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Abstract: The present study developed methods using remote sensing for estimation of total dry 

aboveground biomass (AGB) of oil palm in the Congo Basin. To achieve this, stem diameters at 

breast height (DBH, 1.3 m) and stem heights were measured in an oil palm plantation located in 

Gabon (Congo Basin, Central Africa). These measurements were used to determine AGB in situ. The 

remote sensing approach that was used to estimate AGB was textural ordination (FOTO) based 

upon Fourier transforms that were applied, respectively, to PlanetScope and FORMOSAT-2 satellite 

images taken from the area. The FOTO method is based on the combined use of two-dimensional 

(2D) Fast Fourier Transform (FFT) and Principal Component Analysis (PCA). In the context of the 

present study, it was used to characterize the variation in canopy structure and to estimate the 

aboveground biomass of mature oil palms. Two types of equations linking FOTO indices to in situ 

biomass were developed: multiple linear regressions (MLR); and multivariate adaptive spline 

regressions (MARS). All best models developed yielded significant results, regardless of whether 

they were derived from PlanetScope or from FORMOSAT-2 images. Coefficients of determination 

(R2) varied between 0.80 and 0.92 (p ≤ 0.0005); and relative root mean-square-errors (%RMSE) were 

less than 10.12% in all cases. The best model was obtained using MARS approach with FOTO indices 

from FORMOSAT-2 (%RMSE = 6.09%). 

Keywords: aboveground biomass; oil palms; Congo Basin; textural ordination and Fourier 

transform; multivariate adaptive regression splines; multiple linear regression; remote sensing 

 

1. Introduction 

The amassing information on the total dry aboveground biomass (AGB) of plants is essential for 

understanding and monitoring their contributions to the global carbon cycle, together with their 

responses to climate change [1,2]. On small parcels of land, AGB can be estimated without too much 

difficulty from the complete biomass harvest of field sample plots and, subsequently, extrapolated to 

the unit area [3]. Another more common approach develops functional allometric relationships 

between field measurements of aboveground tree dry masses and structural parameters, such as 

DBH (diameter at breast height), stem height, basal area, wood density or crown area [3,4,5]. Over 

large areas, the financial constraints that are imposed by high costs of data collection, together with 

the large quantities of data that must necessarily be collected, have always limited the estimation of 

AGB. 

Several studies have demonstrated the potential for using remote sensing as a complementary 

alternative for overcoming these limitations [6,5,7]. Predictive relationships can be established 

between structural variables and remotely sensed data [1,3,6,8,9]. These relationships are generally 

empirical, often have local or regional scopes, and are frequently difficult to transfer in space and 
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time. In the tropics, optical and radar images are often affected by saturation due to high biomass 

values [3,6,10,11,12]. LiDAR (Light Detection And Ranging) permits characterization of different 

biomass levels in tropical forests, but data acquisition remains expensive, thereby limiting their use 

over large areas [3,6,12,13]. 

Studies focusing upon the estimation of oil palm biomass are relatively limited. Most approaches 

that are used in this context are based upon analyses of radiometric intensity or vegetation indices 

from medium- or high-spatial resolution optical images [4,10,11]. Some research works have 

recommended contextual analysis to exploit textural and structural elements within images for 

estimating aboveground forest biomass [6,14,15,16,17]. This recommendation was motivated by the 

complex nature of canopy structures, and the saturation observed in the high biomass values 

estimated with non-textural remote sensing approaches [14]. 

Satellite images provide useful information describing the texture of vegetation in various 

landscapes (forests, oil palms, etc.). This information also contributes to the estimation of AGB. 

Several authors recommend the use of FOTO (Fourier transform based on textural ordination) to 

exploit the information provided by the images [6,8,14,15]. FOTO is a spectral approach, which could 

be used to characterize the structure of the canopy in terms of coarse/fine texture, and open/ closed 

canopy. Two techniques are used to implement the FOTO approach, i.e., the two-dimensional fast 

Fourier transform (FFT 2D) and principal component analysis (PCA). FFT 2D converts spatial 

information into the frequency domain, and PCA performs the ordination of the r-spectrum values 

of FFT 2D [6,8,14]. These values could be used to classify the texture of the canopy and characterize 

landscapes (mature, young, degraded vegetation, etc.). These same values are also considered as 

FOTO indices that can predict the AGB. The FOTO method is based on the hypothesis that frequency 

signatures are strongly correlated with the grain size of the canopy [8,14]. 

The repetitive canopy structure of vegetation has been regularly analyzed with the FOTO 

approach, by converting the intensity signal into different spatial frequencies. This conversion is 

carried out using very high spatial resolution images [8,17]. The FOTO method has often been applied 

with aerial photographs and satellite images from different platforms, including Google Earth, SPOT 

5, or Ikonos [6,8,14,16]. Several studies have shown its efficiency in analyzing the canopy texture, and 

predicting AGB [6,14,16,17,18,19]. The FOTO method is not affected by the saturation of the estimated 

aboveground biomass values, and is also able to estimate various stand variables, such as basal area, 

tree density, diameter, or height [6]. For example, the FOTO approach has been exploited to estimate 

the biomass of mangroves in French Guiana [6]. Singh et al. [14] also established AGB models of 

mixed landscapes (forest and oil palms of varying ages of 5-8 years) in Malaysia using FOTO indices. 

The approach was also used to map relief and landscape spatial entities of a border area between 

French Guiana and Brazil [20]. The forest containing the arctic tree line in Russia has also been 

classified using the FOTO method [19]. In these different studies, the FOTO indices show interesting 

correlations with various characteristics of vegetation, including AGB. 

Prediction models that have been generally used are multiple linear regressions (MLR), which 

link vegetation structural parameters to FOTO indices that are derived from satellite images 

[8,6,14,18,21]. The major disadvantage of MLR methods is that they do not account for non-linearities, 

which are frequent when ecological variables are considered [7,22,23]. Several studies that are based 

upon MLRs have reported significant results in estimating AGB of forests [6,16,24] and oil palm 

plantations [14]. 

Approaches beyond MLRs are being used increasingly to estimate AGB. These include, for 

example, machine learning methods or multivariate techniques that are capable of dealing with non-

linearities in the relationships between variables [23,25,26]. For example, Multivariate Adaptive 

Regression Splines (MARS) offers some promise. MARS is a non-parametric, recursive modelling 

algorithm that was introduced by [27]. Yet, its use has not been widely explored in the field of remote 

sensing, particularly in regard to estimating AGB [23]. MARS models the interactions and non-

linearity of the data by establishing non-linear regression models, based upon a product of functions 

that are referred to as "smoothed basis functions" [23,28,29]. MARS has been successfully used in 
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other fields, including ecology [30], medicine [31], pedology [32], hydrology [33] and biomass energy 

[34]. 

Despite the diversity of remote sensing data available, the FOTO approach has not been used 

extensively. In particular, it has not been evaluated in combination with MARS or MLR approaches 

using various images, such as FORMOSAT-2 and PlanetScope, to describe canopy texture and 

estimate AGB. Studies on oil palms are rather limited or inexistent. The relationships between FOTO 

indices and structural parameters of oil palms have not been established yet in the tropical zones, 

except for young oil palms (≤ 9 years old) AGB [14]. 

In this paper, we applied the FOTO method on the near infrared bands of FORMOSAT-2 and 

PlanetScope to describe the textural structure of the canopy and assess AGB of mature oil palms (≥ 30 

years) in the Congo Basin. Several oil palms AGB models were developed with MARS and MLR using 

the FOTO indices derived from each image in the study area. The models were compared to select 

those predicting the best results. This study was the first attempt to produce AGB map of mature oil 

palms in the Congo Basin using the combination of MARS or MLR and FOTO indices. 

