processing step, the image provided 176 surface reflectance bands with a pixel size of 249 × 945.
The PU dataset was acquired through the Reflective Optics Systems Imaging Spectrometer (ROSIS)
sensor during a flight campaign over Pavia in northern Italy. It constituted an image of 610 × 340
pixels, with 103 bands, spectral coverage from 430 to 860 nm, and a spatial resolution of 1.3 m.

These four datasets provided high-quality benchmark information through expert visual
interpretation and field investigation. The sample information of the datasets is listed in Table 1,
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while their false color composition pictures and corresponding ground truth maps are shown in
Figure 3.

Table 1. Sample information of the hyperspectral datasets.

Indiana Pines (IP) Dataset

Class Name Sample Count Class Name Sample Count

Alfalfa (AL) 46 Oats (OT) 20
Corn-notill (CN) 1428 Soybean-notill (SN) 972

Corn-mintill (CM) 830 Soybean-mintill (SM) 2455
Corn (CO) 237 Soybean-clean (SC) 593

Grass-pasture (GP) 483 Wheat (WH) 205
Grass-trees (GT) 730 Woods (WO) 1265

Grass-pasture-mowed (GPM) 28 Buildings-grass-trees-drives (BGTD) 386
Hay-windrowed (HW) 478 Stone-steel-towers (SST) 93

Salinas (SA) dataset

Class name Sample count Class name Sample count

Broccoli-green-weeds 1 (BGW1) 2009 Soil-vineyard-develop (SVD) 6203

Broccoli-green-weeds 2 (BGW2) 3726 Corn-senesced-green-weeds
(CSGW) 3278

Fallow (FA) 1976 Lettuce-romaine-4wk (LR4) 1068
Fallow-rough-plow (FRP) 1394 Lettuce-romaine-5wk (LR5) 1927

Fallow-smooth (FS) 2678 Lettuce-romaine-6wk (LR6) 916
Stubble (ST) 3959 Lettuce-romaine-7wk (LR7) 1070
Celery (CE) 3579 Vineyard-untrained (VU) 7268

Grapes-untrained (GU) 11,271 Vineyard-vertical-trellis (VVT) 1807

HyRANK-Loukia (HL) dataset

Class name Sample count Class name Sample count

Dense urban fabric (DUF) 288 Mixed forest (MF) 1072

Mineral extraction sites (MES) 67 Dense sclerophyllous vegetation
(DSV) 3793

Non irrigated arable land
(NIAL) 542 Sparse sclerophyllous vegetation

(SSV) 2803

Fruit trees (FT) 79 Sparsely vegetated areas (SVA) 404
Olive groves (OG) 1401 Rocks and sand (RS) 487

Broad-leaved forest (BLF) 223 Water (WA) 1393
Coniferous forest (CF) 500 Coastal water (CW) 451

Pavia University (PU) dataset

Class name Sample count Class name Sample count

Asphalt (AS) 6631 Bare Soil (BS) 5029
Meadows (ME) 18,649 Bitumen (BI) 1330

Gravel (GR) 2099 Self-Blocking Bricks (SBB) 3682
Trees (TR) 3064 Shadows (SH) 947

Painted metal sheets (PMS) 1345
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Our experiments were conducted in three parts. The first part analyzed the FRM character and
the second part analyzed the samples’ separability using the features learned from SFRMs. The third
part reported the classification performance of FRML and comparing methods. As the purpose of the
experiments was to evaluate the feature learning results of FRML, we conducted the experiment under
the same conditions. First, we set the same configuration for the feature extractor in FRML as the
one shown in Table 2. Second, we used CART, RF, and DBN classifiers with the same parameters as
illustrated in Table 3. All experiments were implemented using an i9-9900K 3.6 GHz processor with
32 GB RAM and the NVIDIA GeForce RTX 2080 Ti graphic card.

Table 2. Configuration of the FRML feature extractor.

Layers Filter Size ReLU Max-Pooling

Conv-1 32 × 5 × 5 Yes No
MaxPool-1 2 × 2 No Yes

Conv-2 64 × 5 × 5 Yes No
MaxPool-2 2 × 2 No Yes

Conv-3 128 × 3 × 3 Yes No
Output 2 × 2 No Yes
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Table 3. Descriptions of the main parameters of different classifiers.

