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Abstract: Due to the existence of environmental or human factors, and because of the instrument itself,
there are many uncertainties in point clouds, which directly affect the data quality and the accuracy of
subsequent processing, such as point cloud segmentation, 3D modeling, etc. In this paper, to address
this problem, stochastic information of point cloud coordinates is taken into account, and on the basis
of the scanner observation principle within the Gauss–Helmert model, a novel general point-based
self-calibration method is developed for terrestrial laser scanners, incorporating both five additional
parameters and six exterior orientation parameters. For cases where the instrument accuracy is
different from the nominal ones, the variance component estimation algorithm is implemented for
reweighting the outliers after the residual errors of observations obtained. Considering that the
proposed method essentially is a nonlinear model, the Gauss–Newton iteration method is applied to
derive the solutions of additional parameters and exterior orientation parameters. We conducted
experiments using simulated and real data and compared them with those two existing methods.
The experimental results showed that the proposed method could improve the point accuracy from
10−4 to 10−8 (a priori known) and 10−7 (a priori unknown), and reduced the correlation among
the parameters (approximately 60% of volume). However, it is undeniable that some correlations
increased instead, which is the limitation of the general method.

Keywords: self-calibration; Gauss–Helmert model; random error; Gauss–Newton method; variance
component estimation

1. Introduction

In contrast to the traditional single-point acquisition method, terrestrial laser scanning (TLS)
technology greatly improves work efficiency with a variety of applications [1–4]. While during the
procedure of point cloud data acquisition, TLS could irresistibly be affected by, e.g., the instrument
itself, the external environment, the scanning targets, etc., which results in the point cloud coordinates
being modified by the systematic and random errors to varying degrees, reducing the observation
accuracy of point cloud coordinates to a certain extent. Consequently, the coordinates obtained by TLS
and the real coordinates of the target points are not always corresponded.

Similar to the total station (TS), three-dimensional coordinates in laser point clouds are calculated
via the spherical coordinate system subjected to the oblique distances, horizontal, and vertical angles
measured by the instruments itself. On the other side, systematic errors, in the course of scanning,
caused by ranging the angle of incident, target reflectivity, and temperature are undoubtedly not
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negligible [5]. All these above factors directly affect the accuracy of point cloud data [6], and to
some extent, weaken the accuracy of subsequent point cloud processing. Fortunately, users can
normally correct or evaluate the results of the scanning measurement, according to the application
environment and nominal accuracy of the instrument from the manufacturer. However, in the
event that the nominal accuracy of the instrument loses consistency with the actual ones, the above
operations may yield incorrect results, which is, in fact, extremely usual. It is, therefore, crucial to make
a reasonable determination of the actual accuracy (or additional parameters), the so-called calibration
(or self-calibration) of the instruments correctly and rationally.

The traditional calibration methods [7–10], which require more demanding conditions on the
environment and operators, are to observe the determined targets in the angles and distances, separately
to acquire the additional parameters (APs) containing the addition constant, horizontal axis error,
etc. In recent years, self-calibration methods, bringing unknown parameters into the function model
for calculation, can be divided into two categories—point-based and plane-based—have attracted
the attention of researchers in TLS calibrations. In the case of point-based methods, it is typically
a matter of fitting hundreds (thousands) of observations to the center of the target object to obtain
point features [11].

Gielsdorf et al. [12] pioneered the concept of TLS calibration for low-cost scanners. Lichti [13–16]
presented a rigorous method for self-calibration of TLS using a network of signalized points by
adding a set of APs to the spherical coordinate observation equation, enabling the calibration of
the amplitude-modulated-continuous-wave (AM-CW) scanner system [13]. Schneider [17] used the
approach proposed in [13] to fulfill the self-calibration of Riegl LMS-Z420i (Riegl, 2007). Reshetyuk [18]
implemented the calibration of Callidus 1.1 (Callidus, 2002), HDS (High Definition Surveying)
3000 (Leica, 2003), and HDS 2500 (Leica, 2001) in a specially designed indoor 3D calibration facility.
Afterwards Reshetyuk et al. [19] constructed a function model by associating appropriate weights to the
observations with the point clouds directly georeferenced, adopting the notation from [13], to weaken
the correlations among the parameters [20,21]. Lichti [22] presented the full mathematical model for
a point-based photogrammetric approach to implement the FARO LS880 (FARO, 2007) self-calibration.
Lerma [23] proposed a method for determining the optimal set of additional parameters to achieve
a priori unknown systematic errors modeling based on a dimensionless quality index. Medic [24]
studied an empirical stochastic model based on point feature self-calibration, and addressed the
problem of the stochastic model as well as the factual incompatibility by examining the uncertainty of
the scanner target point.

However, point-based self-calibration methods often make the parameters correlated with each
other, while one goal of the self-calibration network design is to reduce the functional dependence in
model variables. Thereby, the point-based self-calibration methods often require the deployment of
signalized points covering the entire field of view [10,19]. Admittedly, the point-based methods are
cumbersome to operate and demanding for the observing environment. On the other hand, plane-based
self-calibration methods are more adaptable and have been implemented by [12,25–29].

