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Abstract: Monitoring of abnormal changes on the earth’s surface (e.g., forest disturbance) has
improved greatly in recent years because of satellite remote sensing. However, high computational
costs inherently associated with processing and analysis of satellite data often inhibit large-area
and sub-annual monitoring. Normal seasonal variations also complicate the detection of abnormal
changes at sub-annual scale in the time series of satellite data. Recently, however, computationally
powerful platforms, such as the Google Earth Engine (GEE), have been launched to support large-area
analysis of satellite data. Change detection methods with the capability to detect abnormal changes
in time series data while accounting for normal seasonal variations have also been developed but
are computationally intensive. Here, we report an implementation of BFASTmonitor (Breaks For
Additive Season and Trend monitor) on GEE to support large-area and sub-annual change monitoring
using satellite data available in GEE. BFASTmonitor is a data-driven unsupervised change monitoring
approach that detects abnormal changes in time series data, with near real-time monitoring capabilities.
Although BFASTmonitor has been widely used in forest cover loss monitoring, it is a generic change
monitoring approach that can be used to monitor changes in a various time series data. Using Landsat
time series for normalised difference moisture index (NDMI), we evaluated the performance of our
GEE BFASTmonitor implementation (GEE BFASTmonitor) by detecting forest disturbance at three
forest areas (humid tropical forest, dry tropical forest, and miombo woodland) while comparing it
to the original R-based BFASTmonitor implementation (original BFASTmonitor). A map-to-map
comparison showed that the spatial and temporal agreements on forest disturbance between the
original and our GEE BFASTmonitor implementations were high. At each site, the spatial agreement
was more than 97%, whereas the temporal agreement was over 94%. The high spatial and temporal
agreement show that we have properly translated and implemented the BFASTmonitor algorithm
on GEE. Naturally, due to different numerical solvers being used for regression model fitting in R
and GEE, small differences could be observed in the outputs. These differences were most noticeable
at the dry tropical forest and miombo woodland sites, where the forest exhibits strong seasonality.
To make GEE BFASTmonitor accessible to non-technical users, we developed a web application with
simplified user interface. We also created a JavaScript-based GEE BFASTmonitor package that can be
imported as a module. Overall, our GEE BFASTmonitor implementation fills an important gap in
large-area environmental change monitoring using earth observation data.
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1. Introduction

The earth continues to experience many adverse changes as a result of climatic and anthropogenic
pressures. For example, the tropical forests, which are the “lungs” of the earth system and play a critical
role in regulation of the global climate [1,2], are increasingly under human-induced pressure through
deforestation and forest degradation [3,4]. Tropical forests are being deforested mainly to expand
agricultural land [5], and are degraded through selective logging [6]. In some cases, deforestation and
forest degradation activities are carried out illegally, often to fulfil commercial interests. Satellite remote
sensing has been instrumental in revealing how tropical forests are being deforested and degraded
across the globe [3,4,7], and is now used for frequent and large-area monitoring of forest changes to
provide timely information on forest disturbances [8,9]. Several operational systems for sub-annual
forest monitoring have been developed (e.g., Global Forest Watch: https://www.globalforestwatch.org/),
and have been helpful in detecting forest disturbances in a timely manner in humid tropical forests [8,9],
but the monitoring systems are often not robust in regions where forests exhibit strong seasonal
variability in their photosynthetic activity and canopy water content [10]. This is mainly because the
monitoring systems rely on change detection methods, which are unable to account for sub-annual
seasonal variations in forest condition. Accounting for sub-annual seasonal variations is especially
important as the seasons are changing more rapidly from year to year, and forests are experiencing more
extreme weather events, such as more frequent and intense droughts [11–13]. Such extreme events are
likely to trigger frequent and intense changes in the earth’s system at various spatio-temporal scales,
and understanding such changes will require development of tools that provide efficient sub-annual
monitoring capabilities over large area.

