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Abstract: Change detection (CD) is an important tool in remote sensing. CD can be categorized into
pixel-based change detection (PBCD) and object-based change detection (OBCD). PBCD is traditionally
used because of its simple and straightforward algorithms. However, with increasing interest in
very-high-resolution (VHR) imagery and determining changes in small and complex objects such as
buildings or roads, traditional methods showed limitations, for example, the large number of false
alarms or noise in the results. Thus, researchers have focused on extending PBCD to OBCD. In this
study, we proposed a method for detecting the newly built-up areas by extending PBCD results into an
OBCD result through the Dempster–Shafer (D–S) theory. To this end, the morphological building index
(MBI) was used to extract built-up areas in multitemporal VHR imagery. Then, three PBCD algorithms,
change vector analysis, principal component analysis, and iteratively reweighted multivariate
alteration detection, were applied to the MBI images. For the final CD result, the three binary change
images were fused with the segmented image using the D–S theory. The results obtained from the
proposed method were compared with those of PBCD, OBCD, and OBCD results generated by fusing
the three binary change images using the major voting technique. Based on the accuracy assessment,
the proposed method produced the highest F1-score and kappa values compared with other CD
results. The proposed method can be used for detecting new buildings in built-up areas as well
as changes related to demolished buildings with a low rate of false alarms and missed detections
compared with other existing CD methods.

Keywords: pixel-based changed detection (PBCD); object-based change detection (OBCD);
morphological building index (MBI); very-high resolution (VHR) images; segmentation;
Dempster–Shafer (D–S) theory

1. Introduction

The most important social transformation in human history is regarded as urbanization, in which
cities play an important role [1]. Although only 3% of the Earth’s land is occupied by cities,
3.5 billion people live in cities, and it will rise to over 5 billion by 2030, making it 95% of the
urban expansion. This rapid urbanization results in 60–80% of energy consumption and carbon
emissions [2,3]. The development of sustainable cities is becoming crucial because of the challenges
associated with urban growth and urbanization. The United Nations Sustainable Development Goals
include sustainable cities and communities (i.e., Goal 11) that require a focus on safe and sustainable
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human settlement [4]. Most of the sustainable development goals are related to urban decision
making [5].

In remote sensing technology, detecting changes in land cover and land use is considered to be
important because of its practical use in land management, urbanization, eco-change, deforestation,
damage assessment, and disaster monitoring [6]. Change detection (CD) is the process of identifying
changes that have occurred over a period of time on the surface of the Earth or in the state of an object
using images acquired of the same region or object at different time points [7]. The development in
remote sensing technology and the availability of very-high-resolution (VHR) imagery has opened a
wide range of new opportunities for analysts to use CD for detecting changes in small and complex
objects such as buildings [8,9]. Accurate CD results can be obtained because of the high spatial and
spectral resolution of VHR imagery [10].

The CD techniques can be categorized into pixel-based change detection (PBCD) and object-based
change detection (OBCD). PBCD is most often used because of its simple and straightforward algorithms.
In PBCD, the change intensity image is generated by comparing the multitemporal images pixel by
pixel. The most common techniques of PBCD for generating the change intensity are change vector
analysis (CVA), image differencing, and image ratio [11–13]. However, the accuracy of the PBCD
algorithm is low, limiting the results of the CD when applied to VHR imagery [14]. Because PBCD
uses an individual pixel as its basic unit without considering the spatial context of an image, it is
prone to salt-and-pepper noise in CD results [15]. Moreover, PBCD generates a large number of false
alarms because of scene brightness [16]. Using an object rather than a pixel as a basic unit for CD may
minimize the problems caused by PBCD when applied to VHR imagery because an object is generated
by a group of pixels that are spatially and spectrally similar to each other [17,18].

OBCD creates meaningful objects using a group of pixels with similar spatial and spectral
resolutions by segmenting multitemporal images. Consequently, OBCD is compatible with CD to
analyze the changes in an object by comparing image objects at different times [19]. The OBCD technique
can be performed by fusing the spatial features (e.g., texture, shape, and topology) of an object during
the CD process [20,21], and using an object as a processing unit for the completeness and correctness of
the final CD result [22,23]. Recently, analysts have been developing more accurate techniques for the
feature extraction process using hyperspectral imagery [24]. Many analysts have focused on using
the spatial or spectral features of an object to detect the changes in the state of an object or region in
multitemporal images. Moreover, analysts have addressed the problem with spectral variability of
hyperspectral imagery and introduced various techniques for resolving these problems [25]. However,
detecting changes in small and complex objects requires VHR images, while it is difficult to acquire
high-resolution hyperspectral images for the CD of buildings and other small objects.