2. Materials and Methods  

2.1. Description of the Study Area 

 

The study site was located in Makouké, Moyen-Ogooué Province, Gabon. Gabon is a Central 

African country covered by moist tropical forest typical of the Congo Basin. Its boundaries extend 

from about 2oN to 4oS (Equatorial Guinea and Cameroon in the north, Republic of the Congo in the 

south) and from 9 oE to 15oE (Atlantic Ocean in the west, Republic of the Congo in the east). The site 

is an oil palm plantation block that was located between 10°24'27''E and 10°24'57''E, and 0°30'6''S and 

0°30'16''S (Figure 1). The property is owned by Olam Palm Gabon (OPG), which is a company that 

has several agro-industrial oil palm plantations. This is the oldest plantation in the country, having 

been in production for 39 years. It covers 5700 ha, with mature oil palms occupying an area of 1500 

ha. A watercourse crosses the site (North-South) in its eastern half (Figure 2). Individual trees in the 

study consisted of mature palms, which are mainly in drier uplands, but some of them are found in 

the poorly drained shallows along the watercourse. Regional climate is warm-humid equatorial, with 

temperatures ranging from 27 to 38 °C, and annual rainfall ranging from 1800 to 2000 mm. 

 

Figure 1. Study site location. 
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2.2. Data 

2.2.1. Satellite Data 

 

Satellite images for this study come from PlanetScope (L3Harris Geospatial, Broomfield, CO, 

USA) and FORMOSAT-2 (Decommissioned, National Space Organization, Taiwan). PlanetScope 

images were acquired in April 2017 as an Analytic Ortho Tile Product (spatial resolution: 3.125 m x 

3.125 m). The data were radiances at the top of the atmosphere and did not undergo further correction 

during the study. FORMOSAT-2 images are pansharpening products at 2 m x 2 m resolution (i.e., 

merging of high-resolution panchromatic and lower resolution multispectral images) from February 

2011. Geometric corrections were applied to both types of images. Acquisitions were made in four 

similar spectral bands: 455-515 nm, 500-590 nm, 590-670 nm and 780-860 nm for PlanetScope; and 

450-520 nm, 520-600 nm, 630-690 nm and 760-900 nm for FORMOSAT-2. 

2.2.2. In Situ Measurements 

Several field measurements were carried out during the study. Different structural parameters 

of oil palms that could be used for AGB calculations were measured. Given that the plantation was 

considered mature, all measurements were made on palm trees that were > 30 years old. Instruments 

that were used in the field included a global positioning system (Garmin GPSMAP 64SC), compass 

(TOPOCHAIX), DBH tape and a vertex IV associated with a transponder 3. The GPS was used to 

position the sample plots in the field. The compass helped to materialize the directions of the 

transects. DBH were measured with a tape. The vertex coupled to the transponder allowed us to 

measure the stem height at two different positions at a distance of 10 m from the considered oil palm 

tree. Fieldwork was conducted in October 2017 on 40 sample plots that were established in the 

plantation, based upon systematic sampling. Plots (0.1 ha) were aligned East-West on four belt 

transects, each of which was 30.8 m wide and about 900 m long. The total area that was sampled was 

25 ha. Natural obstacles, such as watercourses or tall grasses, limited accessibility and constrained 

sampling that was proposed along all survey lines. Figure 2 shows the sampling scheme for the 

sample plots. 

 

Figure 2. Plot sampling scheme. 

Stem height (HT) and diameter at breast height (DBH, 1.3 m) were recorded for all oil palms 

within each plot, as was their total number (NP). The density (D) values were determined from ratios 

between NP and individual plot areas. Basal area (BA, m2 ha-1) was calculated [35] as the cross-

sectional area of each stem measured at 1.3 m above the ground, i.e., (π × DBH2)/4. Mean BA was 

estimated as the sum of all oil palms that were contained in each sample plot. Mean values for these 

variables are summarized in Table 1. 

Mean in situ AGB (kg) was evaluated in each sample plot using the following ln-transformed 

allometric equation: 



Remote Sens. 2020, 12, 2926 5 of 24 

 

ln(���) = −2.335 + 0.832 ∗ ln (����(1) × ��) (2) 

This equation was derived from a previous study that had been conducted in the same area [36], 

which proposed different allometric models that were based upon in situ measurements that were 

collected during destructive sampling. For the rest of the present study, in situ AGB is expressed in 

tons ha-1 (Table 1). 

Table 1. Descriptive statistics for measurements taken from 510 oil palms distributed across 40 sample 

plots. DBH is diameter at breast height, HT is stem height, NP is the number of stems per plot, D is 

the density of palm trees per hectare, BA is basal area and AGB is total dry aboveground biomass 

calculated from in situ measurements using Equation 1. 

Parameter 
DBH 

(cm) 

HT 

(m) 
NP 

D 

(stem ha-1) 

BA 

(m2 ha-1) 

AGB 

(t ha-1) 

Mean 52.4 9.3 13 134 29.2 60.8 

Minimum 47.3 7.5 10 105 18.7 35.9 

Maximum 55.0 10.0 15 158 36.2 75.1 

Standard 

deviation 
2.1 0.6 1 12 4.2 10.4 

2.3.  Use of the FOTO Method and Estimation of Aboveground Biomass 

Our methodological approach consisted of four parts: i) the use of Fourier transformations in 

textural ordination (FOTO) to generate texture indices from the PlanetScope and FORMOSAT-2 

images; ii) development of MLR-type models for estimating AGB; iii) development of MARS-type 

models for estimating AGB; and iv) validation of the different models. The flowchart in Figure 3 

summarizes the research approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Organizational flowchart for the study. 

2.3.1. Textural Index Generation Using the FOTO Approach 
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FOTO was implemented in this study following steps that are described in [37] and [8]. These 

steps allow gradients of variation in image texture to be characterized by coupling two-dimensional 

discrete fast-Fourier transformation (FFT-2D) with principal component analysis [8,14,18,20]. On one 

hand, the approach permits textural characterization of very high-resolution PlanetScope and 

FORMOSAT-2 images that were acquired over oil palm plantations; on the other hand, we assume 

textural indices that we generated are related to aboveground biomass of these plants [8,6,11]. In this 

study, FOTO was performed in MatLab R2016a (MathWorks, Natick, MA, USA). Near-infrared 

spectral bands of the two images were selected and analyzed for their sensitivity to vegetation [8]. 

The main steps are explained below. 

The first step consisted of masking aspects of the images that were not related to the vegetation 

cover, i.e., bare ground, clouds and their shadows, among others. Images of the palm trees were then 

masked. We accomplished this masking using a combination of unsupervised classification with the 

k-means algorithm on the near infrared spectral band of each of the images in the study and visual 

examination to isolate unwanted features. Oil palm plantations were distinguished from natural 

forests and non-forest areas in the classification process. Following this operation, a mask was 

applied to the infrared band of each original image to retain only areas that were occupied by oil 

palms, thereby defining the area of application of FOTO in each case. 

The second step consisted of defining window sizes that were needed to calculate the 2D Fourier 

spectra on the different images. Following most previous work (e.g., [6,14]), we estimate these square 

window (WS) sizes in this study, such that WS = N*ΔS (N = number of pixels in the X or Y direction; 

ΔS = pixel size in meters). In a forest context, window sizes of 50 to 150 m are usually selected for 

applying FFT-2D [37,8,6]. Yet, Proisy et al. [8] demonstrated that window sizes between 75 and 120 

m were best suited for characterizing near-infrared data in the IKONOS images that they examined. 