Change detection methods, for example BFASTmonitor (Breaks For Additive Season and Trend
monitor [14]), CCDC (Continuous Change Detection and Classification [15]) and STEF (Space-Time
Extremes and Features [16]), which are able to account for sub-annual seasonal variation while
detecting forest disturbances from satellite observations have been developed in recent years to
support automated sub-annual forest monitoring in both humid and dry forest ecosystems. Despite
the benefits these methods bring to forest monitoring, they are not yet integrated into operational
forest monitoring systems; they remain confined to the research domain or only available in highly
specialised computational platforms which are too challenging for many current and potential users.

High computational costs often inhibit forest monitoring at sub-annual scale over large areas.
Recently, however, computationally powerful platforms, such as the Google Earth Engine (GEE),
have been launched to support planetary analyses of satellite data for environmental monitoring [17].
With GEE, computationally demanding global analyses of forest loss and gain [4], tidal flats [18],
and surface water dynamics [19] at unprecedented spatial scale (30m spatial resolution) became
possible for the first time. This increase in computing power, together with state-of-the-art algorithms,
can also be exploited to monitor forest changes at sub-annual scales using dense time series from
satellite with improved spatial resolution (e.g., Landsat, Sentinel-1 and-2) to improve the detection of
deforestation and forest degradation, especially in the tropics.

Some time series analysis methods for forest disturbance detection have been implemented in the
GEE recently (e.g., [20]), but the methods are only developed for the detection of forest disturbances
at annual scale, and not at sub-annual scale [21,22]. The implementation of methods for sub-annual
scale forest monitoring has been slow, probably because of the complexity of the methods requiring
a combination of iterative robust statistics and capacity to be able to analyse and model seasonal
variation in the time series. To fill this gap, we implemented the BFASTmonitor algorithm [14] to
support large-area and sub-annual forest monitoring in both humid and dry tropical forests.

https://www.globalforestwatch.org/
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BFASTmonitor is a data-driven unsupervised change monitoring approach that detects abnormal
changes in time series data (See Figure 1). Abnormal changes in the time series are detected based on a
structural change monitoring framework [23–25]. BFASTmonitor was developed specifically for near
real-time change detection of abnormal changes in time series data [14]. When new measurements
are available, the algorithm verifies whether the new observations are normal or abnormal based on
the modelling of the already available time series (i.e., the history). The regression coefficients are
first estimated from the historical observations and are subsequently used to predict the values of
observations in the monitoring period [14,23–25]. An abnormal change is signalled if the predicted
values are statistically different from observed values [14]. The versatility of the BFASTmonitor to detect
abnormal changes at sub-annual scale has been demonstrated in various forest ecosystems [10,26,27] to
detect forest cover loss, but the demonstration has largely been restricted to small areas (smaller than
one Landsat scene of 32,400 km2) due to the high computational costs. Yet, forest disturbances and
other changes on earth surface occur simultaneously across the globe. Therefore, to better understand
such changes and their impact, we require tools and systems with capabilities for large area monitoring
and analysis. Capacity for large area monitoring can, for example, benefit countries that want to protect
their forests from deforestation and human-induced forest degradation.
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Figure 1. An example of how Breaks For Additive Season and Trend monitor (BFASTmonitor) uses
historical data in the time series to identify abnormal changes in the monitoring period. Regression
models estimated from the historical observations are used to predict the values of the new observations
in the monitoring period. An abnormal change is signalled if the new observations are statistically
different from the predicted values and the magnitude of change is negative. The vertical black dashed
line represents the start of the monitoring period, whereas the vertical red dashed line indicates an
abnormal change detected by BFASTmonitor. (BFAST package [14]). Here the observations are for
normalised difference moisture index (NDMI) derived from Tier 1 Landsat-7/ETM+ and Landsat-8/OLI
surface reflectance products.