Many studies have been conducted to improve the accuracy of CD results using spatial features of
objects [26]. However, it is difficult to recognize the proper features for the CD process because of the
complexity of images and change patterns. Moreover, the spatial features of small and complex objects
such as buildings highly depend on the shape and size of the objects determined by the segmentation
result. Therefore, extending PBCD to OBCD has been recently employed wherein PBCD results are
fused and extended to OBCD using techniques such as major voting or ensemble learning. For example,
Xiao et al. [27] proposed a method for detecting the changes in built-up lands by combining PBCD and
OBCD. Their method is completely based on textural features, spectral features, and morphological
operations. At the pixel level, they calculated the textural features and spectral features for each band
of both images and then generated textural and spectral changed images. Then, these images were
combined using a logical operator for generating a final change mask. The morphological closing and
opening operations were applied to the final change mask for converting from PBCD to OBCD and
for the complete shape of changed objects (e.g., buildings). In another study, using a major voting
technique, PBCD was extended to OBCD [28], and the decision of a changed or unchanged object was
taken on the basis of calculating the ratio of changed and unchanged pixels in an object. For improving
the accuracy of the CD result, several studies combined and extended PBCD results in OBCD [22,23,29].
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However, fusing CD results often causes uncertainty in results. Researchers addressed this problem
using the Dempster–Shafer (D–S) theory with a segmented image to generate OBCD results [30]. It is
necessary to assign the certainty weight manually while calculating change, nochange, and uncertainty
objects when implementing the D–S theory. Keeping in mind the uncertainty problem while applying
the D–S theory and the problem with assigning the certainty weight, we derived a method that
automatically calculates and assigns the certainty weight for each binary CD result while calculating
the change, nochange, and uncertainty [31].

With the availability and development of VHR imagery, the applications of the CD are increasing,
and detecting the changes in complex objects are becoming the main focus, including buildings,
which is one of the main applications of CD. For detecting building changes, Liu et al. [32] proposed a
method in which shape and spatial features were utilized to amplify the ability of features. Im et al. [33]
proposed an OBCD method, which is based on the fact that the brightness value of an object is
correlated when there is no change and uncorrelated when there is a change in multitemporal images.
This method is based on image segmentation and correlation analysis. Dalla Mura et al. [8] proposed
an unsupervised method for CD by utilizing morphological operations and CVA and proved that
the proposed method outperforms the pixel-based CVA. In another study, a building CD method
based on morphological building index (MBI), spectral, and shape conditions was proposed in [34].
Moreover, an automatic building CD method based on a morphological attribute profile was proposed
by Li et al. [35]. Leichtle et al. presented a CD method by using VHR images and focusing on
individual buildings [36]. A multi-level 3D building CD method for megacities was proposed in [37].
A 3D building roof reconstruction and building CD method is proposed in [38]. An unsupervised
OBCD approach focusing on individual buildings in an urban environment using VHR imagery
is proposed in [36]. Zhang et al. [39] proposed an OBCD approach with separate segmentation of
multitemporal high-resolution imagery focusing on building CD in an urban area. They individually
conducted segmentation for each multitemporal imagery and extracted change features for generating
changed objects. In [40], building a CD from VHR imagery by combining MBI and slow feature
analysis was proposed. A multi-index-based automatic CD method was proposed for high-resolution
imagery [41]. A multi-level approach for building CD was proposed in [42] that utilizes the MBI and
mutual information together.

Although many studies have focused on CD for urban development, it is still a challenging issue
in the field of remote sensing because of its diverse and complex cases. Moreover, detecting small and
complex objects, such as buildings in altered areas, has received insignificant attention from analysts
because most studies that extend PBCD to OBCD and use only OBCD or PBCD techniques have
focused on detecting all changes. Studies regarding building changes using MBI have generated a
binary change image using one PBCD classifier (i.e., CVA or image differencing method) and converted
PBCD to OBCD using morphological operations such as morphological closing and opening operations.
The problem with morphological closing and opening operations is the selection of the best structural
element for the dataset; for instance, a large structural element will extract unnecessary areas such
as buildings. However, very small structural elements will miss parts of buildings and result in
incomplete building shapes. Consequently, the CD result can be influenced by severe false alarms or
missed detections.

In this study, we proposed an OBCD method for VHR imagery, focusing only on newly built
buildings in changed areas by fusing the results of different PBCD classifiers and segmented image
using the D–S theory. First, we conducted the object segmentation of multitemporal VHR imagery.
Next, the building feature maps were generated from VHR multitemporal imagery using MBI [43].
The advantage of using MBI is that the effect of shadows of buildings on CD results can be effectively
removed. Then three change intensity images were implemented by using principal component
analysis (PCA) [44], CVA [11], and iteratively reweighted multivariate alteration detection (IRMAD) [45].
A threshold is generated and applied to the three change intensity images, and binary change images
are conducted. The three binary change images were fused with the segmented image by using the
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D–S theory to generate the OBCD map. Finally, the accuracy assessment of the proposed CD technique
was conducted by using a manually digitized map. To verify the superiority of the proposed method,
we applied the proposed method to the multitemporal VHR images from the KOMPSAT-3 satellite
with a spatial resolution of 2.8 m [46]. The results from the proposed method were compared with
the results from extended PBCD to OBCD of the three classifiers. Moreover, the OBCD result was
generated by fusing PBCD results from the three classifiers with the segmented image by using the
major voting technique.