Looking at the recent self-calibration literature, it can be found that some existing methods [30–32]
are very similar in terms of function models, i.e., Equation (4). They do not take into account random
errors, which to some extent cause the instability of the function models and make it impossible to
avoid the influence of random errors on the models itself and on the parameter solutions. In other
words, due to the fact that the random errors of the observed values are not included in the function
model, this can lead to the possibility of mixing a part of the random errors in the estimated APs,
so that the parameter estimates do not correspond to the actual situation, and thus, the accuracy of the
parameter solution cannot be guaranteed. In addition, there are still multiple scientific publications
that consider the nominal accuracy as a criterion for weighting, or impose some kinds of constraints to
the parameters [13,19,25]. As a result, the existing calibration models are not theoretically rigorous or
inadvertently increase the complexity of the solution. The nonlinear Gauss–Helmert (GH) model [33],
verified by [34,35], has no restriction on the form of functional relationship among the quantities
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involved in the model [36,37], which is an effective solution to avoid the above problems. In reality,
distances and angles are two types of observations with diverse units. Moreover, the difference
between the nominal and real accuracy of the instrument makes it unreasonable to use equal or direct
weights. It’s a proper time to introduce the variance component estimation (VCE) algorithm [38–40],
which provides a solution for this plight.

Based on the observation equation of the TLS and GH models (spatial transformation model for
specific), a general self-calibration model of the scanner with 11 parameters is constructed, including
three translation parameters and three rotation parameters (exterior orientation parameters, EOPs),
together with five instrument system error parameters (five APs). Due to the nonlinear nature of the
general method, the Gauss–Newton iteration algorithm in [41] is employed to derive the solution of APs
and EOPs. Furthermore, in the procedure of data processing, both optimal parameter estimation and
reasonable accuracy assessment, are conducted based on the stochastic model (variance information)
observations as the premise. As a result, ignoring random information or using a priori accuracy for
weighting does not yield a reasonable stochastic model, and will generate an adverse impact on the
parameter estimation. Finally, the VCE algorithm is applied to correct the weights after obtaining the
residuals of the observations. Overall, compared to other studies, the general self-calibration method
can account for random errors in the observations so the function model is more rigorous, and updating
the covariance matrix using the VCE theory yields more accurate estimates of the parameters.

The rest of the paper is organized as follows. In Section 2, the observation principle of the
scanner and the general self-calibration model are first introduced, and then the derivation procedure
is described in detail. The experiments are presented in Section 3. We present results and discussions
in Section 4. Finally, we conclude the paper with a summary of our work in Section 5.

2. Methods

2.1. Observation Principle of TLS

TLS establishes its datum on the basis of an independent left-handed coordinate system with
the original point O located in the center of the scanner. The X-axis is in the transverse scanning
plane, while the Y-axis is perpendicular to the X-axis, and the Z-axis is perpendicular to the X-Y plane.
The original observation data of the TLS [12,20] in the spherical coordinate system are the oblique
distance s, vertical angle θ, and horizontal angle α, i.e., (s, θ, α), as shown in Figure 1.
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Figure 1. Observation principle of TLS.

For the purpose of obtaining the three-dimensional coordinates of the target point relative to
the origin, it is necessary to transform the original observations into the Cartesian coordinate system.
As illustrated in Equation (1), the transformation method for the above two coordinate systems,
i.e., the observation principle of TLS [13,16,20] is shown.

x = s · cosθ · cosα
y = s · ccosθ · sinα
z = s · sinθ

(1)
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where [x, y, z]T denotes the Cartesian coordinate vector of a single point obtained by TLS.
Likewise, the distance and angle data required for the self-calibration could also be converted out

from Cartesian coordinates through Equation (2) [28].
s =

√
x2 + y2 + z2

α = tan−1(y/x)
θ = tan−1

(
z/

√
x2 + y2

) (2)

From the observation equation, i.e., Equation (1), it is clear that the distances and angles are the
direct observations. In addition to random errors, their systematic errors can also affect the scanning
results, even if the target and environmental factors are typically different. Since the scanners are based
on the optical ranging principle of distance measurement, with reference to the TS, there are two main
types of APs in them, that is, the addition constant m and the multiplication constant λ, caused by
mistakes in instrument manufacturing and installation, in conjunction with operational variations.
As for the three APs of the angles, collimation error c and horizontal axis error i are often present
in horizontal angle observations, toward the vertical index error t [16,18,28]. The correction results of
the collimation axis error c’ and horizontal axis error i’ to the horizontal angle observations follow
the equation: {

c′ = c/ cosθ
i′ = i · tanθ

(3)

2.2. General Self-Calibration Model

The above-mentioned reasons cause the obtained coordinate observations to not correspond
to the real values, so a reasonable calibration method is necessary to effectively remove APs.
Conventional self-calibration methods apply high-precision instruments (e.g., TS) and scanners
to measure homonymous points uniformly distributed in space (e.g., target or target sphere) to collect
the coordinates of the respective datum, after which the TS’s measurement points are treated as
a reference. Possible existing APs are considered as parameters to be estimated and brought into the
model for adjusting [19,22,30]. Accordingly, the self-calibration function model is usually represented
as a variant of the non-line Gauss–Markov (GM) model [42]. Processing the coordinate sequence
through the GM model is to solve the vector of unknown parameters, containing five APs and six
EOPs, which results in the identities;