Classifier Description of Parameters

CART
The minimum number of samples required to split an internal node: 2.
The minimum number of samples required to be at a leaf node: 1.

RF
The number of trees in the forest: 20.
The minimum number of samples required to split an internal node: 2.
The minimum number of samples required to be at a leaf node: 1.

DBN

The number of epochs for pre-training: 200.
The number of epochs for fine-tuning: 500.
Learning ratio of pre-training and fine-tuning: 0.001.
Batch size: 30.
List of hidden units: [200].

4. Experimental Results and Analysis

4.1. Feature Relations Map Analysis

4.1.1. Feature Relations Map Results

In order to explore the nature of FRM, we first established UFRMs for all samples and calculated
the average value in pixels for each class in order to obtain an averaged UFRM. Due to space limitation,
only the UFRMs of IP and PU datasets are shown in Figures 4 and 5. Visually, these UFRMs reflect
different numerical distributions. The UFRMs of the PU dataset obviously show differences between
different classes with strong recognizability. In the IP dataset, some similar classes, such as SN, SM,
WH, and WO, exhibit some similarities in their UFRMs, however, if the contours are carefully observed,
it would be found that many differences in detail exist in them. These features indicate that, for a
hyperspectral image, different classes have different FRMs, which can be used to distinguish them from
others. In comparison with the spectral feature, which has only one-dimension, the FRMs provide
more intuitive two-dimensional graphic information for distinguishing different patterns.

In order to reduce data size and processing time, the SFRM was designed as the final FRM of the
FRML in our experiments. In these experiments, we took into consideration that the band counts of
four images are different, thus the segment counts of the SFRMs for the IP, SA, HL, and PU datasets
were set as 4, 4, 3, and 4, respectively. Displaying the first three channels using the RGB color form,
the SFRM of each class in the four datasets is shown in Figure 6. The SFRMs of different classes exhibit
different texture patterns (this feature is very obvious in the IP and PU datasets). Although some
SFRMs have similar textures visually, they still have differences in brightness and color. This means
that, using the segmented strategy, the SFRMs have the same capability as the USFRMs to distinguish
between objects of different classes.
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4.1.2. Feature Relations Map Differences

The differences between FRMs made samples of different classes separable. To evaluate these
differences, the SSIM was calculated in the experiment. For a convenient description of the SSIMs
between different classes, each pair of classes was numbered to obtain an index, as shown in Figure 7.
Then, according to the indices, the SSIMs of SFRMs (or UFRMs) for each pair of classes were illustrated
as scatter plots shown in Figure 8. Clearly, it can be observed that, for some classes, there is a great
difference between their UFRMs with low SSIMs but that, for some other classes, the SSIMs are higher
than 0.9, exhibiting great similarities that increase the difficulty to distinguish between objects using
the UFRMs. This may be because, when the NDI was used to establish feature relations, some highly
related spectral features interacted with one another, resulting in some very similar results that could
not reflect differences very well. SFRMs establish relations between features in an interval of the
hyperspectral spectrum. In comparison with the UFRMs, some channels of SFRMs exhibit lower
SSIMs, reflecting more significant differences between different classes. This channels make great
contribution to the SFRM, and with the SFRM, the objects of different classes would be more separable.
When the segmentation strategy is used, the interaction of the highly relevant features is reduced,
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resulting in SFRM discriminations for different classes being heavily improved. This shows that SFRM
could provide a favorable basis for the classification using the relations of different spectral features.
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4.2. Sample Separability with Features Learned from SFRMs

In our experiment, SFRM features were learned using the feature extractor and the separability of
samples for a pair of classes was evaluated using the JMD. As shown in Figure 9, for the four datasets,
the JMDs are higher under the features that learned from SFRM (JMD_SFRM) than the JMDs under the
spectral features (JMD_SF), reflecting strong separability of each pair of classes. For example, for the
IP dataset, the JMD_SF of each pair of classes is located in 1–1.2, while the JMD_SFRMs are basically
greater than 1.38, indicating that the features learned from the SFRMs are more discriminative than
the original spectral features. All these dataset cases indicate that SFRM provides two-dimensional
material, such as textures and graphics, which can be used to learn more discriminative features with
the deep convolutional network. Through feature learning, the SFRM differences are transformed
into high-quality features, which would be more convenient for the classification of different objects
because of their higher separability.
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and (d) PU.