The study aims to focus on the United Nations Sustainable Development Goal 11. The proposed
method can be used for the planning and development of cities and for updating maps. To detect
rapid changes in the urban development areas using remote sensing technology, we concentrated on
detecting the changes in building areas using VHR images while minimizing the false alarms that may
occur during the application of general CD methods. In particular, for reducing the detection changes
regardless of urban development (e.g., seasonal changes, shadows, and vegetation), we used various
difference images generated by applying PBCD techniques (i.e., CVA, PCA, and IRMAD) to MBI feature
images, instead of using difference images generated using CD techniques applied to original images.
To minimize the false alarms of CD results, we used the D–S theory based on the fusion method to
extend PBCD to OBCD. Here, we automatically derived threshold for the certainty weight to be applied
in any case without manual interruption. A detailed result analysis of the proposed method, including
the segmentation effect on the performance, visual inspection, and numerical assessment by comparing
with other PBCD and OBCD results, is conducted to verify the effectiveness of the proposed method.

2. Methodology

The procedure for the proposed method is shown in Figure 1. The primary steps are as follows:

1. image segmentation using an image acquired at time two (image T2)
2. creation of MBI feature maps using images from both times
3. implementation of the three PBCD methods (i.e., CVA, PCA, and IRMAD) and application of an

appropriate threshold for building detection to obtain binary change results, and
4. fusion of the three binary CD results with a segmented object map using the D–S theory to obtain

a final OBCD result.
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2.1. Multiresolution Segmentation

The multiresolution segmentation is an iterative process that minimizes the average heterogeneity
of objects. The heterogeneity used in this algorithm has spatial and spectral components. The spectral
component is defined by using the spectral response of the pixels contained in a segment. The spatial
component is based on two shape features, which are smoothness and compactness. The compactness
is defined as the ratio between the perimeter of the segment and the square root of the number of
pixels it contains. The smoothness is defined as the ratio between the perimeter of the object and the
perimeter of the minimum boundary rectangle [47].

The eCognition software is used to conduct the multiresolution segmentation of VHR
multitemporal imagery [48]. The multiresolution segmentation integrated into the eCognition software
uses the bottom-up strategy [49], starting by creating single-pixel objects and grouping those objects
until a given threshold is reached [50]. The threshold is given by setting a scale parameter that
is weighted with shape and compactness parameters. The scale parameter controls the spectral
variations within the object and affects the segmentation size of an image. The shape parameter is a
weight between object shape and its spectral color. The smaller value of the shape parameter means
that the spectral characteristics are considered more than shape during the segmentation process.
The compactness parameter is the ratio of boundary and area of an object. Among the three parameters
in eCognition software, scale parameters have a great impact on the CD performance [51]. In this
study, for conducting multiresolution segmentation, only the image T2 is used because we focused
on buildings only; therefore, we generated the segmentation by using the image, which had newly
constructed buildings. For generating segmentation, the scale parameter was set to 60, whereas shape
and compactness parameters were left as default values, 0.1 and 0.5, respectively.

2.2. Morphological Building Index (MBI)

The primary concept of MBI is to form a relation between the spectral and spatial characteristics
of buildings (i.e., brightness, size, and contrast) and morphological transformations (i.e., top-hat
transformation (THT), granulometry, and directionality) [34]. In this study, the MBI introduced in [44]
was calculated step-by-step as follows.

The calculation of the brightness value is the first step, which reduces the multispectral bands
used in the calculation of MBI. In this study, for the calculation of brightness, only visible bands are
used since they have the most significant contribution to the spectral information of buildings [52].
The maximum of each pixel in each visible band is recorded as a brightness value by using Equation (1):

B(l) = max
1≤m≤M

(bandm(l)) (1)

where B(l) represents the brightness value of pixel l, bandm(l) is the spectral value of pixel l at band m,
and M is the total number of bands used.

The second step is to determine the information regarding the contrast of buildings. THT is a
difference in brightness image, and its morphological opening profile which is mostly used because it
is capable of highlighting bright structures with a size less than or equal to a predefined value [34].

The third and fourth steps are to determine the THT and its differential morphological profiles
(DMPs). Buildings in VHR images indicate complicated spatial arrangements such as different sizes.
Multiscale THT based on DMPs [53] is used to generate the building index. Moreover, a linear
structural element is used while generating MBI because it is effective in extracting the information
regarding the directionality of local structures [54]. Equation (2) is used to calculate the multiscale and
multidirectional DMPs of the THT:

THTDMP(d,s) = mean(THTB(d,s) − THTB(d,s−∆s)) (2)
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While THTB(d,s) is calculated by using Equations (3) and (4):

THTB(d,s) = B− γ(d,s)(B) (3)

and
γ(d,s)(B) = δ(d,s)

(
ε(d,s)(B)

)
(4)

where THTB(d,s) indicates the THT of the brightness image B, γ(d,s)(B) is the opening by reconstruction
of the brightness image B and is defined based on two basic morphological operations (erosion ε and
dilation δ), d represents the directionality of the structural element, and s (smin ≤ s ≤ smax) indicates the
scale parameter of a structural element and is used to extract objects with different sizes [48], and ∆s is
the interval of the profile.