In this paper, we report on the implementation on BFASTmonitor on GEE to support sub-annual
monitoring of abnormal changes on the earth surface over large areas using satellite observations.
We demonstrate the performance of GEE BFASTmonitor by applying it to three study areas while
comparing it with the original R-based BFASTmonitor implementation [14]. The performance of the
GEE BFASTmonitor was evaluated using the time series of Landsat normalised difference moisture
(water) index (NDMI; [28]). A web application with a simplified user-interface has been developed to
make GEE BFASTmonitor accessible to, and easy-to-use for, non-technical users.



Remote Sens. 2020, 12, 2953 4 of 16

Prior to our implementation, the BFASTmonitor algorithm was only available as part of the BFAST
R package and as an implementation in python, deployable on the graphics processing unit (GPU) [29].
This implementation supports processing of large amounts of satellite data on local desktop computers
that have GPU’s available. However, this implementation still requires the data to be downloaded to a
local computer. With GEE implementation, we are bringing BFASTmonitor algorithm closer to large
amounts of data, thus avoiding the limitations associated with downloading massive amount of data
to a local computer.

2. Materials and Methods

2.1. BFASTmonitor Implementation on Google Earth Engine

We implemented the BFASTmonitor approach on GEE by translating the original BFASTmonitor
code (http://bfast.r-forge.r-project.org/ [14,30]) to a corresponding JavaScript version using the GEE
editor. Fortunately, the GEE libraries already provide many basic functions and regression model
fitting routines, which are critical for the implementation of the BFASTmonitor. In our implementation,
the users have a choice to fit a regression model with or without seasonal terms based of ordinary least
squares (OLS). The trend component can also be included. The regression model with seasonal terms
takes the following form:

ât = β0 +
k∑

j=1

γ j sin
(

2π jt
f

+ δ j

)
+ εt (1)

Here, ât is the predicted value of ât at time t, β0 is the intercept coefficient estimated from
observations in the history period, γ j is the amplitude, δ j is the phase of the harmonic season and f is
the frequency, corresponding to the number of observations expected per year at each pixel, εt is the
random error at time t [14,30,31]. With the BFASTmonitor, the number of the harmonic terms (k) has to
be specified. In our implementation, the users have the choice of specifying the number of harmonic
terms to fit.

The functionality for testing and detecting structural changes in the time series was lacking in
GEE. We implemented this functionality in the GEE afresh. The original BFASTmonitor offers several
approaches for testing and detecting structural breaks in the time series [14]. The default and widely
used approach is the OLS based moving sum (OLS-MOSUM) of residuals, which we considered for
our GEE implementation. The OLS-MOSUM of residuals is calculated as follows:

MOt =
1
σ√n

t∑
s=t−h+1

(
ys − ỹs

)
(2)

Here, σ is an estimator of the variance, n is the number of observations in the history period, h is
the size of the moving window, which is calculated as a fraction of n, and t is time [23,25]. Without
a structural break in the time series, the MOSUM of residuals (MOt) is expected to remain within
the boundary of its empirical fluctuation [23]. The empirical fluctuation of MOSUM residuals is
the historical oscillation of MOSUM of residuals, based on the observations in the history period.
A threshold (alpha) is needed for accepting or rejecting the null hypothesis that the MOSUM of
residuals did not cross the boundary of its empirical fluctuation. Alpha is the significance level
(e.g., 5%), and users have a choice to specify it. A breakpoint is signalled once the boundary is crossed
by MOSUM of residuals. Once a breakpoint is detected, we calculate the magnitude of change (mc) by
subtracting the predicted value yt from observation yt at time t when a breakpoint is detected.

BFASTmonitor detects both the positive and negative abnormal change in the time series. Our GEE
implementation also detects both positive and negative abnormal changes. A positive break in the
NDMI time series over a forest area may signal an increase in the forest cover or productivity,
whereas the negative break may indicate forest disturbance. However, outliers related to atmospheric

http://bfast.r-forge.r-project.org/
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contamination (e.g., remnants clouds) missed by cloud masking algorithm might also be detected as
breakpoints in the time series of the optical satellite data. Detailed information about BFASTmonitor
are available in [14], whereas more detailed information about structural break detection approaches
can be found in [23,25].