4.3. Classification Results and Analysis

In this section, the features learned by FRML and those learned by other methods of comparison
are evaluated. As we focus more on the capability of feature learning, only the feature extractor
of the comparative methods, including the recently proposed long short-term memory (LSTM),
multiscale CNN (MCNN), spectral-spatial unified networks (SSUN), random patches network (RPNet),
three-dimensional scattering wavelet transform (3DSWT), and extended random walkers (ERW),
were used in our experiments. For the LSTM, MCNN, and SSUN, the parameters were set to the default
values given in [55]. For the RPNet, 3DSWT, and ERW, the parameters were set to the default values
given in [57,58]. With the features learned by FRML and the comparative methods, the classification
stage was conducted using the CART, FR, and DBN classifiers, respectively, and the final classification
accuracies are shown in Table 4.
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Table 4. Classification accuracy of different feature extraction methods based on the classification and regression trees (CART), random forests (RF), and deep belief
network (DBN) classifiers.

Classifier
Feature
Extract

Method

Accuracy Evaluations of Different Datasets Average
IP SA HL PU

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

CART

LSTM 73.85 0.703 91.59 0.906 77.00 0.727 86.63 0.822 82.27 0.790
MCNN 85.05 0.829 95.32 0.948 66.15 0.597 85.94 0.813 83.12 0.797
SSUN 81.67 0.791 93.27 0.925 75.33 0.780 92.05 0.885 85.58 0.845
RPNet 92.17 0.911 97.28 0.970 82.32 0.790 96.98 0.960 92.19 0.908

3DSWT 82.25 0.797 87.34 0.859 78.33 0.742 87.04 0.829 83.74 0.807
ERW 92.67 0.917 99.49 0.994 93.37 0.921 96.79 0.958 95.58 0.948

FRML 96.30 0.960 98.19 0.980 96.30 0.960 97.98 0.973 97.19 0.968

RF

LSTM 85.09 0.830 94.39 0.937 85.22 0.823 90.89 0.877 88.90 0.867
MCNN 99.08 0.990 99.19 0.991 81.56 0.776 97.12 0.962 94.24 0.930
SSUN 95.90 0.953 96.75 0.964 85.80 0.872 96.96 0.956 93.85 0.936
RPNet 95.48 0.948 97.57 0.973 87.24 0.848 98.66 0.982 94.74 0.938

3DSWT 95.27 0.946 98.12 0.979 94.11 0.930 95.71 0.943 95.80 0.950
ERW 95.60 0.950 99.67 0.996 96.37 0.957 98.96 0.986 97.65 0.972

FRML 97.30 0.969 98.74 0.986 98.48 0.982 98.97 0.986 98.37 0.981

DBN

LSTM 81.61 0.790 92.36 0.915 82.06 0.785 92.47 0.900 87.13 0.848
MCNN 76.21 0.728 95.28 0.948 61.43 0.523 88.06 0.840 80.25 0.760
SSUN 86.11 0.841 94.69 0.941 73.12 0.769 93.69 0.908 86.90 0.865
RPNet 98.07 0.978 97.67 0.974 91.94 0.904 99.23 0.990 96.73 0.962

3DSWT 65.14 0.596 55.25 0.489 90.33 0.884 76.59 0.683 71.83 0.663
ERW 99.91 0.999 99.00 0.988 97.12 0.969 99.56 0.994 98.90 0.988

FRML 96.29 0.958 99.02 0.988 98.15 0.978 99.67 0.995 98.28 0.980
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4.3.1. Classification Performance at the Overall Level