The final step is to calculate MBI. The MBI feature image (MBIT) is determined as the average of
the multiscale and multidirectional THTB(d,s) by using Equation (5).

MBIT = mean
D, S

(THTB(d,s)) (5)

where D and S denote the value of directionality and that of the scale of profiles, respectively.
Four directions (D = 4) were considered from 0 to 135 with a delay of 45 because an increase in
directionality does not lead to an increase in accuracy [54]. The value of the scale of profile is calculated
using the expression: S = ((smax − smin)/∆s) + 1, where smax and smin should be determined according
to the spatial characteristics of the buildings and spatial resolution (in this study, smin = 2, smax 52 with
∆s = 5) [55].

2.3. Pixel-Based Change Detection (PBCD)

Due to the complexity of the multitemporal VHR images, it is difficult to obtain an accurate CD
result from one PBCD method. Therefore, we utilized three independent PBCD methods and fused
their CD results with a segmented image by using the D–S theory. Three commonly used and effective
unsupervised PBCD methods, including CVA, IRMAD, and PCA, were considered.

CVA is the most commonly used method by researchers for CD purposes. Change vectors are
obtained by subtracting the MBI feature images, which are generated from bi-temporal images using
MBI. For determining the change intensity using CVA, the Euclidean distance between pixels was
used [11]. The change intensity using CVA is generated using Equation (6):

PBCDCVA =

√
(MBIT1 −MBIT2)

2 (6)

where PBCDCVA is the change intensity of CVA and MBIT1 and MBIT2 are the MBI feature images.
In the PCA method, the difference image is generated by the absolute-valued difference image.

For extracting the eigenvectors, the difference image is divided into h × h (h = 4 used in this study)
non-overlapping blocks. Then the difference image vector set is projected onto the eigenvector space
to produce a feature vector space [44]. The change intensity using the PCA method is calculated using
Equation (7).

PBCDPCA = eTMBId −ψ (7)

with
MBId =|MBIT1 −MBIT2| (8)

where eT indicates the eigenvector of the covariance matrix, ψ is the average pixel value, and MBId is
the difference image.

The IRMAD is based on the principle of canonical correlation analysis. The Chi-squared distance
is used to calculate the change intensity of IRMAD [45]. During the iteration process in IRMAD for
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reducing the negative outcome of the changed pixels, the high weights are assigned to the unchanged
pixels. The change intensity using IRMAD is generated by Equation (9).

PBCDIRMAD = (
U −V
σ

)
2

(9)

and
U = aMBIT1, V = bMBIT2 (10)

where σ is the standard deviation of the used band, and a and b are the transformation vectors calculated
from the canonical correlation analysis.

The three change intensity images (i.e., PBCDCVA, PBCDPCA, and PBCDIRMAD) were normalized
to 0 and 1, and a threshold (TMBI) is applied to the three change intensity images to generate the three
binary change images:

PBCDk =

{
1, i f PBCDk ≥ TMBI

0, i f PBCDk < TMBI
(11)

where PBCD is the change intensity images generated by k classifiers.

2.4. Dempster–Shafer (D–S) Theory

Fusing multiple CD results causes uncertainty in the CD result. In order to solve the problem
of uncertainty and for improving accuracy of the CD result and decreasing the false alarms, the D–S
theory is employed. The D–S evidence theory measures the probability of an event by fusing the
probability of each evidence [56]. In [30], the D–S theory was used to fuse different PBCD results with
segmented images and generated an OBCD result. However, in their study, certainty weights while
calculating the change, nochange, and uncertainty were manually assigned. In [31], we automatically
calculated and assigned the certainty weight for each segmented object. In this study, for assigning the
certainty weight while calculating the change, nochange, and uncertainty, the same concept as in [31]
is utilized. The PBCD results were combined with the segmented image and the certainty weight
is calculated.

A simple technique to generate the certainty weight is to calculate CD accuracies by comparing
them with a manually digitized reference map while changing the values of the certainty weight.
However, the construction of the reference map in practical CD applications is difficult. The certainty
weight (pi

j) of the evidence i (i.e., CVA, PCA, and IRMAD) for each object j is calculated using
Equation (12):

pi
j = 1− σi

j (12)

where σi
j is the standard deviation of the change intensity in object j acquired by the ith binary PBCD

result, i.e., the ith evidence. If the change intensity is homogeneous in the object, the certainty weight
value will be large, and vice versa. Accordingly, the certainty weight can be automatically calculated
while considering the stability of the change intensity of each object.