These sizes improved the results of principal component analysis (i.e., PCA), especially between 75 

and 100 m. When choosing window sizes, the best possible compromises should be sought. Smaller 

sizes may not capture characteristics of the mature canopy, while sizes that are too large tend to 

represent landscapes more than canopy granularity, thereby reducing the spatial resolution of the 

FOTO maps [37,8]. Based upon these findings, we adopted three window sizes, i.e., 75 m, 100 m and 

120 m. The WS report on ΔS provides the corresponding numbers of pixels N in the X and Y directions 

for these windows. The respective window sizes that were selected for the PlanetScope image are 24 

x 24, 32 x 32 and 38 x 38 pixels. Window sizes (in pixels) for the FORMOSAT-2 image were 

respectively 38 x 38, 50 x 50 and 60 x 60 pixels. 

The third step applied FFT-2D using the selected different sizes of square windows. FFT-2D 

yielded the radial spectra (or r-spectra), thereby converting the spectral radiance from the space 

domain to the frequency domain. Hence, a spectral radiance that is expressed in the space domain by 

I(x,y) of the x-column and y-row image is converted in the frequency domain into a function F(p,q), 

where p and q are spatial frequencies (or wavenumbers) along both Cartesian directions. These 

frequencies indicate the number of repetitions of an object within a given radial distance. They are 

expressed in cycles km-1, making it easier to compare results that are obtained from different window 

sizes. For any given window size WS, the Fourier transform is applied over a set of discrete 

wavelengths, defined as the ratios of WS to wavenumbers [19]. The highest wavenumber corresponds 

to the Nyquist frequency of WS/2. Wavenumbers p and q are thus constrained to the following 

intervals: 1 ≤ p ≤ WS/2 and 1 ≤ q ≤ WS/2. Phase information is not very relevant to the texture and, 

therefore, can be neglected. Thus, periodograms (Ipq) can be calculated for each pair of spatial 

frequencies (p,q) using Fourier coefficients (apq and bpq), such that: 

Ipq = WS-2 (apq2 + bpq2) (3) 

The periodogram provides information on the variance of the image, according to the relative 

contributions of textural categories at various spatial scales. Based on its polar form, it is possible to 

conveniently characterize and recognize the distribution of surface patterns within the window 

considered, both in terms of scale and direction. The value of the periodogram in its polar form (Irθ) 

reflects the portion of the variance of the image that can be explained by waveforms having a given 
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wavenumber r and direction of motion θ, such that r = ��� + ��  and θ = tan-1(p/q). The r-

wavenumber corresponds to the number of times the same waveform, i.e., the same reference pattern, 

is repeated within the window in the θ direction. 

Additional simplifications can be applied to periodograms when the objective is textural 

analysis. They consist of calculating the average value of periodograms in all possible directions of 

motion θ to generate an averaged radial spectrum I(r). This spectrum is commonly referred to as the 

"r-spectrum": 

�(�) = (���)�� � ���
�

 (4) 

where k is the number of periodogram values at spatial frequency r and σ2 is the variance of the image. 

The r-spectrum thus makes it possible to summarize the characteristics of textural variation in terms 

of the state of grain size and fineness, which is very useful for vegetation studies such as oil palm 

plantations. More details regarding the calculation of r-spectra can be found in Renshaw and Ford 

[38], Mugglestone and Renshaw [39], Couteron et al. [37], Proisy et al. [8], and Guo and Rees [19]. 

As previously noted, the current study considers three increasing window sizes for each image 

and determines which one is the best. The optimal WS (window size) that was used to generate the 

FOTO textural indices corresponds to the one that exhibits the highest Nyquist frequency among the 

three. The Nyquist frequency is the maximum frequency that the signal can display without 

containing errors, i.e., one-half of the sampling frequency. It often takes a wavenumber between 1 

and 3. The r-spectra and Nyquist frequencies were obtained for the different windows and 

summarized in Figure 4. The best window size is 38 x 38 pixels for the PlanetScope image, while 60 

x 60 pixels is the best size for the FORMOSAT-2 image. WS is almost the same for the two images, 

i.e., 119 m for PlanetScope and 120 m for FORMOSAT-2. 

 

Figure 4. Nyquist and spatial frequencies as a function of mean r-spectra for window sizes ranging 

from 24 to 38 pixels for PlanetScope (top row) and 38 to 60 pixels for FORMOSAT-2 (bottom row). 

The fourth step involves textural ordination. The r-spectra that are produced were incorporated 

into a two-dimensional table, the rows of which represent the r-spectrum of the given window and 

the columns are the amplitude I(r) values. Normalization was performed on the columns of the table, 

after which the normalized spectra were subjected to principal component analysis (PCA). PCA 

characterizes the variability and measures the dispersion between r-spectra, reducing the 

dimensionality of the data to a few components (three in the current study). Principal component 
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axis 1 contrasts coarse (negative scores) and fine (positive scores) textures of canopy grain. Coarse 

textures generally represent large canopy sizes, while fine textures are more consistent with small- to 

medium-sized tree canopies. Principal component (PC) axis 2 could be interpreted as a gradient of 

canopy openness, from closed canopy (negative scores) to open canopy (positive scores) conditions, 

as has been indicated in various studies [6,37,40,41,42]. By definition, the first three PCs that were 

extracted explain most of the variation in the data; factor scores for these components were used as 

textural indices (FOTO indices). Their values were mapped as Red-Green-Blue (RGB) texture images 

to produce FOTO maps, with a spatial resolution equal to the window size (WS). 

2.3.2. Estimation of AGB by Multiple Regression 

Oil palm structural parameters from the 40 field sample plots were first averaged before 

proceeding to the AGB model step. To achieve this, field sample plots that were contained in the WS 

window sizes (120 m × 120 m) of both image types were identified for FOTO analysis. Parameter 

averages for these plots were then calculated for each window. Depending upon position, the 

window could contain one or a maximum of three plots. Mean values of oil palm structural 

parameters that were estimated were examined using scatter plots. Field data and calculations were 

checked for possible outliers. 

Mean values of the principal component (PC) scores for the normalized r-spectra (corresponding 

to the FOTO indices) were calculated for each window and then combined with the plot averages of 

the structural parameters. ArcGIS V10.7.1 (ESRI, Redlands, CA) was used for the overlay and spatial 

processing of the data. 

Before developing biomass models using MLR, we examined the relationships between FOTO 

indices and each palm structural parameter (DBH, HT, BA, D) estimated from field sample plots data 

in the study. This analysis identified parameters that best explained variations in the textural index, 

which would be the most influential in the MLR models. Finally, an MLR model was developed to 

estimate BA from the PlanetScope and FORMOSAT-2 images, respectively. The general form of the 

equation is as follows [8]: 

AGB = a0+∑ ��.���
�
���  (5) 

where a0 and aC are the MLR coefficients, and FI represents FOTO indices that were obtained from 

scores for the first three axes of PCA. To develop MLR models for estimating AGB, 75% of the total 

40 samples available were used. These data were randomly selected. The remaining 10 samples were 

held back for the independent validation of the results. 

Evaluation of various relationships that were developed (FOTO indices vs. structural 

parameters; AGB vs. FOTO indices) was performed using several statistical metrics. Relationships 

were deemed satisfactory when coefficients of determination (R2) were greater than 0.5, with p < 0.05. 

(P-values were calculated at a significance level of 5%). RMSE (Root-Mean-Square Error) and %RMSE 

(Relative RMSE) were further used to evaluate AGB models with MLR. The lowest values were 

sought. Ultimately, the choice of the best model in the present study was based more upon RMSE 

than upon R2, following recommendations from previous studies (e.g., [43]). 

2.3.3. Estimation of AGB Using MARS 

According to various studies that were mentioned in the introduction (Section 1), the MARS 

approach seems well suited to accounting for non-linearities in the data. It models relationships 

through summation of a series of so-called “basis functions” [27], which in fact constitute a set of 

stepwise adaptive linear regressions. We applied this method for the first time in the estimation of 

oil palm AGB. The generic expression of the MARS model that is based upon the dependent variable 

(y) and explanatory variable (x) is written as follows [28,32,44]: 

� = �(�) + � (6) 

where ε is the error and f(x) is the unknown regression function, which can be written as: 
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�(�) = �� + � ����(�)

�

���

 (7) 

where β0 is the constant in the model, Km(x) is the mth basis function, βm is the coefficient associated 

with the function Km(x), and M is the number of basis functions in the model. Each basis function 

Km(x) consists of a hinge function of the form max(0, x–k) or max (0, k-x), where k is a constant value. 