As reported in many research studies, CART is a weak classifier in comparison with strong
classifiers such as SVM and AdaBoost. In our experiments, CART was first used to evaluate classification
performance with features extracted using different methods. It was found that, with using the CART
classifier, some feature extract methods exhibit low accuracy. For instance, the CART-based LSTM
had an OA of only 73.85% (kappa = 0.703) in the test on the IP dataset, while the CART-based SSUN
achieved an OA of 75.33% (kappa = 0.780) in the test on HL dataset. This feature indicates that,
when features are extracted by some comparative methods, CART does not seem to be an optimal
classifier. The phenomenon may be caused by two reasons—that CART performance is weak or that
features extracted by comparative methods are not discriminative enough for classification using CART.
However, when it comes to the FRML, the CART-based FRML achieved very satisfying classification
results with an OA higher than 96%. For the IP, HL, and PU datasets, the CART-based FRML achieved
the highest accuracy compared to any of the other CART-based methods. The CART-based FRML
for the SA dataset had an OA of 98.19% (kappa = 0.980), which was 1.3% lower than that of the
CART-based ERW which had the highest accuracy. Under the same parameter conditions, the reason
why the CART-based FRML had higher accuracy is because FRML had learned more discriminative
features than comparative methods, resulting in pixels that are more separable in the classification.

In comparison with CART, RF had a higher accuracy in our evaluation. In the HL and PU
datasets, the RF-based FRML achieved the highest OAs of 98.48% and 98.97%, respectively. In the IP
dataset, the RF-based FRML had a higher accuracy than most of the comparative methods in its group,
except for the RF-based MCNN, while in the SA dataset, the accuracy of the RF-based FRML was lower
than the RF-based MCNN and the RF-based ERW, although the differences were very small—differing
only by 0.45% and 0.93%, respectively. These results indicate that, with a strong classifier like RF, FRML
could achieve more accurate classification. Expecting the comparative methods whose accuracy also
obviously improved due to RF, the classification accuracy improvements of some other comparative
methods are not as good as those of FRML. This phenomenon may be due to the fact that current
methods are not suitable for classification with the RF classifier; however, another possible explanation
is that the features extracted by these methods do not discriminate as well as FRML does.

In the group in which DBN was used as an evaluating classifier, FRML had the highest classification
accuracy on all datasets, except for the IP dataset—where the DBN-based FRML had an OA of 96.29%,
lower than the DBN-based ERW and the DBN-based RPNet and very close to that of the CART-based
FRML. In comparison with other feature extract methods, using DBN as a classifier obviously improves
classification accuracy more than using CART—however, the performance of the DBN-based FRML
on the IP dataset indicates the opposite. This phenomenon may be due to the fact that fixed DBN
parameters set in our experiments were not optimal for the IP dataset. Another reason may be that there
was an imbalance in the training set, where some classes, such as GPM and OP, were underrepresented
due to too few samples.

Taken together, in most cases, FRML outperforms the comparative methods in the four datasets.
To evaluate the robustness for each method, the average accuracy of the four datasets was calculated
as shown in Table 4. From the results, it can be seen that the CART-based and RF-based FRMLs had
the highest average accuracy in comparison with the other methods in their groups. The DBN-based
FRML exhibited almost the same average accuracy as the DBN-based ERW, which was higher than
that of the other methods. This phenomenon suggests that the FRML methods are more robust than
the comparative methods.

FRMLs exhibit stable performance in different datasets under the sample parameter conditions,
with strong generalization and easier operation. This may be because FRMLs obtain optical features to
improve the separability of the pixels in classification. Last but not least, FRMLs learn features from
the relations of spectral features and, in comparison to other feature extraction methods, FRMLs make
full use of the different bands of hyperspectral images, providing more abundant information with a
higher quality for classification accuracy improvement.
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4.3.2. Classification Performance at the Per-Class Level