Then the probability of change (mCi
j), nochange (mNCi

j), and uncertainty (mpi
j) are calculated

using Equation (13):

mCi
j =

NCi
j

N j

pi
jmNCi

j =

NnCi
j

N j

pi
jmpi

j =1− pi
j (13)

where NCi
j shows the number of changed pixels in object j of the PBCD result i, NnCi

j shows the number
of unchanged pixels in object j of the PBCD result i, and N j is the total number of pixels in an object j.
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If the changed pixels in an object j are greater than or equal to unchanged and uncertainty, then the
object OBCD j will be declared a changed object. This condition can be expressed as follows:

OBCD j =

 1, i f mCi
j ≥ max

(
mNCi

j, mpi
j

)
0, else

(14)

3. Experimental Results

For the detection of only buildings in the changed area, the experiments were carried out on a
pair of KOMPSAT-3 multispectral images of Sejong City, South Korea, with a spatial resolution of
2.8 m acquired in 2013 (image T1) and 2019 (image T2). Both the images had four bands, three visible
bands and one near-infrared band. Large-scale developments have taken place in this area since 2013,
including high-rise newly built-up buildings. To detect the buildings in the changed area and check
the effectiveness of the proposed method, we selected two subsets from the KOMPSAT-3 imagery.

Before conducting the proposed approach, we carried out co-registration between VHR imagery
to minimize the geometric misalignment as mentioned in [31]. A phase correlation method was used to
detect conjugate points for the transformation model construction. The local templates were constructed
over the image T1 for detecting the conjugate points. On the basis of the coordinate information from
the metadata, the location of the corresponding templates of image T2 was derived. For determining
the similarity peak, the phase correlation was calculated, which can detect the translation difference
between the images in x and y directions. The peak location of the phase correlation between the
template images was used to extract well-distributed conjugate points. Then, the corresponding
conjugate point’s position for the template image T2 was determined as a shifted location from the
centroid of the template to the amount showing the highest similarity value of the phase correlation.
After extracting the conjugate points, and improved piecewise linear transformation [57] was used to
warp the image T2 to the coordinates of the image T1.

After carrying out co-registration, the MBI feature images were generated from each image in
each subset using only visible bands because they correlate with the spectral property of buildings [54].
Then from the MBI feature images, the three PBCD intensity images were generated using the classifiers
CVA, PCA, and IRMAD. Then a threshold (TMBI) was applied to the three intensity images for
generating the binary change images. The three binary change images were then fused with the
segmented image using the D–S theory, and the OBCD result was generated. The proposed CD result
was compared with the OBCD results generated by fusing the same three binary change maps with
the segmented image using the major voting technique. In addition, the proposed CD result was
compared with the PBCD results from the three classifiers and their extended OBCD results generated
by using major voting techniques and segmented image as used for the proposed method. For the
quantitative evaluation of CD performance, the F1-score, kappa, miss rate (MR), and false alarm rate
(FAR) were calculated using each CD result and the manually digitized reference map.

F1-score is the harmonic mean of precision and recall. Precision is the correct positive results
divided by all positive results, whereas recall is the number of correct positive results divided by all
possible positive results. The higher F1-score means the best performance of the classifier. The kappa
coefficient can be determined by using the observed accuracy and random accuracy. FAR is calculated
using the total number of false alarms divided by the total number of unchanged samples in the
reference map, and MR is calculated using the total number of missed detections divided by the total
number of changed samples in the reference map.

The segmented image was generated in eCognition software using a scale parameter, shape,
and compactness of 60, 0.1, and 0.5, respectively. The same scale parameter for both subsets was
selected after generating and evaluating results for both subsets. The detailed analysis of the scale
parameters affecting the CD performance will be given in Section 4. Moreover, the running time of the
process was measured. It highly depends on the number of objects in the segmented image. It took
132 s and 40 s for experiments 1 and 2 that have 9253 and 4977 objects, respectively.
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3.1. Experiment 1

The first experiment was conducted on the subset of multitemporal VHR images of the KOMPSAT-3
satellite with a size of 925 × 637 pixels. Figure 2 shows both the multispectral images. Several changes
have taken place in the area during the period from 2013 to 2019, but we aimed to detect only the
newly built-up buildings.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 20 
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three classifiers using major voting (g), the result generated using the proposed method (h), and CD 
reference map (i) are shown in Figure 4. It can be seen from Figure 4a–c that PBCD results generated 
many false alarms and salt-and-pepper noise. However, these aspects were minimized when PBCD 
results were extended to OBCD (Figure 4d–f). From Figure 4g–h, the noises and false alarms were 
minimized further when PBCD results were fused by using major voting techniques and the 
proposed method. However, the shapes of the buildings in the result generated by major voting were 
not proper because it failed to detect most parts of the buildings. 

Figure 2. The first subset from KOMPSAT-3 images acquired over Sejong City, South Korea, in (a)
16 November 2013, and (b) 26 February 2019.

From Figure 2, it can be seen that the study area has roads, trees, soil, and buildings. Therefore,
MBI feature images were generated using the above images to highlight the buildings and to filter out
other areas such as trees. For generating the MBI feature images, the parameters mentioned before
(e.g., d = 0, 45, 90, 135 and s from 2 to 52 with an interval of 5) were used on the basis of the sizes,
shapes, and spectral characteristics of buildings. Figure 3 shows the MBI feature images of image T1
and image T2.
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Figure 3. Morphological building index (MBI) feature images of the first subset: (a) MBI T1 and (b)
MBI T2.