This formulation takes into account individual effects of the independent variables plus those 

resulting from interactions between two or more predictors (x). MARS eliminates less significant and 

redundant basis functions to create the final model [25]. To do this, basis functions are compared 

using the Generalized Cross-Validation Criterion (GCV). GCV is the residual Root-Mean-Square Error 

divided by a penalty determined by the complexity of the model [28]: 

���(�) =
∑ (�� − ��

�
��� (��))�

�(1 −
��

�
)�

 (8) 

where yi are the observed values of the dependent variable, n is the number of observations, fM(xi) is 

the MARS model with basis functions M, xi are the observed values of the explanatory variables that 

are included in the MARS model, and PM is the number of parameters in the MARS model. The lowest 

GCV value corresponds to the appropriate model. In this study, MARS equations for AGB were 

developed from the FOTO indices using Statistica (TIBCO, Palto Alto, CA, USA). 

2.3.4. Validation of the Estimates 

Validation of the different models that were developed for estimating AGB used 25% of the 

samples (10 samples), independent of the development or training phase. The different metrics that 

were considered in performance analysis included R2, p-values, RMSE and %RMSE [25,45]. The best 

model was subsequently used to produce a FOTO map of AGB. The best model was subsequently 

used to produce a FOTO map of AGB [28,46,47] using ArcGIS software. 

3. Results 

3.1. Textural Indices Using the FOTO Approach 

FOTO was applied to infrared bands of PlanetScope and FORMOSAT-2 images to extract r-

spectra for the oil palms. Figure 5a shows the variations in these spectra as a function of the r-wave 

number. The r-spectra for both images capture the entire gradient of the oil palm canopy cover. 

Maximum values are reached at r-wavenumber = 1, with low spatial frequencies of 8.4 cycles km-1 

and 8.3 cycles km-1 for PlanetScope and FORMOSAT-2, respectively (Figure 4). These values 

characterize canopy texture of the oil palm plantation. Beyond these estimates, mean r-spectrum 

values remain observable at wave numbers 2 and 3 (Figure 5a). The latter appear at spatial 

frequencies greater than the maxima for both images, as shown in Figure 4. These values further 

characterize the texture of oil palms for FORMOSAT-2 with a 60-pixel window size (Figure 4b), but 

did not fully characterize the texture for PlanetScope with a 38-pixel window size (Figure 4a). 

Minimum r-spectrum values were obtained at r-wavenumber ≥ 4, with high spatial frequencies (≥ 33 

cycles km-1) for both images (Figure 4). These values are more consistent with spatial patterns that do 

not represent the texture of oil palms. 

PCA of PlanetScope and FORMOSAT-2 r-spectra demonstrates that factor scores derived from 

the first three axes are sufficient to explain most variations in oil palm canopy textures in the images 

(Figure 5b). For PlanetScope, the three components account, respectively, for 61.3%, 21.9% and 5.4% 

of the variance (90.8% of total variation). For FORMOSAT-2, they account, respectively, for 63.4%, 

19.6% and 9.3% of the variance (90.3% of total variation). Ordinations of the first two axes (PC1 and 

PC2) are presented in Figures 5c and 5d for FORMOSAT-2 and PlanetScope, respectively. PC1 and 

PC2 account for just over 80% of total explained variance. The observed dispersions indicate the lack 

of correlation (orthogonality) between the two components in each case, consistent with expectation. 
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In the case of FORMOSAT-2, four distinct clusters or texture classes emerge in the ordination (Figure 

5c), i.e., open coarse texture, closed coarse texture, open fine texture and closed fine texture. These 

classes are encountered in the PlanetScope image, although distinctions among clusters are much less 

clear-cut than in FORMOSAT-2. The coarse or fine texture is related to the size of the canopies of oil 

palm trees. Coarse textures represent wider tops. Opening or closing refers to spacing between the 

crowns. Wide-open spaces indicate open canopies, while the tops of closed canopy textures are more 

compact. 

Using factor scores for the first two principal component axes (PC1 and PC2), red-green-blue 

representations of FOTO canopy texture maps were produced for each of the images (Figure 6). The 

colors are indicative not only of PC factor scores for both axes, but also textural classes. Yellow 

denotes the open fine-textured oil palm class. Here, scores are positive on both PC1 and PC2 (Figure 

5). This class occupies the entire central portion of the plantation and extends eastwards. It is 

dominated by with palms with lower-stature crowns, with an average stem height of around 8.8 m 

and DBH of 50.8 cm. Oil palms in the coarse-closed class are shown in blue (Figure 6). This class is 

characterized by negative scores on both PC axes (Figure 5). It is found in the western and eastern 

regions of the plantation. In these areas, palms have high average stem heights (about 9.7 m), larger 

average diameters (about 54.1 cm) and dominant broad crowns. Areas featuring the coarse-textured, 

open oil palm class are depicted in light green (Figure 6). Here, scores on PC1 are negative and 

positive on PC2 (Figure 5). This class of oil palms have dimensions similar to those of the previously 

mentioned class, with an average height of around 9.5 m, average DBH of 53.5 cm and dominant 

broad crowns, but open this time. Closed and open coarse texture classes are found on drier uplands, 

in contrast to open-fine texture, much of which is found in low-lying areas around the watercourse 

running through the plantation. This last class (in red) is characterized by fine, closed texture and 

appears in the northeastern part of the plantation (Figure 6). Scores defining this class are positive on 

PC1 and negative on PC2. Average palm height is identical to that of the open-fine texture class (8.8 

m), but average stem diameter is smaller (48.8 cm compared to 50.8 cm). This class is localized in 

lowlands near the watercourse and, thus, potentially subject to growing conditions that are indicative 

of poorly drained soils. 



Remote Sens. 2020, 12, 2926 11 of 24 

 

 

Figure 5. Spatial frequencies as a function of mean r-spectra from Fourier transformations in textural 

ordination (FOTO) analysis of the near infrared spectral bands of PlanetScope and FORMOSAT-2 (a); 

variance proportions explained by the 3 principal components (PCs) (b); ordination of plot scores on 

PCs 1 and 2 for FORMOSAT-2 (c) and PlanetScope (d). 

 

 

Figure 6. FOTO maps of oil palm canopy texture derived from actual RGB values of the FOTO indices 

of FORMOSAT-2 (a) and PlanetScope (b). 
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3.2. Estimation of AGB by Multiple Regression 

Correlations between FOTO indices and the various structural parameters of the oil palms were 

first analyzed. Table 2 summarizes correlations (as R2 values) with factor scores for the three principal 

components in both image types. For illustrative purposes, Figure 7 displays the results with PC1. 

The negative relationships that are obtained between PC1 from FORMOSAT-2 and plant structural 

parameters are the most significant overall (p < 0.0001). In particular, variation in PC1 not only 

strongly explains BA (R2 = 0.84), but also that of stem diameter (R2 = 0.78). Despite being significant, 

the weakest correlations are obtained with stem height (R2 = 0.56) and canopy density (R2 = 0.54). 

With PlanetScope, the results follow the same trends, but with weaker correlations in general. Basal 

area and DBH are the parameters that are best explained by PC1 in this case, with R2 values of 0.68 

and 0.64, respectively (p ≤ 0.0001). Stem height and density are the least explained with PC1 from 

PlanetScope (R2 < 0.55). Other than PC1, the other components (PC2, PC3) generally show 

insignificant relationships with the structural parameters of oil palms, regardless of the satellite data 

considered (Table 2). 