2.2. Making GEE BFASTmonitor Accessible

Implementing a state-of-the-art algorithm like BFASTmonitor on GEE is a great step towards
an improved the near real-time monitoring of changes on the earth’s surface over large areas using
time series of satellite observations. However, such state-of-the-art monitoring capabilities may not
be accessible to non-technical users who may be interested in exploring and documenting earth’s
surface changes occurring in their areas. To fill this gap, in addition to the GEE BFASTmonitor package,
we developed a web application with simplified user interface to make the GEE BFASTmonitor
accessible for non-technical users. We also created a GEE BFASTmonitor package that can be imported
into GEE to make it easier for advanced GEE users to integrate our algorithm in their processing
chain. The web application and the package are written in GEE’s JavaScript API (application
programming interface).

2.3. Evaluating GEE BFASTmonitor

We evaluated our GEE BFASTmonitor implementation by comparing its forest disturbance
detection performance to that of the original BFASTmonitor [14]. Here, we defined forest disturbance
as an abnormal change in the time series with a negative magnitude of change over a forested area.
The evaluation was conducted at three forest sites (Table 1), located in Peru, Bolivia and Mozambique
(Figure 2). The site in Peru is a humid tropical forest located in Madre de Dios province, south-eastern
Peru. This site is part of the Tropical Andes biodiversity hotspot [32], but has been experiencing rapid
forest change because of the cropland expansion and gold mining [33,34]. The forest at the Peruvian
site does not have defined seasonal variability in its photosynthetic activity and canopy water content
(Figure 1). In contrast, the site in Bolivia is a dry tropical forest, with a moderate seasonality in its
photosynthetic activity and canopy water content (Figure 3b). The Bolivian site is located in the south
east of Santa Cruz. Forest disturbances at this Bolivian site are generally large, caused by clearance
of forest to establish large-scale agriculture [10]. Unlike the other two sites, the Mozambican site
is a Miombo woodland, with strong seasonal variations in the photosynthetic activity and canopy
water content (Figure 3c). At this site, forest disturbance is dominated by small-scale disturbances
caused mainly by smallholder farmers. The Mozambican site is located in one of the frequently burned
areas in southern Africa. We chose these three study sites because they cover a variety of tropical
forest types. They also have varying forest disturbance types caused by different agents. These sites
are therefore appropriate for an elaborate assessment of the GEE BFASTmonitor performance under
varying conditions.

Table 1. The size, forest type, and the number of Landsat images available for each study site.

Site Forest Type Size (km2)
Number of ImAges
in Reference Period

Number of
Images in

Monitoring
Period

Total Number
of Images

Bolivian Dry tropical
forest 10,112 113 60 173

Peruvian Humid tropical
forest 5274 102 47 149

Mozambican Miombo
woodland 15,569 118 60 181
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At each site we detected forest disturbance from the Landsat NDMI time series using original and
GEE BFASTmonitor. We detected forest disturbances between January 2017 and December 2018 (the
monitoring period) while using the 2014–2016 Landsat NDMI time series as a reference (the history
period). The NDMI time series were derived from Tier 1 Landsat-7/ETM+ and Landsat-8/OLI surface
reflectance products available on GEE. Tier 1 Landsat data are of high quality and are considered suitable
for time series analyses. Landsat-7/ETM + surface reflectance products on GEE were generated using
the standard Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm [35,36],
whereas the Landsat-8/OLI surface reflectance products were generated using the Landsat-8/OLI
surface reflectance algorithm [37]. We masked clouds, cloud shadows and water bodies using pixel
quality flags that accompany Landsat surface reflectance products. The default pixel quality flags of
Landsat data were generated using the Cmask algorithm [38,39]).