X
Y
Z

 = R


x
y
z

+


∆x
∆y
∆z

 = R


[s · (1 + λ) + m] · cos(θ+ t) · cos(α+ c’ + i’)
[s · (1 + λ) + m] · cos(θ+ t) · sin(α+ c’ + i’)

[s · (1 + λ) + m] · sin(θ+ t)

+


∆x
∆y
∆z

 (4)

where [X, Y, Z]T denotes the coordinate vector of homonymous points observed through TS.
[∆x, ∆y, ∆z]T represent the translation parameters. [m,λ, c′, i′, t]T represent the APs. R is the rotation
matrix, including three parameters, in the form of:

R = RϕRωRκ =


cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ




1 0 0
0 cosω − sinω
0 sinω cosω




cosκ − sinκ 0
sinκ cosκ 0

0 0 1

 (5)

where (ϕ,ω,κ) are the parameters geared to the rotation vector, i.e., the Euler angles rotating around
the Y-axis, the X-axis, and the Z-axis, respectively. Regarding Equation (4), (∆x, ∆y, ∆z,ϕ,ω,κ) are the
EOPs of the general self-calibration method.
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For nonlinear models, Equation (4) generally needs to be linearized before solving for the unknown
parameters [41]. Considering that the principle of indirect adjustment, the following error equation
can be written

V = Aξ− L (6)

Here, V and A denote the residual error vector and coefficient matrix of the parameter vector,
respectively. ξ is the parameter vector to be estimated, and L indicates the observation vector.

In the absence of weights, the objective function to be minimized is obtained in the form:

VTV = min (7)

Starting from this state of discussion, and taking random errors into consideration, the present
study aims to achieve the following objectives:

1. Weight observations according to its corresponding prior information to solve the unknown
parameters, for the sake of attenuating the effect of random errors on the coordinates of TLS;

2. For cases where the actual accuracy differs from the nominal accuracy, a posteriori determination
of the observed values is performed on the basis of the VCE algorithm.

3. Develop a general self-calibration model for the scanner and derive its solution based on the
nonlinear GH model and instrumental measurement principle within the weighted total least
square algorithm (WTLS);

The general point-based method for the TLS self-calibration proposed in this paper is constructed
in the form of the GH model. Its specific representation is similar to Equation (4), but takes the random
error of the original observations into account within the function model.

X
Y
Z

 = R


[(s− es) · (1 + λ) + m] · cos(θ− eθ + t) · cos(α− eα + c’ + i’)
[(s− es) · (1 + λ) + m] · cos(θ− eθ + t) · sin(α− eα + c’ + i’)
[(s− es) · (1 + λ) + m] · sin(θ− eθ + t)

+


∆x
∆y
∆z

 (8)

To one single point, where (es, eθ, eα) denotes the random error vector of the distance and
angles in the vertical and horizontal directions; the meanings of those remaining can be referred to
Equations (4) and (5).

The stochastic model for the general self-calibration method can be written in the form;

e =


es

eθ
eα

 ∼



0
0
0

,

σ2

s 0 0
0 σ2

θ 0
0 0 σ2

α


 (9)

with the objective function:
eTPe = min (10)

where (σs,σθ,σα) represent median errors in the distance and angles, respectively.
The corresponding parameter vector can be defined as

ξ =
[

∆x ∆y ∆z ϕ ω κ m λ c i t
]T

(11)

2.3. Derivation of General Self-Calibration Model

Since the proposed self-calibration model is essentially a nonlinear model, the corresponding
estimates can no longer be claimed as least squares (LS) estimates. Due to the nonlinear nature
of the Equation (8), the Gauss–Newton method [41] of the nonlinear LS is adopted to derive the
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solution. We assume that the appropriate approximate values (initial values) of e are e0 = (e0
s , e0

θ
, e0
α).

The unknown parameter vector approximate values are set up as:

ξ0 =
[

∆x0 ∆y0 ∆z0 ϕ0 ω0 κ0 m0 λ0 c0 i0 t0
]T

(12)

For the initial values of the parameter vector, the linear GM model can be utilized to solve the
EOPs. In addition, we can deem that the instrument is the ideal state at the time of the manufacturing
or measurement so that the initial values of the APs and the residual vector of observations can be
considered as Zero (a matrix with all elements zero) [19,30,35]. By substituting

H =


x
y
z

 =

[(s− es) · (1 + λ) + m] · cos(θ− eθ + t) · cos(α− eα + c’ + i’)
[(s− es) · (1 + λ) + m] · cos(θ− eθ + t) · sin(α− eα + c’ + i’)
[(s− es) · (1 + λ) + m] · sin(θ− eθ + t)

 (13)

The right-hand members of Equation (8) are expanded at (ξ0, e0) through the binary Taylor series,
and the yield of the linear equation expressed within new parameters:

X
Y
Z

 = R jH j +


∆x j

∆y j

∆z j

+

d∆x
d∆y
d∆z

+ ∂R j

∂ϕ H jdϕ+ ∂R j

∂ω Hidω+ ∂R j

∂κ H jdκ+ R j ∂H j

∂m dm+

R j ∂H j

∂λ dλ+ R j ∂H j

∂c cc + R j ∂H j

∂i di + R j ∂H j

∂t dt + R j ∂H j

∂e

(
e− e j

) (14)

where j the superscript denotes the sequence number of the iteration; during the first iteration,
the matrices involved can be populated with the initial values; ∂ is the symbol of the partial derivative,
where:

∂R j

∂ϕ
=
∂R j

ϕ

∂ϕ
R j
ωR j

κ =


−R j(3, 1) −R j(3, 2) −R j(3, 3)

0 0 0
R j(1, 1) R j(1, 2) R j(1, 3)

 (15)

∂R j

∂ω
= R j

ϕ
∂R j

ω

∂ω
R j
κ =


− sinϕ jR j(2, 1) − sinϕ jR j(2, 2) − sinϕ jR j(2, 3)
− sinω j cosκ j

− sinω j sinκ j
− cosω j

cosϕ jR j(2, 1) cosϕ jR j(2, 2) cosϕ jR j(2, 3)

 (16)

∂R j

∂κ
= R j

ϕR j
ω
∂R j

κ

∂κ
=


−R j(1, 2) R j(1, 1) 0
−R j(2, 2) R j(2, 1) 0
−R j(3, 2) R j(3, 1) 0

 (17)

Substituting 
s j = (s− e j

s) · (1 + λ j) + m j

θ j = θ− e j
θ
+ t j

α j = α− e j
α + c’ j + i’ j

(18)

The coefficient matrix of the APs vector can be expressed as:

∂H j

∂m =


cosθ j

· cosα j

cosθ j
· sinα j

sinθ j

, ∂H j

∂λ =


cosθ j

· cosα j

cosθ j
· sinα j

sinθ j

 · (s− e j
s),

∂H j

∂t =


−s j
· sinθ j

· cosα j

−s j
· sinθ j

· sinα j

s j
· cosθ j


∂H j

∂c =


−s j
· cosθ j

· sinα j

s j
· cosθ j

· cosα j

0

 · 1
cosθ j ,

∂H j

∂i =


−s j
· cosθ j

· sinα j

s j
· cosθ j

· cosα j

0

 · tanθ j

(19)

As with the parameters solution, the observation equation considering the random errors, namely
Equation (13), is a nonlinear model that also requires a partial derivative for each random error residual
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of the distance and angles in the form of
[
es − e0

s , eθ − e0
θ

, eα − e0
α

]T
; thus the corresponding residual

coefficient matrix can be represented as:

∂H j

∂e =


−(1 + λ j) · cosθ j

· cosα j s j
· (cosθ j

· sinα j
· γ+ sinθ j

· cosα j) s j
· cosθ j

· sinα j

−(1 + λ j) · cosθ j
· sinα j s j

· (− cosθ j
· cosα j

· γ+ sinθ j
· sinα j) −s j

· cosθ j
· cosα j

−(1 + λ j) · sinθ j
−s j
· cosθ j 0

 (20)

where
γ = c · secθ j

· tanθ j + i · sec2 θ j (21)

The altered vector of the new parameters to be estimated is:

dξ =
[

d∆x d∆y d∆z dϕ dω dκ dm dλ dc di dt
]T

(22)

For ease of comprehension and reading, it is capable to merge similar items of the function model,
resulting in

X = R jH j + ∆X j + A jdξ+ B j(e− e j) (23)

Here, A j represents the coefficient matrix of the parameters, with the form

A j =
[

E3×3
∂R j

∂ϕ H j ∂R j

∂ω H j ∂R j

∂κ H j R j ∂H j

∂m R j ∂H j

∂λ R j ∂H j

∂c R j ∂H j

∂i R j ∂H j

∂t

]
(24)

X =


X
Y
Z

, ∆X j =


∆x j

∆y j

∆z j

, B j = R j ∂H j

∂e
(25)

where E3×3 is the unit matrix with three dimensions.
After linearization of the general self-calibration model, we draw on the Gauss–Newton method

to implement the solving of unknown parameters and residuals of observations.
Substituting:

L j = X−R jH j
− ∆X j + B je j (26)

Establishing contact with the weight matrix P, the Lagrange objective function can be constructed
in the identity:

Φ = eTPe + 2KT
(
L j
−A jdξ−B je

)
= min (27)

where K is a vector of the auxiliary “Lagrange multipliers”. The weight matrix P can be represented
as follows:

P = blkdiag

 σ2
0

σ2
sq

,
σ2

0

σ2
θq

,
σ2

0

σ2
αq

 (28)

where q ranges from 1 to n; n denotes the total number of homonymous points; (σs, σθ, σα) representing
a priori information, which can be obtained from the nominal accuracy.