Table 2. Correlations between FOTO FORMOSAT-2 and PlanetScope indices versus structural 

parameters of oil palm. The table summarizes coefficients of determination (R2), and their associated 

P-values (P). PC1, PC2 and PC3 are, respectively, the principal component scores of axes 1, 2 and 3 of 

the principal component analysis (PCA) of the r-spectra of the 2D Fourier transform analysis. 

Parameter 

FORMOSAT-2 PlanetScope 

PC1 PC2 PC3 PC1 PC2 PC3 

R2 P R2 P R2 P R2 P R2 P R2 P 

Basal area (m2 ha-1) 0.84 < 0.0001 0.040 0.291 4.10-4 0.915 0.68 < 0.0001 0.163 0.027 0.022 0.430 

DBH (cm) 0.78 < 0.0001 0.042 0.280 0.022 0.438 0.64 < 0.0001 0.125 0.055 0.005 0.724 

HT (m) 0.56 < 0.0001 0.020 0.460 0.129 0.051 0.53 < 0.0001 0.075 0.144 0.001 0.840 

Density (oil palm ha-1) 0.54 < 0.0001 0.003 0.772 0.016 0.507 0.50 < 0.0001 0.083 0.122 0.029 0.369 

 

Figure 7. Relationships between oil palm structural parameters obtained from the field plots and PC1 

derived from PlanetScope and FORMOSAT-2 images. 
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Structural parameters of oil palms are explanatory variables of the aboveground biomass. A 

relationship between these parameters and FOTO indices that are from FORMOSAT-2 and 

PlanetScope, in particular PC1 (Table 2), suggests links between these indices and AGB. Based upon 

this preliminary analysis, MLR models of AGB were developed by considering the three components 

(PC1, PC2 and PC3) for each of the two image types. In the case of FORMOSAT-2, the best 

relationship that was obtained (Model 1) integrates all three indices (Table 3). It is a strong and 

significant relationship (R2 = 0.86, p < 0.0001). The associated RMSE was estimated to be 4.03 tons ha-

1. The best MLR model constructed considering PlanetScope FOTO indices (Model 2) uses also the 

three components (PC1, PC2 and PC3). This model offers comparable metrics to that of FORMOSAT-

2 (R2 = 0.83; p < 0.0001, RMSE = 3.77 tons ha-1, as indicated in Table 3. 

Table 3. Multiple linear regression models developed for estimating aboveground oil palm biomass 

using indices estimated by textural ordinations on Fourier transforms (FOTO), which were produced 

from PlanetScope and FORMOSAT-2 images. The constants a, b1, b2, and b3 are coefficients of the 

respective multiple linear regressions (MLR) equations. RMSE (tons ha-1) is the Root-Mean-Square-

Error and %RMSE is its percentage. P-values are calculated at a significance level of 5%. 

Model a b1 b2 b3 R2 
P-

value 
RMSE %RMSE 

����� 1 (��� ��������

− 2): 

��� = � + �� × ��1

+ �� × ��2

+ �� × ��3 

61.548 
-

2.369 

-

0.450 

-

0.409 
0.86 

< 

0.0001 
4.03 6.70 

����� 2 (��� �����������): 

��� = � + �� × ��1

+ �� × ��2

+ �� + ��3 

62.923 
-

2.271 

-

1.889 
0.534 0.83 

< 

0.0001 
3.77 5.98 

3.3. Biomass Estimation Using MARS 

AGB models were developed with the MARS approach using FOTO indices of the FORMOSAT-2 

and PlanetScope images, according to methods that are detailed in Section IV. Several combinations 

of indices PC1 to PC3 could be used to generate interesting equations. Table 4 summarizes the models 

that we have developed, and retained for validation purposes and to select the best model for each 

image type. All three models that were produced from FORMOSAT-2 data have very satisfactory 

performance criteria (R2 ≥ 0.89, p < 0.0001; RMSE < 3.6 tons ha-1; %RMSE < 5.9%). Among them, Models 

3 and 4 incorporate interactions between PC1 and PC3, thereby making additional adjustments 

compared to Model 5, which rely solely upon basic linear functions. The integration of interaction 

terms reduces slightly the estimation errors (less than 1 %), but increases the degrees-of-freedom that 

are associated with the equations. 

Three models were also developed using FOTO indices derived from PlanetScope. Models 6 and 

7 incorporate interaction terms, while Model 8 sums piecewise linear functions of the form βi(PCi - ki), 

where PCi corresponds to FOTO indices PC1, PC2 or PC3, and βi and ki are constants. As was the case 

with FORMOSAT-2, models taking interactions into account yield slightly smaller errors, but the 

differences are non-significant. Overall, the three models developed for PlanetScope appear as strong 

as those developed with FORMOSAT-2 data, with errors of the same order of magnitude (R2 ≥ 0.84, 

p < 0.0001; RMSE < 3.8 tons ha-1; %RMSE < 6%). 
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Table 4. Aboveground biomass models estimated using multivariate adaptive spline regressions (MARS). 

MODEL Equation R2 P-value 
RMSE 

(t.ha-1) 
%RMSE 

MARS models using FOTO indices of FORMOSAT-2 

Model 3 

��� = 70.415 −  3.287 × ���(0;  ��1 +  3.555) +  4.871 × ���(0;  ��2 − 0.508) −
 0.531 × ���(0;  ��1 + 3.555) × ���(0;  0.708 − ��3) +  1.807 × ���(0;  0.508 −

��2) × ���(0;  0.708 − ��3)   

 

0.90 < 0.0001 3.33 5.47 

Model 4 

��� = 70.933 −  3.354 × ���(0;  ��1 + 3.555) +  4.873 × ���(0;  ��2 − 0.508) −
 0.541 × ���(0;  ��1 + 3.555) × ���(0;  0.708 − ��3) +  0.353 × ���(0;  ��1 +

3,555) × ���(0;  0.508 − ��2)    
 

0.90 < 0.0001 3.36 5.52 

Model 5 

��� = 68.913 −  2,436 × ���(0;  ��1 + 3.555) +  1.848 × ���(0;  ��2 − 0.508) +
 1,304 × ���(0;  0.508 − ��2) −  1.515 × ���(0;  ��3 − 0.708) −  1.187 ×

���(0;  0.7084 − ��3)   
 

0.89 < 0.0001 3.57 5.87 

MARS models using FOTO indices of PlanetScope 

Model 6 

��� = 98.714 −  2.764 × ���(0;  ��1 + 1.182) +  1.311 × ���(0; −1.182 − ��1) −
 3.154 × ���(0;  ��2 + 4.085) +  0.189 × ���(0;  ��1 + 1.182) × ���(0;  ��2 +

4.085) +  5.299 × ���(0; −1.182 − ��1) × ���(0;  ��3 + 0.031) −  7,189 ×
���(0; −1.182 − ��1) × ���(0; −0.031 − ��3) +  1.786 × ���(0;  ��2 + 4.085) ×
���(0;  ��3 + 0.031) −  1.386 × ���(0;  ��2 + 4.085) × ���(0; −0.031 − ��3) −

 8,953 × ���(0;  ��3 + 2.231)   

 

0.87 < 0.0001 3.33 5.31 

Model 7 

��� = 76.574 −  2,727 × ���(0;  ��1 + 1.182) +  3.191 × ���(0; −1.182 − ��1)
−  2.808 × ���(0;  ��2 + 4,085)
+  0.071 × ���(0;  ��1 + 1.182) × ���(0;  ��2 + 4.085)
+  0.245 × ���(0; −1,182 − ��1) × ���(0;  ��3 + 0.031)
−  2,678 × ���(0; −1,182 − ��1) × ���(0; −0.031 − ��3)
+  0.096 × ���(0;  ��1 + 1.182) × ���(0;  ��2
+ 4.085) × ���(0;  ��3 + 2.231)  