Three intensity images were generated by using CVA, PCA, and IRMAD. Then a threshold
(TMBI = 0.3) was applied for generating the pixel-based binary change images. Binary change images
were fused with the segmented image to generate the OBCD result by applying the D–S theory. The CD
results from three PBCD classifiers (a–c), their OBCD results (d–f), OBCD result from fusing these
three classifiers using major voting (g), the result generated using the proposed method (h), and CD
reference map (i) are shown in Figure 4. It can be seen from Figure 4a–c that PBCD results generated
many false alarms and salt-and-pepper noise. However, these aspects were minimized when PBCD
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results were extended to OBCD (Figure 4d–f). From Figure 4g–h, the noises and false alarms were
minimized further when PBCD results were fused by using major voting techniques and the proposed
method. However, the shapes of the buildings in the result generated by major voting were not proper
because it failed to detect most parts of the buildings.
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Figure 4. Change detection results of the first subset: (a) pixel-based change detection (PBCD) using
change vector analysis (CVA), (b) PBCD using principal component analysis (PCA), (c) PBCD using
iteratively reweighted multivariate alteration detection (IRMAD), (d) object-based change detection
(OBCD) using CVA, (e) OBCD using PCA, (f) OBCD using IRMAD, (g) OBCD using major voting,
(h) OBCD using the proposed method, and (i) the reference map.

The numerical results of the first experiment are listed in Table 1. From the table, extending the
PBCD results to OBCD improved the accuracy of CD. The F1-score of CVA, PCA, and IRMAD increased
from 0.1622, 0.6386, and 0.5130 to 0.6247, 0.6526, and 0.5694, respectively. Moreover, kappa improved
steadily while extending from PBCD to OBCD, and FAR was smaller for OBCD compared with that
for PBCD. However, because of the over-detection in PBCD, MR was smaller for PBCD than that
for OBCD.

Table 1. Accuracy assessment of change detection results of the first experiment.

Accuracy (%)
PBCD Results OBCD Results

CVA PCA IRMAD CVA PCA IRMAD Major Voting Proposed Method

F1-Score 0.6122 0.6386 0.5130 0.6247 0.6526 0.5694 0.6110 0.6759

Kappa 0.5288 0.5592 0.4317 0.5462 0.5803 0.5079 0.5645 0.6194

FAR 0.1294 0.1315 0.0777 0.1170 0.1093 0.0425 0.0160 0.0586

MR 0.2258 0.1712 0.4987 0.2357 0.2067 0.5033 0.5191 0.3150
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The OBCD result using the major voting technique to fuse the results from the three classifiers
showed a lower F1-score than the object-based results of CVA, PCA, and IRMAD. Furthermore, the FAR
of the major voting technique is less than all the other results because of the under-extraction of the
changed regions. Moreover, the PCA-based PBCD result over-extracted the changed regions, which is
confirmed by the fact that it has larger FAR and smaller MR compared with other PBCD results. On the
other hand, the FAR and MR of the proposed method are quite reasonable, with the values of 0.0586
and 0.315. Moreover, the proposed method showed the highest F1-score and kappa with 0.6759 and
0.6194, respectively.

3.2. Experiment 2

The second experiment was conducted on the subset from KOMPSAT-3 satellite imagery with
a size of 477 × 710 pixels, as shown in Figure 5. In this area, several changes have also taken place
such as from trees to bare soil and from bare soil to buildings or roads. As we focus on buildings only,
the same strategy in experiment 1 was used in this experiment.
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Figure 5. The second subset from KOMPSAT-3 images acquired over Sejong City, South Korea, in (a)
16 November 2013, and (b) 26 February 2019.

The MBI feature images were generated to highlight the buildings only and to filter out other areas.
The same parameters used in experiment 1 for generating MBI feature images were used. Figure 6
shows the MBI feature images for the second subset.

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 20 

 

results. On the other hand, the FAR and MR of the proposed method are quite reasonable, with the 
values of 0.0586 and 0.315. Moreover, the proposed method showed the highest F1-score and kappa 
with 0.6759 and 0.6194, respectively. 

3.2. Experiment 2 

The second experiment was conducted on the subset from KOMPSAT-3 satellite imagery with a 
size of 477 × 710 pixels, as shown in Figure 5. In this area, several changes have also taken place such 
as from trees to bare soil and from bare soil to buildings or roads. As we focus on buildings only, the 
same strategy in experiment 1 was used in this experiment. 

  
(a) (b) 

Figure 5. The second subset from KOMPSAT-3 images acquired over Sejong City, South Korea, in (a) 
16 November 2013, and (b) 26 February 2019. 

The MBI feature images were generated to highlight the buildings only and to filter out other 
areas. The same parameters used in experiment 1 for generating MBI feature images were used. 
Figure 6 shows the MBI feature images for the second subset. 