The solution of this objective function can be derived by means of the Euler–Lagrange necessary
conditions, i.e., the partial derivatives of each variable are equal to zero. We can readily obtain the
correction vector of the unknown parameters and residual error vector of the observations as follows:

dξ̂ j =
((

A j
)T(

Q j
c

)−1
A j

)−1(
A j

)T(
Q j

c

)−1
L j (29)

ê j = Q
(
B j

)T
K (30)
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where ‘ˆ’ indicates the estimation value; Q is the cofactor matrix of the observations, and Q = P−1;

Q j
c = B jQ

(
B j

)T
(31)

Thereby, the random error vector ê j of the observations needs to be updated in each iteration
according to Equation (30), and the parameter vectors and random errors of the observation vectors
after the first ( j + 1) iteration are updated as:

ξ̃ j+1 = ξ̃ j + dξ̂ j (32)

Here, ‘~’ indicates the prediction value; after stripping the solution ξ̃ j+1 and ê j+1 of its random
character, it is then used in the next iteration step as the approximation [34,35,41], which also shows
that the initial values in Equation (12) can only be used in the first iteration. As a consequence,
the mean square error of the unit weight, and the covariance matrix of the estimated parameters can be
estimated via:

σ̂0 =
√

eTPe/ (3n− 11) (33)

Dx = σ̂2
0

((
A j

)T(
Q j

c

)−1
A j

)−1
(34)

However, the nominal accuracy of an observed value is often not equal to the actual ones [41,42],
i.e., the observed value at the first adjustment given the weights are essentially inappropriate, which
would make the results obtained incorrect, although it may be very close to the true value. Therefore,
a posterior estimation is capable of solving unknowns and correcting observations. As the raw
observations in the general self-calibration model include both distances and angles, it is a reasonable
time to introduce the VCE. Similar to the Gauss–Newton method, the VCE algorithm is iterative and
terminates when the weight ratios of the various types of observations converge to one [40–42]. In this
case, the corresponding residual vector and its coefficient matrix, including the corresponding weights
and covariance matrix are altered, mainly a change in the position of the elements in the matrix;
see Appendix A for specific.

The main purpose of the general self-calibration method is to restore the true positions of the
object’s surface coordinates in space by removing uncertainties in point clouds, i.e., random and
systematic errors, and to provide a basis for improving subsequent point cloud segmentation [43,44],
3D modeling [45,46], etc. The general self-calibration method of TLS can be realized through the
following steps:

1. Determining the iterative initial value of the unknown parameters.

The linear transformation model would be appropriately adopted to obtain the initial values of
EOPs, as described in the first identity of Equation (4), or take a simpler assumption that the translation
parameter and rotation parameter are set to Zero, which will inevitably increase the number of iterations
or the convergence time. It’s important to note that doing so (EOPs ∝ Zero) risks converging to
failure. In terms of APs, it can be considered that all kinds of errors are completely eliminated in the
manufacture and installation of the instrument, so that the initial value of the system errors can be set
to Zero [19,30,35].

2. Computing original observations of homonymous point as illustrated in Figure 1.

The original observations, i.e., distances and angles, on the basis of the 3D coordinate data
acquired by the scanner, are deduced according to Equation (2). Vice versa, the 3D coordinates can be
back-calculated for comparing or checking, if needed.

3. Iterative process
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(1) populating the matrices A j, Q j
c, L j, B j, P j, respectively, according to Equations (24)–(26),

(28) and (31);
(2) Predicting the residual error vector of the parameters and random errors in the first jth

iteration through Equations (29) and (30);
(3) With the help of the initial value, ξ̃ j can be updated via Equation (32) to obtain matrices

mentioned in step (1) for the next iteration;
(4) Steps (1)–(3) are to be repeated until the break-off conditions are achieved [33,35],

and terminate the iteration;
(5) Repeating steps (1)–(4) to reweight the observations based on ê j, using VCE

until convergence.

4. Accuracy evaluation.

From Equations (33) and (34), the standard deviation to the homonymous points can be deduced,
toward the covariance information.

It is important to note that the matrices involved in step (1) are updated imperatively during
every iteration, otherwise there will be no convergence [35,41]. Also, the vector L can be set at the
initial value during the first iteration, but it is not valid for all the later iterations.

Since the general self-calibration method essentially is a nonlinear model, and the derivation
process is relatively complex, to facilitate the reader’s understanding, the overall comprehension as
well as reproduction, a flowchart is additionally created for the description of the individual steps,
as shown in Figure 2.
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3. Experiments

The experiments of the general method were carried out using simulated and real data. The data
in the simulated experiment were derived from practical instrument parameters, with the external
environmental influences such as atmospheric parameters, temperature and humidity neglected,
as well as some parameters related to the instrumentation leveling, which can be found in [13,15,19].
In addition, there is often a correlation wandering in unknown parameters [19–21], which is along with
the network design. The experimental idea was to use a high-precision TS and a scanner to be calibrated
to obtain observation data of the points at the specified location, respectively. For the two sets of
acquired coordinate data, we assumed the TS data as a reference, i.e., without containing any systematic
nor random errors. All the experiments were performed in MatlabR2019b [47], which focused on
the coordinate simulation and data processing. The proposed general self-calibration model was
implemented to calculate the APs and EOPs compared with two existing methods.