To compare with the original BFASTmonitor consistently, we downloaded and pre-processed the
same Landsat NDMI time series from GEE. The comparison test was run on a Linux machine with 16 GB
of RAM and 8 CPU cores. We used the same values for the harmonic term, h-parameter and the alpha
when running original and GEE BFASTmonitor at each site. By default, the original BFASTmonitor
calculates the magnitude of change by subtracting the predicted value at the breakpoint from median
value of all observed values after the breakpoint. This way of calculating the magnitude of change
could lead to some forest disturbances having a positive magnitude of change. Forest disturbances
with positive magnitude of change would be difficult to distinguish from breakpoints related to the
increase in forest cover or productivity. To ensure comparability, we calculated the magnitude of change
from the original BFASTmonitor implementation using the approach used for GEE BFASTmonitor.
The harmonic terms and h-parameter are the most critical parameters that should be set when applying
BFASTmonitor. For each site, we used one harmonic term (harmonic = 1), h-parameter of 0.05 (h = 0.25)
and the alpha of 0.05 when applying GEE BFASTmonitor. The h-parameter ranges between 0 and
1, and determines the size of the moving window for MOSUM relative to the number observations
in the history period. The original R-based BFASTmonitor implementation uses the default value
of 0.25 for h-parameter. A h-parameter of 0.25 implies that the size of the moving window is equal
25% of observations in the history period. We used all NDMI observations in the history period for
estimation of regression coefficients. The output was the time of disturbance and the magnitude of
change. The maps of the time and magnitude of change were then exported from the GEE to a local
computer, for further processing.
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Figure 3. An example of Landsat pixel-time series for normalised difference moisture index (NDMI)
of a (a) humid (Peruvian site), (b) dry (Bolivian site) tropical forest site and (c) miombo woodland
(Mozambican site). The time series are for undisturbed pixels.

We performed a map-to-map comparison to determine the spatial agreement between the outputs
from the BFASTmonitor and GEE BFASTmonitor. The primary goal for implementing BFASTmonitor
on GEE is to support large-area monitoring of forest disturbances. Therefore, our comparison of
original and GEE BFASTmonitor focused on structural breaks in NDMI which had negative magnitude
of change. Negative magnitude of change implies that the predicted value at a structural break is
greater than the observed value. Therefore, prior to comparison, we masked all pixels with positive
magnitude of change in the outputs of both implementations. We also applied a benchmark forest
mask to both outputs to mask changes that occurred in non-forest areas. A benchmark forest mask
was created for each study site through supervised classification of the 2016 Landsat images using
random forests [40]. The generation of the benchmark forest masks and the masking non-forest areas
were performed on a local computer. We ensured that, for each site, the outputs from BFASTmonitor
and GEE BFASTmonitor were covering exactly the same spatial extent. Henceforth, we refer to forest
changes with negative magnitude of change as forest disturbance.

A discrete map was created from each implementation to show disturbed and undisturbed
forest areas at each study site. The discrete maps at each study site were then combined into one
map to show areas of spatial agreement and disagreement between original and GEE BFASTmonitor
implementations. Overall, the spatial agreement between the implementations was calculated by
dividing the total of number of pixels where both implementations agree spatially by the total number
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of disturbed pixels at each study area based on a combined discrete map. The temporal agreement
was calculated by dividing the total number of pixels that have a temporal gap of zero by the total
number of pixels, where the original and GEE BFASTmonitor agreed spatially. The temporal gap was
calculated by subtracting the date of forest disturbance as per GEE BFASTmonitor from that of original
BFASTmonitor. We also compared the magnitudes of change from the original and GEE BFASTmonitor
for temporally agreeing pixels by calculating the Pearson correlation coefficient between them.