  
(a) (b) 

Figure 6. MBI feature images of the second subset: (a) MBI T1 and (b) MBI T2. 

Three change intensity images were generated using the three classifiers (e.g., CVA, PCA, and 
IRMAD) as in experiment 1. However, for converting the change intensity images to binary change 
images, the threshold (𝑇  = 0.4) was applied. The three binary change images were fused with the 

Figure 6. MBI feature images of the second subset: (a) MBI T1 and (b) MBI T2.



Remote Sens. 2020, 12, 2952 12 of 20

Three change intensity images were generated using the three classifiers (e.g., CVA, PCA,
and IRMAD) as in experiment 1. However, for converting the change intensity images to binary change
images, the threshold (TMBI = 0.4) was applied. The three binary change images were fused with the
segmented image (conducted with the same parameters as experiment 1) using the D–S theory, and the
OBCD result was generated. Furthermore, the OBCD was generated by fusing three binary change
images with the segmented image using the major voting technique. The three binary change images
were also extended to OBCD for the comparison with the proposed method. Figure 7 shows the three
PBCD results, their extended OBCD results, the result of major voting technique, the result generated
by the proposed method, and a change reference map. As similarly shown in experiment 1, the PBCD
results on the second subset extracted more false alarms and salt-and-pepper noises compared with
OBCD results. The noises are further minimized by the proposed method by reducing the missed
detections and false alarms.
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Figure 7. Change detection results of the second subset: (a) PBCD using CVA, (b) PBCD using PCA,
(c) PBCD using IRMAD, (d) OBCD using CVA, (e) OBCD using PCA, (f) OBCD using IRMAD, (g) OBCD
using major voting, (h) OBCD using the proposed method, and (i) the reference map.
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Table 2 shows the quantitative evaluation of the second subset. Overall, similarly to experiment 1,
the performance of OBCD was better than the PBCD. The MR of pixel-based PCA was smaller compared
with the MR of other results, including both the PBCD and OBCD, whereas the FAR was higher in
pixel-based PCA as well as in other PBCD results because of the over-detection of changed areas.
The FAR of the major voting technique was lower than those obtained by other results, whereas its MR
was the highest, leading to the under-detection of changed areas. However, the proposed method can
significantly detect the newly built-up buildings in changed areas, achieving the highest F1-score and
kappa values as 0.6905 and 0.6613, respectively.

Table 2. Accuracy assessment of change detection results of the second experiment.

Accuracy (%)
PBCD Results OBCD Results

CVA PCA IRMAD CVA PCA IRMAD Major Voting Proposed Method

F1-Score 0.5998 0.6242 0.5499 0.6245 0.6554 0.6186 0.6468 0.6905

Kappa 0.5548 0.5817 0.5079 0.5837 0.6182 0.5869 0.6205 0.6613

FAR 0.0743 0.0731 0.0459 0.0636 0.0588 0.0266 0.0154 0.0343

MR 0.2135 0.1732 0.4249 0.2214 0.1904 0.4184 0.439 0.2691

4. Discussion

Among the three parameters in eCognition software, scale parameters have a great impact on the
CD performance [51]. Therefore, for analyzing the effect of the scale parameter in the segmentation
process, the F1-score was calculated for the proposed OBCD method and major voting technique while
changing the values of the scale parameter from 20 to 100 with an interval of 10. Figure 8 shows the
effect of the scale parameter on the CD performance. From Figure 8a, it can be seen that the proposed
method showed a higher F1-score than the major voting technique and remained almost constant
during the whole range of the scale parameters. Furthermore, the scale parameter had less effect on the
result of the proposed method. A similar pattern was shown in experiment 2 (Figure 8b). The F1-score
was highest at scale 60. Based on the sensitivity analysis of the scale parameter, we selected the scale
parameter as 60 for both experiments.
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Figure 9 shows the F1-score of the proposed method and major voting by changing TMBI from
0.1 to 0.9 with an interval of 0.1. Overall, the graph illustrates that the proposed method showed
a better result than the major voting technique. In experiment 1, the proposed method yielded the
highest F1-score at TMBI = 0.3; in experiment 2 the proposed method yielded the highest F1-score at
TMBI = 0.4. According to these results, we selected a threshold with the highest F1-score for experiments
1 (TMBI = 0.3) and 2 (TMBI = 0.4). Moreover, we generated the results for both subsets using the
automatic threshold selection method, such as the Otsu method. The F1-sore generated by applying the
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Otsu method instead of TMBI in experiments 1 and 2 was 0.6742 and 0.6884, respectively. The F1-scores
of experiments 1 and 2 generated using TMBI are 0.6759 and 0.6905, respectively. The thresholds
generated by the Ostu method for the three PBCD techniques using both subsets are between 0.3 and
0.45. Hence, we propose a range from 0.3 to 0.45 because a very small threshold will detect unnecessary
areas such as changes in trees or soil and result in many false alarms, while a high threshold will result
in a large number of missed detections. Furthermore, the proposed method can be applied to different
datasets using automatic threshold selection methods as well.
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Moreover, the effectiveness of the proposed method can be analyzed by comparing the F1-score
and kappa of the proposed method with other CD results. The proposed method can effectively detect
the recently constructed high-rise buildings with complete shapes and can minimize the detection of
roads or soil having the same spectral characteristics with buildings. Moreover, MBI effectively filtered
out building shadows and improved the accuracy of the CD results.