3.1. Simulated Data

Assuming that there are 80 points distributed randomly in a space domain, 70 of which are
homonymous, and the remaining 10 are used for checking. The distribution of these points is generated
based on the real scanner’s field of view (FOV), where the distances are set from 2 to 30 m; the horizontal
angles are set from 0 to 360◦ and the vertical angles are varied from −45◦ to 90◦. The corresponding
standardized residual, following a zero-mean and unit variance Gaussian density function [25,44],
to each true value need to be generated and added on the basis of the a priori standard deviations,
conducted under the standard null hypothesis with 4 mm for distances and 0.0033◦ for horizontal and
vertical angles, respectively. This simulation loops 5000 times.

Through Equation (1), we can convert the target points from a spherical coordinate system to
a Cartesian coordinate system. Taking the results of one of the simulations as an example to illustrate
the distribution of the target points in the TLS space, the results are shown in Figure 3.
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As for the unknown parameters, we stipulated the true value of EOPs and APs, which are
listed in Table 1, where the specific connotations of APs and EOPs can be found in the notes to
Equations (4) and (5).

Table 1. True values of EOPs and APs in simulation experiment.

EOPS APs

∆x/m ∆y/m ∆z/m ϕ/rad ω/rad κ/rad m/m λ c/rad i/rad t/rad

5 10 5 0.2 −0.2 1.0 0.005 10−4 −0.01 10−3
−10−5

According to the scanner observation principle, i.e., Equation (1), the 3D coordinates of the scanner
data could be calculated toward the TS subjecting to the first identity of Equation (4) by ignoring
the APs.

The following three strategies were employed to implement the self-calibration of TLS.

1. Nonlinear least-squares without regard to systematic errors;
2. Self-calibration method based on nonlinear least-squares ignoring the random errors;
3. General self-calibration method proposed in this paper.

At the beginning of the adjustment, it was assumed that the square root of the a priori variance
component σ0 was 0.001, and all the observation values in two datum were expected to be uncorrelated.
We calculated the root mean square error (RMSE) for the x, y, and z of 70 homonymous points, and the
remaining 10 points by the following identities:

σx =

√∑70

q=1
(x̃− xtotal)

2/70 (35)

σy =

√∑70

q=1
(ỹ− ytotal)

2/70 (36)

σz =

√∑70

q=1
(̃z− ztotal)

2/70 (37)

Therefore, the positional RMSE was derived from:

σp =
√
σ2

x + σ2
y + σ2

z (38)

where ‘total’ represents the observations from the TS; ‘~’ here indicates the corrected coordinates
calculated by Equation (13). RMSE for the checking points is similar to the above Equations (33)–(36),
just replacing the denominator into the total number of remaining points.

Accordingly, we could calculate the differences between the adjustment values and the true values
of the parameters to obtain the RMSE of each parameter as well

∇ξ = ξ̃ − ξtrue (39)

RMSE

√∑5000

q=1
(∇ξ)2/5000 (40)

where ξtrue is the true value of parameters; ∇ξ denotes the difference between the adjustment and
true values.

For the situation where the a priori information is often disparate from the true accuracy or the
a priori information is unknown in the actual measurement environment, the experiment is carried out
in three cases. Case 1 is where nominal accuracy equals to true accuracy, while the second and third
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are, respectively, a slightly differential spread of two pieces of information and an equal-weighted
treatment in the case where the a priori one is unknown.

3.2. Real Data

Two experimental strategies are designed as follows:

1. Self-calibration method based on nonlinear least-squares ignoring random errors;
2. General self-calibration method.

We bring the nominal accuracy of the HDS3000 (4 mm for range and 3.3 × 10−3◦ for angles,
one sigma) as a priori information into the adjustment process (Case 1), where the coordinates in the TS
datum are treated as the true value, to analyze the validity and practicality of the algorithm proposed
in this paper.

In addition, we have also assumed the case that the a priori information is unknown and the
observations are treated with equal weights (Case 2). The self-calibration is implemented using the
same two strategies described above, with the following results. It is assumed that the square root of
the a priori variance component is σ0 = 1.

In much of the literature, they directly take the nominal accuracy as a priori information to
participate in the adjustment process, ignoring posterior estimation, which may lead to the observed
values cannot match the appropriate weights and chop off the solution accuracy of the APs, nor can
achieve perfect calibration results. Here, we use coordinate sequence in [28] as the experimental data,
where eight points (five homonymous points using spherical target, and three checking points using
planar target), tabulated in Table 2, are determined by the NET1200 (SOKKIA, 2003) and HDS3000
(Leica, 2003), respectively.

Table 2. Original 3D coordinates of 8 points.