3. Results

3.1. A Web Application with Simplified User Interface

Our easy-to-use GEE web application (TerraSift) with a simplified user-interface (Figure 4)
make GEE BFASTmonitor accessible to non-technical users. TerraSift change detection is powered
by the GEE BFASTmonitor and is currently accessible via: https://andreim.users.earthengine.app/

view/bfastmonitor. The users can adjust BFASTmonitor parameters (i.e., start and end dates for the
history and monitoring period, the h-parameter, number of harmonic terms to fit, the alpha and
the period). Additionally, users can inspect the time series for a specific pixel by clicking on the
map. TerraSift generates two raster layers (date and magnitude of change) and these layers can
also be downloaded for further processing or restyling. With TerraSift, the state-of-the-art satellite
imagery-based change detection is available for a broader public. Advanced users who may wish to
integrate BFASTmonitor algorithm in their GEE processing chains, can use the GEE BFASTmonitor
package (https://github.com/bfast2/geeMonitor).
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Figure 4. A screenshot of the user-interface for the web application (TerraSift) with forest disturbances
detected by Google Earth Engine (GEE) BFASTmonitor from the time series of Landsat normalised
difference moisture index at a site in Bolivia.

3.2. Comparison of Original and GEE BFASTmonitor on Forest Disturbance Detection

The spatial and temporal agreement between the original and GEE BFASTmonitor on forest
disturbance detection were generally high at each study site (Table 2). At each site, the spatial
agreement was more than 97%, whereas the temporal agreement was over 94%. High spatial and
temporal agreement indicates that the BFASTmonitor algorithm was implemented properly in GEE.
There were, however, some noticeable spatial and temporal disagreements between original and
GEE BFASTmonitor (Figure 5), despite using the same parameters (harmonic terms, h-parameter
and alpha) and calculating the magnitude of change in the same manner. The differences were more
noticeable at the sites (Mozambican and Bolivian site), where forest has strong seasonal variability

https://andreim.users.earthengine.app/view/bfastmonitor
https://andreim.users.earthengine.app/view/bfastmonitor
https://github.com/bfast2/geeMonitor
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in its photosynthetic activity and canopy water content. There were pixels, at each site, where the
original BFASTmonitor detected disturbance earlier than GEE BFASTmonitor, and vice versa. However,
the temporal gap was not more than 2 months (60 days) in more than 85% of such pixels (Figure A1).

Table 2. Spatial and temporal agreement between original and GEE BFASTmonitor on forest disturbance
detected from Landsat NDMI time series at each site.

Site Spatial Agreement (%) Temporal Agreement (%)

Bolivian 97.8 94.8
Peruvian 99.6 99.5

Mozambican 97.8 97.7
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There was a strong positive correlation (r = 1) in the magnitude of change between original and
GEE BFASTmonitor for pixels where both implementations agreed spatially and temporally at each
study site (Figure 6). This strong correlation indicates that the magnitude of change was largely similar
for pixels where both implementations agree temporally on the time of forest disturbance.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 16 
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Figure 6. The relationship between the magnitudes of change from BFASTmonitor and GEE
BFASTmonitor for forest disturbance detected at Bolivian, Mozambican, and Peruvian sites.

We observed that there were small differences in the regression model fitting between R and GEE,
leading to differences in predicted values between both implementations (Figure A2, Appendix A).
The differences in regression model fitting were more pronounced at the sites with strong seasonal
variations (Bolivian and Mozambican site) than at the site with undefined seasonality (Peruvian site,
Figure A2). The miombo woodland, in particular, had the largest differences in predicted values
between original and GEE BFASTmonitor (Figure A2). Although the differences with respect to the
model coefficients were relatively small (Figure A2), they led to the empirical fluctuation process of
OLS-MOSUM of residuals of one the algorithm to cross the critical boundary at some pixels while
the OLS-MOSUM of residuals for the other algorithm did not (Figure 8). For example, in Figure 8b,
only the empirical fluctuation process of OLS-MOSUM from original BFASTmonitor that crossed
the critical boundary. However, the crossing of boundary was marginal because the value of the
OLS-MOSUM at the breakpoint was only 1.899832, hence slightly greater than the critical boundary of
1.897627. For GEE BFASTmonitor, however, the OLS-MOSUM value at the same point was 1.887622,
and therefore was within the critical boundaries.
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dashed line is the critical boundary. A breakpoint is signalled if the empirical fluctuation process
crosses the critical boundary.