  

0.87 < 0.0001 3.36 5.37 

Model 8 
��� = 74.739 −  2.346 × ���(0;  ��1 + 1.182) +  1.867 × ���(0; −1.182 − ��1)

−  1.981 × ���(0;  ��2 + 4.085) −  1.170 × ���(0;  ��3 + 0.031)
−  1.262 × ���(0; −0.031 − ��3)  

0.84 < 0.0001 3.74 5.97 
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3.4. Validation of Estimates 

AGB models that were developed using MLR and MARS approaches, based on the FOTO 

indices, were validated from independent samples that were not considered during the training or 

development phase (see Section 4.1). Table 5 summarizes results that were obtained. The validation 

exercise confirms strong relationships between biomass and FOTO indices for both PlanetScope and 

FORMOSAT-2, as demonstrated by the summary statistics (R2 ≥ 0.80; p ≤ 0.0005; RMSE < 5.5 t ha-1; 

%RMSE < 10.2%), regardless of the approach (MLR or MARS) used. In this study, MLR appears to be 

just as effective as the MARS method, especially when FORMOSAT-2 data are used. Overall, the best 

validation results are obtained with FORMOSAT-2 data (R2 ≥ 0.89; p < 0.0001), especially for Models 

3, 4 and 5, which yield lowest errors (%RMSE ≤ 6.40%). Model 1 (based on MLR) gives quite similar 

validation results. Slight elevated errors were obtained with PlanetScope MARS models at the 

validation stage (on average about 3% above FORMOSAT-2 models in terms of %RMSE). 

Examination of the various results obtained shows that proposed approaches, when combined 

with the use of FOTO texture indices, are effective in estimating oil palm aboveground biomass. The 

use of PlanetScope or FORMOSAT-2 images does not introduce important differences. Of all 

proposed models that were based upon MARS, Model 3 for FORMOSAT-2 and Model 6 for 

PlanetScope appear to be the best models. These two models have errors of 6.09% and 8.51%, 

respectively, on the estimated AGB (Table 5). Model 1 that is based upon the MLR approach with 

FORMOSAT-2 is just as efficient, with a similar error level of 6.56%. 

Table 5. Validation of aboveground biomass models. 

Model   R2 P-value 
RMSE 

(t ha-1) 
%RMSE 

Model 1 (MLR FORMOSAT-2) 0.85 0.0001 4.18 6.56 

Model 2 (MLR PlanetScope) 0.81 0.0004 5.45 10.11 

MARS model validation for FORMOSAT-2 

Model 3 0.92 < 0.0001 3.88 6.09 

Model 4 0.91 < 0.0001 3.97 6.24 

Model 5 0.89 < 0.0001 4.08 6.40 

MARS model validation for PlanetScope 

Model 6 0.82 0.0003 4.59 8.51 

Model 7 0.80 0.0005 4.98 9.24 

Model 8 0.82 0.0003 5.11 9.47 

 

Following validation, an AGB map was generated with Model 3 using FORMOSAT-2 data for 

illustrative purposes (Figure 8). Observable spatial variability in the map (Figure 8b) reflects 

variations in oil palm structure that were observed in the field during sampling. It is also similar to 

variability in oil palm texture (Figure 6a). Thus, highest AGB (> 59.00 t ha-1) is found in dry land areas 

(dark green and medium dark green, Figure 8b). These areas benefit from regular maintenance of the 

oil palms by OPG. On one hand, they are characterized by an open or closed coarse texture (Classes 

2 and 4, Figure 6b), i.e., they are dominated by mature oil palms with large tops. On the other hand, 

lowest AGB (< 59.00 t ha-1) is in the poorly drained lowland area surrounding the stream crossing the 

eastern section of the plantation (Figure 8b, light green and medium light green). Pockets of 

continuous stagnant water are found here; palms do not benefit from the same silvicultural 

maintenance. Consequently, these oil palms exhibit lower growth and appear less mature. They are 

characterized by smaller crowns, as observed during fieldwork. The corresponding textures in the 

images are rather thin open or closed in these areas (classes 1 and 3, Figure 6b). 
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Figure 8. Multispectral satellite image of the study area (a) and aboveground oil palm biomass map 

derived with MARS (Model 3) from FORMOSAT-2 FOTO indices (b). 

4. Discussion 

4.1. Potential of FOTO Indices for Oil Palms 

FOTO indices that were obtained using factor scores for the first three axes of the principal 

component analysis allowed us to capture coarse and fine textures of oil palm crowns. They also 

made it possible to characterize the degree of canopy openness and closure. Various studies have also 

shown the ability of FOTO indices to describe the textures of the canopy of forests and oil palms 

[6,8,14]. The homogeneity and the simple structures of the mature oil palm stand in an agro-industrial 

plantation context certainly favored the performance of FOTO indices. According to its original 

applications, the FOTO method is best suited for treating homogeneous stands [18,48]. Overall, the 

palms that were considered were mature (> 30-years-old) and the differences that were observed 

between them could be mainly attributed to their location, i.e., either in uplands or in low-lying areas, 

which conferred greater homogeneity to the images. Yet, FORMOSAT-2 data captured texture 

information better than PlanetScope did. These data resulted from a pansharpening process and 

showed greater contrast with a fine spatial resolution (2 m x 2 m), thereby favoring a sharper 

delineation of palm crowns. In addition, radiometric uncertainty of FORMOSAT-2 was less than 5% 

[49], which helped to reduce noise in the data. To minimize information losses and noise, no 

radiometric correction was applied to the FORMOSAT-2 image, as recommended in previous work 

employing the FOTO method [8]. A low noise level favors full coverage of the Nyquist frequency by 

the spatial frequencies of the r-spectrum over the very first wavenumbers, as was the case in this 

study with the FORMOSAT-2 image (Figure 5). 

FOTO indices that were derived from PlanetScope also captured variation in the texture of oil 

palms, but in a less clear-cut manner. By comparing the Nyquist frequencies that were obtained, we 

observe that spatial frequencies of the PlanetScope r-spectrum contain more noise than those of 

FORMOSAT-2, especially for the first three wavenumbers. Several factors could explain these 

differences. The spatial resolution of PlanetScope (3.125 m x 3.125 m), although very good, is lower 

than that of the FORMOSAT-2 product used here. This may possibly affect the discrimination of palm 

crowns. The PlanetScope image had already undergone radiometric corrections, changing from grey 

levels to radiances at the top of the atmosphere. Further, radiometric uncertainty of PlanetScope is 
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on the order of 5-6% [50], which is higher than that of FORMOSAT-2. The combination of these 

different factors can promote loss of information and limit the performance of PlanetScope [50]. 

Nevertheless, we found that FOTO indices that were derived independently from the two types 

of images are significantly correlated, except for the third component. Indeed, the correlation between 

FORMOSAT-2 PC1 and PlanetScope PC1 is r = 0.80, while the correlation between the two PC2 is r = 

0.81. PC3, which consisted primarily of noise, is uncorrelated (r = -0.36). These significant correlations 

indicated that FORMOSAT-2 and PlanetScope captured very similar information in their first two 

FOTO indices, even though the images were acquired on very different dates (2011 for FORMOSAT-

2; 2017 for PlanetScope). This difference in years could initially be viewed as a handicap. However, 

several studies agree that the growth rate of oil palm in agro-industrial plantations stabilizes after 25 

years, and that its height growth gradually slows down towards 30 years [51,52,53]. The stabilization 

of the growth rate affects several structural parameters (diameter, crown size), which may be 

important for estimating AGB using FOTO indices [42]. As the study was carried out on a mature 

plantation, the effect of different dates of image acquisition was not noticed. 