Classes
TLS (HDS3000) TS (NET1200)

x y z X Y Z

Sphere1 3.8057 −3.6132 −0.4957 6.5368 10.0224 5.7071
Sphere2 1.1437 −6.5275 −0.6502 2.7830 11.2521 5.5628
Sphere3 −0.6325 −3.3331 −0.6429 2.8041 7.5964 5.5640
Sphere4 −3.0580 −3.7878 −1.0332 0.4659 6.7989 5.1775
Sphere5 −3.4119 −1.7673 −0.6451 1.1509 4.8632 5.5611
Plane1 1.6613 −3.5856 −0.5756 4.6813 8.9467 5.6292
Plane2 0.7593 −1.5648 −0.5447 4.8888 6.7429 5.6555
Plane3 −1.7224 −0.9954 −0.5689 3.0013 5.0232 5.6314

4. Results and Discussions

4.1. Simulated Data

Since Strategy 1 (blue lines) does not consider the APs, so that they are not shown in (g)–(k)
in Figure 4. From the results of Table 3 and Figures 4–9, we can find that,

1. Strategy 1, without any error correction, has the largest deviation from the true value of the
parameters, which leads to the necessity of instrument calibration, echoing [10,14–17,23,25];

2. The results for both Strategy 2 (red lines) and Strategy 3 (green lines) hover around zero. However,
compared to Strategy 3, the results of Strategy 2 are more scattered and diverged from the true
value, even somewhat beyond Strategy 1 (Figures 4c, 6c and 8c). So, it is clear that Strategy
3 outperforms Strategy 2, especially for the translation parameters and axis errors.

3. Strategy 3 allows for more accurate APs and EOPs. The RMSE of parameters in Strategy 3 is the
closest to zero, taking into account the preservation of decimal places, and the accuracy of all
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parameters is improved relative to Strategy 1 and 2. For the APs, except for the addition constant
m, according to the order of the parameter vector (Equation (11)), Strategy 3 improves respectively
by 2%, 48.1%, 30.9%, and 53.7%, with improving accuracy by 48.7% to 84.9% for EOPs of those
in Strategy 2 in all three cases, demonstrating the validity and robustness of the general method.

4. After the adjustment, the sequences of addition and multiplication constant in Strategy 2 and 3
are with broadly similar trends, probably due to the fact that the values of the two constants are
much higher than the added random errors.

5. In Strategy 3, the RMSE of the homonymous points are much smaller than those in Strategy 2,
improving from 10−4 to 10−7, as shown from (a) to (f) in Figures 4, 6 and 8, but the remaining
points are essentially the same and do not deviate greatly from each other. On the other hand,
if no random errors are removed from the observations, the RMSE results of the homonymous
points of Strategy 3 shared the same trend as Strategy 2.

Table 3. RMSE of parameter vector.

S a
EOPs APs

∆x ∆y ∆z ϕ ω κ m λ c i t

1 3.9 × 10−3 4.8 × 10−3 7 × 10−4 8 × 10−4 4 × 10−4 0.0115 – c – - - -
2 3 × 10−4 3.5 × 10−4 5.3 × 10−4 1.2 × 10−5 1.1 × 10−5 3.5 × 10−5 1.1 × 10−3 5.7 × 10−5 2.9 × 10−5 1.8 × 10−5 2.2 × 10−5

3-C1 b 4.8 × 10−5 5.8 × 10−5 1 × 10−4 1.8 × 10−5 1.1 × 10−3 5.6 × 10−5 1.5 × 10−5 1.3 × 10−5 1.0 × 10−5

3-C2 4.8 × 10−5 5.8 × 10−5 1 × 10−4 6.1 × 10−6 5.0 × 10−6 1.8 × 10−5 1.1 × 10−3 5.6 × 10−5 1.5 × 10−5 1.3 × 10−5 1.0 × 10−5

3-C3 4.8 × 10−5 5.8 × 10−5 1 × 10−4 6.1 × 10−6 5.0 × 10−6 1.8 × 10−5 1.1 × 10−3 5.6 × 10−5 1.5 × 10−5 1.3 × 10−5 1.0 × 10−5

Ipv d/% 84.9 83.5 79.8 48.7 56.5 49.6 0 2 48.1 30.9 53.7

a ‘S’ represents the numerical order of strategies; b ‘C’ represents the numerical order of Cases; c ‘–’ represents null
value; d ‘Ipv’ denotes the improvements of Strategy 3 phase for Strategy 2 in percentage terms.
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axis indicates the experiment serial number from (a) to (k) and parameters’ serial number in (l). (a)∇x,
(b)∇y, (c)∇z, (d)∇ϕ,(e)∇ω, (f)∇k, (g)∇m, (h)∇λ, (i)∇c, (j)∇i, (k)∇t, (l) RMSE of EOPs and Aps.
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It should be noted that the results for Strategy 1 are the same in all cases so that they are not
repeated in Figures 6–9 for Case 2 and Case 3 for ease of reading. In addition, we also computed the
correlation coefficient matrix of the unknown parameters after each loop acquisition and stipulated
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the final correlation information by taking the average of 5000 experiments (removing the diagonal
elements). We found that 55% of them decreased and 45% increased, and their magnitudes were
in the order of 10−4 to 10−3, indicating that the general algorithm does improve the correlation of the
parameters, but not very significantly, mainly due to the fact that the correlation of the parameters was
ignored over the course of the data simulation.
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4.2. Real Data

Multiple scientific publications and the above simulation experiments have shown that a reasonable
and correct instrument calibration can effectively weaken the effect of APs on the coordinate sequence
and improve the accuracy of the coordinate data, see, e.g., [14,22,27,30]. Likewise, we validated the
proposed method using real data and the results are shown in Table 4.