4. Discussion

Our evaluation show that we implemented BFASTmonitor on GEE correctly. This implementation
offers various benefits to the remote sensing community and to those who are interested in monitoring
the occurrence of abnormal changes of the earth surface using time series of earth observation data.
First, BFASTmonitor has the capacity to account for seasonal variations in the time series data while
detecting abnormal changes [14]. This capability allows users to distinguish abnormal changes from
normal changes in the time series data at sub-annual scale. Before our implementation, the capability of
sub-annual time series analysis was lacking in GEE. Unlike annual time series analysis [20], sub-annual
time series analysis capability will allow users to monitor abnormal changes on earth surface in near
real-time over large area. For example, those interested in forest change monitoring will be able to
monitor changes also in dry tropical forests at sub-annual scale. This capability monitoring forest
changes in dry tropical forest in near real-time was lacking in existing forest monitoring systems
(e.g., https://www.globalforestwatch.org/). Third, by implementing BFASTmonitor on GEE, we advance
the idea of bringing algorithms to data, thus eliminating costly processes of downloading and storing
huge amount data. Users will not need to invest time and resources in downloading, storing and
pre-processing earth observation data for them to monitor abnormal changes on earth surface using
observation data.

With the original R-based implementation of BFASTmonitor, processing Landsat time series data
longer than 5 years on one Landsat footprint (~32,400 km2) using a standard computer with 16 GB of
RAM and 8 CPU cores would take at least one week to complete. This is the reason why the R-based
implementation of BFASTmonitor has not been applied to area greater one Landsat footprint to date,
despite its advanced capability for identifying changes in the time series data at sub-annual scale.
With our GEE implementation, however, processing the time series data longer than 4 years over one
Landsat scene takes less than 5 min. Therefore, our GEE implementation will allow users to refocus
their time and resources from data processing to the analysis of results to better understand how our
planet is changing.

We observed small differences in the regression model fitting between R and GEE (Figure A2,
Appendix A). The differences in regression model fitting explain the differences in the spatial and
temporal agreement between the original and GEE BFASTmonitor. These differences in regression model
fitting are not surprising, however, because such differences often occur due to the underlying solvers
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approaching the computation of the regression coefficients in slightly different ways. For instance,
the so-called Pseudoinverse [41] is often considered to avoid problems when the matrices of the
induced linear systems of equations are singular. However, such schemes often cut off small singular
values, which, in turn, might lead to different results compared to approaches that resort to normal
matrix inversion (which, however, might fail when singular matrices are given). Numerical differences
often occur in case the data instances are very “similar” to each other. The differences in spatial and
temporal accuracy we observed between the original and GEE BFASTmonitor are minor, and we do
not expect divergent conclusions between the analyses from original and GEE BFASTmonitor.

Although Landsat-7/ETM+ and Landsat-8/OLI data were used to evaluate our implementation,
GEE BFASTmonitor should, with minor adjustments, be able to perform change detection on time
series data from other satellite sensors (e.g., Sentinel-1 and -2). It is important for GEE BFASTmonitor
to be able to analyse multi-sensor datasets because the maximum benefits for sub-annual monitoring
of abnormal changes would only be properly realised when the time series is dense. In cloudy regions,
in particular, temporally dense observations would only be possible when optical (e.g., Landsat and
Sentinel-2) are integrated with RADAR data (e.g., Sentinel-1) into a single time series [42–45]. Therefore,
a critical next step would be to enhance GEE BFASTmonitor by adding the capability for multi-source
data integration. Detailed information on how apply GEE BFASTmonitor on time series data from
multiple satellites will continuously be added to this webpage (https://github.com/bfast2/geeMonitor)
to assist the users.