Choosing the best window size is a very important step in implementing FOTO. To determine 

this size in this study, the window size that produced the highest Nyquist frequency was selected for 

each image. This choice also took into account the decomposition or separation of the principal 

component scores. This separation was observed in the ordination of factor scores for the two 

principal components of the r-spectra for each of the images in the study. With this choice, the number 

of scores that were available in each principal component with each window was also considered 

sufficient for establishing relationships between the FOTO indices and AGB [8]. These different 

choices made it possible to facilitate the application of FFT-2D analysis and production of the r-

spectra. Some scores in the present study appear very high (Figure 6). However, as also observed and 

reported in Couteron et al. [37,40], these high values closely match the fine textured grain, and are 

not outliers. 

4.2. Estimation of Aboveground Biomass 

The study established different models for estimating AGB based on the MLR approach and the 

MARS method. Equations that were developed with MLR were very significant overall. The 

validation process confirmed the robustness of these relationships, especially with FORMOSAT-2 

(Model 1, R2 = 0.85, p = 0.0001, RMSE = 4.18 t ha-1, %RMSE = 6.56%). With MARS, we developed three 

models for each type of image. Some of these models used only basic piecewise functions, while 

others integrated the interactions that occurred between FOTO indices (PC1, PC2 and PC3). 

Integration of these terms provided additional adjustments that slightly improved model 

performance. Yet, this improvement frequently was not significant considering the RMSE differences. 

For the best two models with FORMOSAT-2 data, the difference is < 0.2%, while it is less than 0.8% 

for PlanetScope. With MARS, it is possible to consider several combinations of basic functions. 

Models 3 to 5 that were developed for FORMOSAT-2 and Models 6 to 8 for PlanetScope were 

apparently the best compromises in this study. Of these, Model 3 stands out as the most efficient 

following the validation process, with R2 = 0.92, p < 0.0001, and %RMSE = 6.09%. For comparison, 

larger errors, ranging from 28 to 36% were reported in [4] for AGB prediction uncertainties of young 

oil palms (1 to 5 years), based on models using spectral indices and Normalized Difference Vegetation 

Index (NDVI). The FOTO PC1 index plays a crucial role in each of the models developed in the 

present study. This was not very surprising, since PC1 already explains several important structural 

parameters of the oil palm stand, including basal area (R2 = 0.68 to 0.84), DBH (R2 = 0.64 to 0.78), stem 

height (R2 = 0.53 to 0.56) and density (R2 = 0.50 to 0.54) (see Figure 7). These different parameters are 

critical for biomass estimation. PC2 (and, to a lesser extent, PC3) provided additional information 

that favors more accurate biomass estimation. 

The relatively homogeneous structure of the oil palm plantation is well captured by the FOTO 

indices, particularly at the FORMOSAT-2 scale, thereby favoring a more accurate estimate of 

aboveground biomass. In a study in Malaysian Borneo, Singh et al. [14] similarly reported very 

significant results (R2 = 0.83) between AGB of young oil palms (< 9-year) and FOTO indices that were 
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derived from SPOT 5 imagery acquired at a fine spatial resolution similar to that of FORMOSAT-2 

(2.5 m × 2.5 m). The results found in this study are comparable to those reported in several other 

studies for different vegetation types. Indeed, strong relationships (R2 = 0.92) have been shown 

between AGB of mangroves in French Guiana and the FOTO indices (PC1, PC2 and PC3) derived 

from panchromatic Ikonos image at a spatial resolution of 1 m [8]. In several studies, the FOTO index 

(PC1) was well correlated to structural parameters of tropical forests [6,14,40,42], as was the case here 

for oil palms. For example, the study in [40] on tropical forest reported R2 = 0.57 between FOTO PC1 

and stem height, which is similar to the values we found here for oil palms (R2 = 0.56 with 

FORMOSAT-2, and 0.53 with PlanetScope). In addition, based on simulations, Barbier et al. [42] 

reported good relationships between PC1 and forest canopy DBH (R2 = 0.75), crown size (R2 = 0.62), 

but the correlation with density was relatively weak (R2 = 0.35). Singh et al. [14] found strong 

relationships between FOTO indices and structural parameters of a mixed forest landscape. The 

biomass models that were developed in our study with FORMOSAT-2 FOTO indices apparently 

performed slightly better than those of PlanetScope, as shown during the validation phase (Table 5). 

The average difference in terms of %RMSE is in the order of about 3%. Radiometric noise in 

PlanetScope images (5 to 6%; [50]) was higher than in FORMOSAT-2 (< 5%; [49]), as were differences 

in spatial resolution and the influence of image processing on calculation of the FOTO indices. Aside 

from the characteristics and the quality inherent to the different types of images, potential 

measurement errors of oil palm variables in the field may also affect the results found. 

Models that were based on the MARS approach are more dependent on the range of data values 

and their degree of autocorrelation than on pre-processing applied to satellite images [54]. This result 

underscores the importance of principal component analysis, which reduces correlations in FOTO 

indices. In all of the results that we obtained, the MARS approach was well suited to estimating AGB 

in oil palm plantations, both with PlanetScope and FORMOSAT-2 imagery. The performance of 

MARS is attributable to the method's ability to transform and select important variables, and then to 

identify non-linear and multidimensional interactions between them [25,33,55]. Therefore, it was not 

surprising that various previous studies have reported favorable results for the MARS method 

compared to other statistical methods (logistic regression, MLR, among others) in a range of fields, 

such as medicine, pedology, hydrology and forestry [23,31,32,33]. The MARS approach deserves 

further investigation in remote sensing for AGB estimation, not only of plantations but also of natural 

forests. Other advanced methods that are based on the concept should also be introduced, including 

Multivariate Adaptive Regression Spline Differential Evolution (MARS-DE), which has been recently 

proposed by Al-Sudani et al. [56]. 

Despite the very significant results that were obtained, the study had some limitations that 

should be mentioned. The number of sample plots that were considered is relatively small. The use 

of a sufficient number of sample plots randomly distributed on plantations at various growth stages 

would improve the robustness of AGB models that are based upon FOTO indices. In this sense, 

PlanetScope images and other types of fine-resolution optical images (SPOT, PLEADES, SkySat, 

among others) could be analyzed to better understand the effects of spatial resolution, radiometric 

noise and pre-processing. The very encouraging results that were obtained here with FOTO indices 

also permit the use of other texture indices that are derived, for example, from a grey-scale co-

occurrence matrix, wavelet decomposition or multiband texture analysis. The addition of auxiliary 

information, such as topographic, climatic or geomorphological data, could also be considered for 

improving estimates of AGB [13,57]. 

5. Conclusions 

This study estimated oil palm AGB with MARS and MLR using PCA scores (components 1, 2 

and 3) performed on FORMOSAT-2 and PlanetScope r-spectra. These scores were considered as 

FOTO textural indices for each image type. The results that were obtained with both approaches are 

very good overall, especially when FORMOSAT-2 data are considered. Slightly higher errors were 

obtained with PlanetScope compared to FORMOSAT-2, according to the validation performed. The 

different models that were developed with MARS, particularly those integrating interaction terms 



Remote Sens. 2020, 12, 2926 19 of 24 

 

between the FOTO indices (explanatory variables), proved to be more efficient in the study for both 

type of satellite data. They all integrate the basis functions of the FOTO indices of the three PCA axes 

and contain their interaction terms. The best model in the study is based on FORMOSAT-2 FOTO 

indices. It was chosen to produce an AGB map of the study area. Upon further studies, such a model 

could be used to map AGB of oil palms in the Congo Basin using remote sensing data. Then 

corresponding sequestrated carbon could be evaluated, with linkage to climate change. The present 

study focused mainly on a mature oil palm plantation. Subsequent work would have to extend it to 

larger plantation areas with different stages of palm growth and development, and use a larger 

number of sample plots. The MARS approach should be further investigated not only with different 

types of very high-resolution commercial images, but also with free medium-resolution images (e.g., 

Landsat, Sentinel) for mapping plantation biomass at larger scales. 
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Appendix A 

Appendix 1: Mean measurements of structural attributes of oil palms and FOTO indices of FORMOSAT-2 and PlanetScope from 40 sample plots. 