To prove the effectiveness of the proposed method, we conducted experiments using the four bands
(red, green, blue, and near infrared) of original images (i.e., images T1 and T2) without considering
MBI. The OBCD results for both subsets were generated by CVA, IRMAD, and PCA applied to the
original images using the D–S theory method [31] and major voting techniques. The OBCD results
are presented in Figure 10. The F1-scores of the first subset using the major voting and D–S theory
were 0.2971 and 0.3299, respectively, whereas the F1-scores of the second subset using the major
voting and D–S theory were 0.3248 and 0.3647, respectively. The reason behind the low F1-score is
that both methods detect shadows as the changed objects as well as changes in trees and soil that
are unrelated to buildings. Tables 3 and 4 show the accuracy evaluation performance of the first and
second subsets, respectively.

Table 3. Accuracy assessment of change detection for first subset results generated without using MBI
and by the proposed method.

Accuracy (%)
Without MBI Proposed Method

Major Voting DS Theory [31] Major Voting Proposed Method

F1-Score 0.3299 0.2971 0.6110 0.6759

Kappa 0.2127 0.2091 0.5645 0.6194

FAR 0.3638 0.0362 0.0160 0.0586

MR 0.2594 0.6141 0.5191 0.3150
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Table 4. Accuracy assessment of change detection for second subset results generated without using
MBI and by the proposed method.

Accuracy (%)
Without MBI Proposed Method

Major Voting DS Theory [31] Major Voting Proposed Method

F1-Score 0.5244 0.4311 0.6468 0.6905

Kappa 0.4786 0.3547 0.6205 0.6613

FAR 0.0529 0.1651 0.0154 0.0343

MR 0.4333 0.2148 0.439 0.2691
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Figure 10. OBCD results without using MBI: (a) OBCD result of the first subset using major voting,
(b) OBCD result of the first subset using D–S theory, (c) OBCD result of the second subset using major
voting, and (d) OBCD result of the second subset using D–S theory.

Furthermore, the FAR is minimized in the CD result along with the acceptable MR. However,
in other CD results, if the FAR is lower than the MR is higher and vice versa. The reason for the missed
detection in the proposed method is the small buildings having the same spectral characteristics as the
background of the high-rise buildings in both subsets and being filtered out by MBI as background but
being included in the reference map (Figure 11). Moreover, the buildings in both images (i.e., image T1
and image T2) had different spectral characteristics as well as different shooting angles. The buildings in
the first subset have different shooting angles. Moreover, the buildings in the second subset (image T1)
had almost the same spectral characteristics with the background in that area and were recognized as
background by the MBI process. Therefore, they were detected as newly built-up buildings by the CD
process but were not included in the CD reference map. As a result, FAR is improved in the CD results
(Figure 12), and the accuracy of the CD result is reduced.
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second subset, (g) the result of the second subset by the proposed method, and (h) the reference map of
the second subset.
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5. Conclusions

We proposed a method for object-based building CD by using D–S theory to fuse multiple
PBCD results with the segmented image. MBI feature images were generated from the multitemporal
VHR imagery. Then, the three PBCD results were generated from MBI feature images. In the D–S
theory, certainty weight is automatically calculated and assigned while calculating change, nochange,
and uncertainty. The proposed method can detect new buildings and, with the use of MBI, the CD
results were improved by eliminating shadows effects or other similar objects such as roads. The impacts
of false and missed detections of changes irrespective to buildings can be effectively minimized using
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MBI. Moreover, the proposed method can achieve reliable object-based CD results, irrespective of the
scale parameter in the segmented image. For developing the proposed method, two subsets from
VHR multitemporal images were used. The comparison of the proposed method with existing PBCD
and OBCD methods proved the superiority of the proposed method over existing CD methods by
achieving the highest F1-score and kappa value.

The proposed method can detect changes related to newly built-up regions as well as partially
and totally demolished buildings in the suburban and urban areas using the VHR imagery. Therefore,
the proposed method can contribute to the United Nations Sustainable Development Goal 11 by
detecting the changes related to modified buildings as well as new buildings in urban areas, which can
help plan the development of sustainable cities in the future. However, proper parameter selection is
vital depending on the sizes and spectral characteristics of the buildings in the study areas. Furthermore,
if the proposed method is applied to datasets with different acquisition angles, the CD result will
contain falsely detected changed buildings.

In our future work, we will consider avoiding the shortcomings which affect the CD result of the
VHR multitemporal dataset, such as the missed detection of buildings because of their having the same
spectral characteristics as the background or falsely detecting buildings as changed buildings because
of the different acquisition angles. Furthermore, we will apply the proposed method to datasets related
to building changes acquired by different satellite sensors.
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