Table 4. Homonymous points accuracy in two Cases.

Strategies σx σy σz σp

1 1.62 × 10−4 7.46 × 10−5 5.39 × 10−5 1.86 × 10−4

2-C1 1 6.88 × 10−8 5.10 × 10−8 1.42 × 10−8 8.68 × 10−8

2-C2 6.67 × 10−7 5.33 × 10−7 1.89 × 10−9 8.54 × 10−7

1 ‘C’ represents the numerical order of cases.

From Table 4, we can see that the accuracy of the general self-calibration model is always the
highest for the homonymous point part. For both cases, the level of point accuracy for the homonymous
points could be increased from 10−4 to 10−8 and 10−7, respectively. Results in Table 4 also show that the
proposed method can not only check the systematic errors, but also effectively remove the influence of
random errors, and at the same time, it is also robust to different weighting methods. The results for
the corrected checkpoints are similar to those of the simulation experiments due to the fact that the
random error of the checkpoints cannot be estimated.

In fact, we still analyzed the correlations among the parameters, i.e., we calculated their correlation
coefficient matrix based on the variance-covariance information of the unknown parameters from
Strategy 1 and Strategy 2, respectively. As an example, Figure 8 shows the calculation of the absolute
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difference between the correlation coefficients of strategy 1 and strategy 2 under the equal weighting
circumstance, where the horizontal and vertical axes indicate the order of the parameters. The elements
in Figure 10 greater than 0 denote that the correlation of the parameters in Strategy 2 was lower than
in Strategy 1, and vice versa.

We then performed a statistical analysis of the 110 elements of the difference matrix
(without considering the diagonal elements), in which there were 74 elements greater than 0 and 36
elements less than 0, indicating that the general algorithm impairs most of the correlation among
parameters; for those elements with increased correlations, it is conjectured that this may be due to the
lack of use of geo-referencing.
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5. Conclusions

In this study, we proposed a general point-based self-calibration method for TLS taking into
account both random errors in the observations and posterior estimates in the cases where the a priori
information differed from the true accuracy. Therefore, it was theoretically more rational and rigorous
than the traditional self-calibration methods. In cases where the nominal accuracy was different from
the true accuracy, or where the a priori information was unknown, a posterior estimation could be
performed to obtain a more realistic calibration parameter. The coordinate components and positional
accuracy of the coordinate dataset after the general method processing was be effectively improved,
and more importantly, the difference between the corrected coordinates and the true coordinates was
closer to a straight line, indicating that the general method wasmore stable and robust, as shown in the
left four panels of Figures 4, 6 and 8. The coordinate difference between the true and corrected values
obtained by the general method was sometimes larger compared to the traditional method because
the random error of the coordinates of the remaining points (checkpoints) could not be effectively
estimated, but this did not determine the results of the calculation of EOPs and APs, or the validity of
the general calibration method.

In this paper, the raw observations were divided into two categories, distance and angle, in the
posterior estimation process. Due to the environmental or human interference, the same kind of
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observations may have different a priori information [40,41], that is, observation values needed to
be divided into more categories, and the idea in this paper can be extended to address this problem.
The algorithm in this paper is derived based on the observation equation of TLS and the GH model,
thus it could also be applied to solve some other problems, such as point cloud registration, coordinate
transformation, image processing, etc.

The correlation among most of the parameters was weakened by attaching weights to the
observations, about 67%, but the correlation was undeniably increased in some other locations
(see Figure 10). Also, it has been proposed in some literature [19] that the rational introduction of the
geo-referencing and network design could effectively weaken the parameter correlation, which is the
next step of research.
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Appendix A

It should be reminded that since the SOKKIA NET 1200 and the Leica HDS3000 have different
reference coordinate systems, where the first one is a right-handed system and the second one
is a left-handed system. Thus, the rotation matrix needs to be changed accordingly during the
adjustment process.

The basic idea of the VCE algorithm is to weight the observations according to the a priori
information, and then calculate the squared sum of the residuals of the observations, and finally
estimate the variance of the observations according to a certain principle. For this reason, the order of
the elements needs to be rearranged to classify the observations.

Depending on the conditions applicable to VCE, the weight matrix P can be written as:

P = blkdiag

σ2
0

σ2
s

En×n,
σ2

0

σ2
θ

En×n,
σ2

0

σ2
α

En×n

 (A1)

Subjecting to the observation equation of TLS, i.e., Equation (13), the partial differential for qth
observation values can now be obtained from:

dxq= a1
qdsq+a2

qdθq+a3
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(A2)

where a1,2···9
q refers to the coefficient for each partial differential, q is the sequence number of observations.

This can be written in a matrix notation as:
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Due to the changes in the order of the weight matrix and observation vectors, the above consistent
equation system could be converted into a new form


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