Sam

ple 

plot 

DBH 

(cm) 

HT 

(m) 

N

P 

Sample 

plot 

size (ha) 

Density 

(D, stems 

ha-1) 

Basal area (BA, 

m2 ha-1) 

AG

B 

(t 

ha-1) 

FOTO FORMOSAT-2  

Index PC 1 

FOTO FORMOSAT-2  

Index PC 2 

FOTO 

FORMOS

AT-2 

Index PC 

3 

Sam

ple 

plot 

FOTO PlanetScope 

Index PC 1 

FOTO PlanetScope 

Index PC 2 

FOTO 

PlanetSc

ope 

Index 

PC 3 

1 50.1 9.0 14 0.0949 147.58 29.12 
59.9

8 
3.8250 1.9841 1.3269 33 -2.0411 -1.3696 0.8058 

2 49.2 8.7 13 0.0949 137.04 26.05 
52.5

0 
3.8250 1.9841 1.3269 28 -1.0427 1.6428 0.4886 

3 52.0 9.5 13 0.0949 137.04 29.10 
61.9

4 
3.0635 2.6853 0.5705 6 -2.3456 -1.7279 -1.1479 

4 49.9 8.1 12 0.0949 126.50 24.74 
46.7

5 
3.9768 1.4688 2.0267 35 1.2730 0.6543 0.5863 

5 52.2 8.9 12 0.0949 126.50 27.07 
54.5

0 
3.8010 2.0356 1.2569 37 -2.3456 -1.7279 -1.1479 

6 55.0 9.8 14 0.0949 147.58 35.06 
75.1

5 
-3.5172 -1.5532 0.7565 39 -2.3484 -1.7393 -1.0638 

7 47.5 8.1 10 0.0949 105.41 18.68 
35.8

9 
13.1415 -7.9270 -2.4761 15 -2.2906 -1.6971 -1.1064 

8 53.6 9.7 13 0.0949 137.04 30.92 
66.2

8 
-2.2736 -0.3779 -0.3589 20 1.1568 3.3801 -0.4313 

9 54.0 9.2 14 0.0949 147.58 33.80 
69.1

6 
-3.3880 -1.4290 0.7084 7 13.6523 -4.0852 0.2206 

10 50.6 7.9 12 0.0949 126.50 25.44 
46.8

7 
3.8010 2.0356 1.2569 23 -1.5804 -0.8723 -0.0309 

11 52.4 8.1 12 0.0949 126.50 27.28 
50.7

1 
2.2651 0.7727 1.8012 40 4.8270 0.1599 -0.8179 

12 50.1 8.5 12 0.0949 126.50 24.94 
48.9

9 
4.5290 0.7573 3.1037 29 -2.2852 -1.5613 0.2094 

13 49.0 8.8 12 0.0949 126.50 23.85 
48.6

0 
2.6622 2.3338 -1.7137 25 -2.3446 -1.7236 -1.1794 

14 53.8 9.5 13 0.0949 137.04 31.15 
65.5

5 
-3.5548 -1.5942 0.7865 13 6.4176 0.5759 -0.6511 

15 54.0 9.2 15 0.0949 158.12 36.21 
74.1

0 
-3.3880 -1.4290 0.7084 17 2.1185 1.9107 -0.1541 

16 54.1 9.5 14 0.0949 147.58 33.94 
71.2

7 
-3.5198 -1.5316 0.7925 31 -0.7382 -0.5980 0.3733 

17 53.8 9.5 11 0.0949 115.96 26.36 
55.4

6 
2.1518 3.5466 -2.6997 34 0.5918 2.4826 -2.2313 

18 47.3 7.5 13 0.0949 137.04 24.08 
43.4

6 
3.9768 1.4688 2.0267 22 -2.3484 -1.7393 -1.0638 

19 54.4 9.6 14 0.0949 147.58 34.30 
72.5

3 
-3.4823 -1.4911 0.6804 21 -2.0411 -1.3696 0.8058 

20 50.3 8.9 11 0.0949 115.96 23.04 
46.9

7 
4.7157 0.5084 3.3331 5 0.0175 3.2484 0.3644 
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21 54.5 10.0 13 0.0949 137.04 31.97 
69.8

9 
-3.3296 -1.2211 -0.1283 27 2.1185 1.9107 -0.1541 

22 54.0 9.9 13 0.0949 137.04 31.38 
68.2

6 
-3.4365 -1.4652 0.6766 30 -0.5819 0.2548 1.3118 

23 54.1 10.0 14 0.0949 147.58 33.92 
74.3

5 
-2.8117 -0.5214 -0.1735 38 -2.2852 -1.5613 0.2094 

24 53.4 9.3 13 0.0949 137.04 30.74 
63.6

8 
-2.0619 0.6111 -1.4960 8 -0.7382 -0.5980 0.3733 

25 54.0 9.8 13 0.0949 137.04 31.38 
67.6

8 
-3.5548 -1.5942 0.7865 14 -2.3446 -1.7236 -1.1794 

26 54.0 9.8 13 0.0949 137.04 31.38 
67.6

8 
-2.8117 -0.5214 -0.1735 1 0.1290 3.2638 0.2358 

27 50.4 9.5 13 0.0949 137.04 27.34 
58.8

0 
2.1518 3.5466 -2.6997 32 1.2730 0.6543 0.5863 

28 51.0 8.8 12 0.0949 126.50 25.84 
51.9

4 
4.1436 1.5851 2.1661 3 -1.1820 2.6869 0.6168 

29 54.6 9.4 14 0.0949 147.58 34.55 
71.7

1 
-3.4018 -1.4043 0.3814 16 -2.3308 -1.7119 -1.5686 

30 54.1 9.7 12 0.0949 126.50 29.08 
62.1

4 
-2.0619 0.6111 -1.4960 26 -1.5804 -0.8723 -0.0309 

31 54.2 9.9 12 0.0949 126.50 29.16 
63.3

5 
-2.2736 -0.3779 -0.3589 36 13.6523 -4.0852 0.2206 

32 53.2 9.6 13 0.0949 137.04 30.46 
64.9

0 
-0.9198 0.8538 -1.5104 10 0.0175 3.2484 0.3644 

33 54.0 10.0 14 0.0949 147.58 33.80 
74.1

2 
-3.3296 -1.2211 -0.1283 4 1.2443 3.4173 -2.4650 

34 52.3 9.3 12 0.0949 126.50 27.18 
56.7

1 
2.2651 0.7727 1.8012 2 0.1290 3.2638 0.2358 

35 53.4 9.5 12 0.0949 126.50 28.33 
59.7

6 
-0.9198 0.8538 -1.5104 24 -0.5819 0.2548 1.3118 

36 50.0 9.5 10 0.0949 105.41 20.70 
44.6

4 
13.1415 -7.9270 -2.4761 18 1.2443 3.4173 -2.4650 

37 53.8 9.5 14 0.0949 147.58 33.55 
70.5

9 
-3.5172 -1.5532 0.7565 12 1.6351 3.2526 -0.4513 

38 53.8 10.0 14 0.0949 147.58 33.55 
73.6

7 
-3.4018 -1.4043 0.3814 9 -2.2906 -1.6971 -1.1064 

39 53.5 9.9 13 0.0949 137.04 30.81 
67.2

1 
-3.4365 -1.4652 0.6766 11 0.5918 2.4826 -2.2313 

40 52.0 9.2 12 0.0949 126.50 26.86 
55.6

7 
1.2572 1.4553 -1.1441 19 -2.3184 -1.6708 -1.0029 
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