Overall, we detected many forest disturbances between 2017 and 2018 at each test site. This is
expected because BFASTmonitor is a data-driven unsupervised change monitoring approach and it
detects all kinds of changes in the time series [14]. Therefore, the spatial and temporal (dis)agreement
between the original and GEE BFASTmonitor we report in this work does not reflect the (dis)agreement
in forest cover loss detection. The users who might be interested in forest cover loss detection using GEE
BFASTmonitor should perform further processing to discriminate forest cover loss from other changes
(drought impact). A threshold on the magnitude of change is often used to discriminate forest cover
loss from other disturbances [26], but the use of the magnitude of change enhances the omission of
forest disturbances (e.g., forest degradation) with small magnitude of change [46]. To avoid this, future
work should explore the potential in feeding the output of BFASTmonitor (e.g., change magnitude,
the significance of change, and other temporal metrics) into other machine learning schemes, such as
random forests, to differentiate forest loss from other disturbances.

In some cases, the interest is not to perform sub-annual monitoring, but to detect abrupt breaks and
trends in the entire time series (e.g., [30]) to assess greening and browning patterns of vegetation [47–49]
at a much higher spatial resolution. Our GEE BFASTmonitor implementation does not provide this
capability, but the core component of stability testing in the time series based on the MOSUM is
provided. Therefore, there is now an opportunity to build on our current implementation to also
implement breakpoint and trend detection based on the BFAST approach [30].

5. Conclusions

We implemented BFASTmonitor algorithm, a state-of-the-art monitoring method that detects
changes in time series in unsupervised manner on GEE to take advantage of the unprecedented
computational power of GEE. Our implementation makes use of freely available large archives of
earth observation data on GEE to support large-area and sub-annual monitoring of changes on the
earth’s surface, including deforestation and forest degradation. The GEE implementation agrees
spatially and temporally with the original R implementation of BFASTmonitor on forest disturbance
detection, implying that we have properly translated and implemented BFASTmonitor on GEE.
The spatial agreement was more than 97% at each study site whereas the temporal agreement
was over 94%. Small differences in regression model fitting between R and GEE inhibited perfect
spatial and temporal agreement between original and GEE BFASTmonitor. With BFASTmonitor
available on GEE, there is now an opportunity for efficient large-scale and sub-annual monitoring of
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changes on earth’s surface (e.g., deforestation) using time series data from earth observation satellites.
The time series data from satellite sensors with improved spatial resolution and temporal density
(e.g., Sentinel-1 and-2), which require more computational resources than coarse resolution data,
can also be analysed efficiently using GEE BFASTmonitor to generate, for example, accurate and
timely deforestation and forest degradation alerts. Our GEE BFASTmonitor package can, for example,
be incorporated in the processing chain of existing change monitoring systems (e.g., Global forest Watch:
https://www.globalforestwatch.org/ or on SEPAL (https://sepal.io/) to enhance forest change monitoring.
Our GEE web application with simplified user-interface makes the GEE BFASTmonitor algorithm
accessible by non-technical users who have interests in monitoring changes using satellite data.

Author Contributions: Implementation of algorithm, E.H. and E.E.; web application development, A.M. And
E.H. and J.V.; formal analysis, investigation, and data curation, E.H. and S.R.; writing—original draft preparation,
E.H.; writing—review and editing, J.V., M.H., F.G., E.E. and S.R.; funding acquisition, J.V. and M.H. All authors
have read and agreed to the published version of the manuscript.

Funding: The initial implementation of BFASTmonitor on GEE was generously funded by Google Inc., grant
number 5120906.

Acknowledgments: We are thankful to Noel Gorelick, and David Thau for technical assistance during the initial
implementation of BFASTmonitor on GEE.

Conflicts of Interest: The authors declare no conflict of interest.
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Figure A1. More than 85% of pixels with temporal disagreement between original and GEE
BFASTmonitor at each site had disturbances detected with a temporal gap of not more than 60 days.
Cumulative % of the pixels plotted against the temporal gap for pixels with temporal disagreement
between original and GEE BFASTmonitor. The vertical dashed line (in blue) represents the temporal
gap of 60 days.
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