To explore the FRML hyperspectral image classification ability, the classification accuracy at the
per-class level is reported and illustrated in Figure 10. For the IP dataset, most classes achieved a
higher accuracy with FRMLs than with comparative methods. Especially for the OT, the accuracy was
not very good when comparative methods were used, while it obviously improved with FRML. For the
SA dataset, the VU and GU do not seem to be satisfactorily classified with a high accuracy using the
features extracted through comparative methods, except for ERW—when the accuracy reaches a very
higher level while using FRML. FRML maintains a higher classification accuracy in the HL dataset
for most individual classes, except for EMS, in comparison with most other methods. For the PU
dataset, FRML also exhibits excellent performance for most individual class classifications compared
to comparative methods. These features suggest a good improvement at the per-class level using
FRML. In comparison with other methods, only few individual classes were not improved to the
highest level, perhaps because the FRMs of these classes were too similar to those of other classes and
their features—extracted by the CNN-based feature extractor designed in our experiments—were not
discriminative enough yet. However, FRML did exhibit a better balance of accuracy improvement for
all classes than comparative methods and this phenomenon is especially obvious in the IP and HL
datasets. Clearly, FRML improves hyperspectral image classification not only at the overall level but
also at the per-class level. As SFRMs provide good separability between different classes in FRML
(as shown in Figures 5 and 8), they greatly reduce potential misclassifications for each class.
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with CART, RF, and DBN, respectively; (j–l) for the PU dataset with CART, RF, and DBN, respectively.
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4.3.3. Impact of the Training Sample Size on FRML

The impact of sample size for RS image classification has been reported in many research
studies [7,32,39]. Grasping the influence of sample size on the accuracy of a classifier can effectively
guide RS image interpretation. To evaluate how the sample size impacts FRML classification accuracy,
200 samples for each class were randomly selected from the training set to produce a new sample
set. Then, classifiers were trained with the samples, whose size gradually increased by 10% of the
sample set size, and the classification accuracy was evaluated by testing a set that contained samples
that were not selected. The OA changes in FRML and other comparative methods are shown in
Figure 11. With the increase of training sample set size, the CART- and RF-based FRMLs on the IP and
HL datasets exhibited excellent accuracy improvement performance, beating all other comparative
methods. This feature suggests that FRML has the potential to achieve higher-level accuracy with a
limited sample size. However, it is difficult to ensure that FRML can obtain higher accuracy than all
comparative methods because the characteristics of the datasets used are different. For the PU and SA
datasets, the ERW method had a higher accuracy than FRML, the FRML method seemed to require
a larger number of training samples to achieve an accuracy that would be equal to or similar to the
accuracy achieved by ERW. This phenomenon, on the two datasets, reflects a stronger dependence
of FRML on the number of training samples than that of other methods for improving classification
accuracy and it is also worth noting that, with the number of training samples increasing, the increases
in the accuracy of FRML are larger than for most of the comparative methods. The obviously increasing
FRML trends make it reasonable to conclude that if the number of the training samples is continually
increasing, then there would be an even further FRML accuracy improvement.

Besides the differences between the datasets, the FRML classifier would be another important
factor affecting the accuracy improvement as the number of training samples increases because,
as Figure 11 illustrates, with the same number of training samples, the RF-based FRMLs have better
accuracy improvement than the CART-based FRMLs. In the PU dataset, especially, the CART-based
FRML seems to need more samples to improve accuracy to a higher level than the RF- and DBN-based
FRMLs. Thus, if more accurate classification with a smaller sample size is desired, then the appropriate
FRML classifiers should seriously be considered.

4.3.4. Land Use Mapping with FRML

To estimate the FRML property for land use mapping, the four datasets were classified using
different methods. Due to limited space, we only showed the maps that were classified by RF
(as shown in Figures 12–15). In the maps for the IP dataset (Figure 12), the comparative methods
show obvious misclassifications between CO and WO in the left region of interest (ROI); however,
with the RF-based FRML (Figure 12g), the two classes are correctly classified. The FR-based SSUN,
RPNet, 3DSWT, and ERW (Figure 12c–f, respectively) exhibit fuzzy boundaries between HW and WO
in the right ROI; however, with the RF-based FRML, the edge of these classes is more clear and similar
to the ground truth. For the SA dataset (Figure 13), the comparative methods exhibit unsatisfactory
performance when distinguishing between the SVD and FA in the button ROI; however, with the
RF-based FRML, the two land use types were basically classified correctly. The RF-based FRML
also has good performance in land use mapping in the HL dataset. When comparing the RF-based
MCNN, 3DSWT and RF-based ERW (Figure 14b,e,f, respectively), the RF-based FRML seems to be
better at describing details. For the PU dataset (Figure 15), SBB near to the PMS in the ROI were
wrongly classified as BS by the comparative methods, while the SBB were correctly classified using the
RF-based FRML.
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In the evaluation of classification accuracy, the RF-based MCNN in the IP dataset, as well as
the RF-based RPNet and ERW in the SA and PU datasets, have a very high accuracy of more than
98%—even higher than the FR-based FRML. However, in the mapping experiments, the maps of
these datasets exhibit some fuzzy and distorted boundaries between different objects (as shown in
Figure 12b, Figure 14d,f, and Figure 15d,f), while some details were also erased. This phenomenon
may be caused by the spatial fitters that these methods use to smooth the features of boundaries and
details. With FRML, the features of each pixel have no spatial information obtained by filters—thus,
it could maintain more land use details on the map. However, as adjacent pixels are independent and
without special information, the maps produced by FRMLs would be affected by the salt and pepper
noise in the images.

4.3.5. Time Cost

Table 5 lists the time consumption of feature extraction with different methods. For FRML, the time
was mainly consumed by SFRM establishing and feature learning. Obviously, SFRM establishing
(SFRM-E) is a first-time consumer in FRML, which may be due to multiple loops used for feature relation
value calculation in the procedure code. Feature learning from SFRM (FL-SFRM) seemed to consume
less time than SFRM-E. For the four datasets, the FL-SFRM spent 2.41–6.21% of the time used for
SFRM-E. In comparison with the other methods, FRML took more time to extract features in most cases
in our experiments. This time cost of the feature extraction methods could be affected by the codding
and computing platform, but it could also be concluded that FRML is a time-consuming algorithm due
to SFRM-E; thus, accuracy should be the most important factor in performance evaluation.

Table 5. Feature extraction time consumption of different methods (second).

Dataset LSTM MCNN SSUN RPNet 3DSWT ERW
FRML

SFRM-E FL-SFRM

IP 2.768 4.463 3.126 0.436 16.761 74.936 33.722 1.173
SA 10.406 15.396 17.374 2.850 83.040 367.610 63.539 3.948
HL 9.872 14.449 16.710 3.618 53.784 748.000 21.819 0.527
PU 9.859 16.780 17.496 2.813 45.207 631.628 19.182 0.712

5. Conclusions

By establishing relations between different spectral features using NDIs, it was found that each
class has its own FRM that could be used to distinguish it from other classes. FRMs not only generate
new features but also provide two-dimensional graphic information, such as textures and polygons,
updating pattern recognition through using one-dimensional spectral features to regular texture
pictures. Based on these findings, we proposed an FRML with SFRM (an FRM designed using a
segment strategy) to classify hyperspectral images. Benefits of SFRM are that FRML could automatically
enhance the separability of different objects and that it could learn more discriminative features using
a feature extractor that consists of a deep convolutional network. Due to its powerful feature learning
ability, FRML could archive higher accuracy than comparative methods in most cases. Unlike other
feature learning methods, FRML learns features from their relationships rather than directly from
the spectral or spatial features themselves—which gives FRML more chance to consider the full use
of original features, without any data dimensional reduction, to obtain more objective features for
improved classification accuracy and to have a stronger capability of maintaining details in mapping.

FRML exhibits excellent performance in hyperspectral image classification. However, some of its
aspects still need to be improved. For example, in our experiments, only three classifiers were utilized
in FRML—in order to fully explore FRML with high accuracy, more classifiers should be used to obtain
the optimal FRML framework. In addition, the establishment of FRM plays an important role in FRML,
however, in this paper, only DNI was used to do so. For describing the relations between different
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features better, more advanced methods should be explored. Last but not least, FRML suffers from a
disadvantage of being time consuming; thus, the procedure code needs more optimization in order to
accelerate operation speed in future studies.

To summarize, FRML successfully uses feature relations to improve hyperspectral image
classification. The framework is flexible and advanced, and it is expected to be suitable for more
complex RS image classifications.
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