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Abstract: The co-evolution of multi-cities has emerged as the primary form of urbanization in China
in recent years. However, the processes, patterns, and coordination are not well characterized and
understood, which hinders the understanding of the driving forces, consequences, and management
of polycentric urban development. We used the Continuous Change Detection and Classification
(CCDC) algorithm to integrate all available Landsat 5, 7, and 8 images and map annual land use
and land cover (LULC) from 2001 to 2017 in the Chang—Zhu-Tan urban agglomeration (CZTUA),
a typical urban agglomeration in China. Results showed that the impervious surface in the study
area expanded by 371 km? with an annual growth rate of 2.25%, primarily at the cost of cropland
(169 km?) and forest (206 km?) during the study period. Urban growth has evolved from infilling
being the dominant type in the earlier period to mainly edge-expansion and leapfrogging in the core
cities, and from no dominant type to mainly leapfrogging in the satellite cities. The unfolding of the
“cool center and hot edge” urban growth pattern in CZTUA, characterized by higher expansion rates
in the peripheral than in the core cities, may signify a new form of the co-evolution of multi-cities
in the process of urbanization. Detailed urban management and planning policies in CZTUA were
analyzed. The co-evolution of multi-cities principles need to be studied in more extensive regions,
which could help policymakers to promote sustainable and livable development in the future.

Keywords: Landsat; urban expansion; time series; Continuous Change Detection and Classification;
Chang—Zhu-Tan urban agglomeration; landscape dynamics
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1. Introduction

The land covers and landscapes in many of China’s cities have been modified significantly in
recent years due to the rapid economic development and population growth. Nowadays, more than
50% of China’s population lives in cities, and this rate will continue to rise to 75% by 2030 [1]. For this
reason, urbanization has become one of the most important factors affecting ecosystem services
and environmental quality, especially in some emerging cities or city clusters [2,3]. To address the
adverse impacts and promote sustainable urban development, the Chinese government has issued
the “New Urbanization Plan” with the intent to emphasize ecological progress, urbanization quality,
domestic demand expansion, and rural-urban coordination simultaneously [4,5]. To achieve these
goals, it is necessary to monitor and understand urban expansion continuously [6]. Mapping urban
growth accurately is a prerequisite for studying and managing the urbanization process, revealing the
drivers, and evaluating the consequences [7-10].

Co-evolution, the process of reciprocal evolutionary change that occurs between cities or within a
city as they interact with each other [11,12], has been regarded as the key step for a city to become a
megalopolis [13,14]. The international megalopolises in developed countries, such as the Northeast
megalopolis in USA [15], the Great Tokyo Area in Japan, and other megalopolis [16], all have
experienced long co-evolution processes to integrate multiple cities, gradually differentiating mutually
beneficial and coordinated functions, and became the regional, national, and ultimately international
economics centers [13]. The development of satellite remote sensing and geographic information
system technologies has promoted the fascinating possibility of the analysis of the urbanization and
co-evolution of multi-cities [17-19], especially in emerging cities in developing countries such as
India, South Africa, and China, where there are relatively fewer references for sustainable urban
development [10]. Previous studies on the spatiotemporal changes of urban land use and land cover
(LULC) in China have largely focused on the Jing-Jin-Ji Megalopolis, Pearl River Delta Megalopolis,
and Yangtze River Delta Megalopolis [10,20-23]; less attention has been paid to urban expansion in
emerging cities in the land-locked regions, calling for more research and understanding of the processes
and consequences of urban development in inland [24-26]. Besides, landscape ecology approaches
and metrics have been widely used for analyzing the urbanization process, which could support a
better understanding of the evolution of a city [20,27-29].

The temporal resolution of remote sensing data plays a crucial role in studying the co-evolution
of multi-cities [30,31]. However, time intervals of 5 to 10 years have often been used to map urban
expansion in most studies [27], which is apparently not suitable for mapping and monitoring the
expansion processes in fast-growing cities where the annual urban expansion can exceed 5% [20,32].
Some small but important changes may be ignored in remote sensing monitoring over a large time
interval, resulting in barriers analyzing fast transformations between the different LULC types,
urbanization processes, and driving forces in emerging cities [20,33,34]. All of these were mainly due
to the limitations from available remotely sensed data [7,35,36]. Specifically, images with inferior
quality were unusable due to their low frequency and quality (i.e., seasonal variation and excessive
cloudiness) [37], leading to most urban monitoring studies being based on a comparison of a classical
supervised classification between two dates, instead of a proper time series algorithm [37,38]. The rapid
developing cities, with great inter-annual changes, may require continuous time series models to reveal
their series of urban expansion processes [22,23,39,40].

An efficient and stable remote sensing data processing method could integrate a volume of images,
which would be meaningful in monitoring the urbanization process and analyzing the co-evolution of
multi-cities [41-43]. Several methods have been developed in recent years to take advantages of time
series of remotely sensed images for LULC detection, including the Landsat-based detection of Trends
in Disturbance and Recover (LandTrendr) [44,45], the vegetation change tracker (VCT) [46], and the
Continuous Change Detection and Classification (CCDC) algorithm [17,33,47-50]. These methods
are designed to analyze the changes of ground objects through different mechanisms. LandTrendr
detects abrupt change by the segmentation method and, between the abrupt changes, a slope is fitted
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for each segment to capture the gradual changes, and this approach has been used for insect infestation
detection and forest change detection [44,47,51,52]. The VCT normalizes each Landsat image into
a forest probability index and uses a thresholding method to detect forest disturbance. These two
methods are usually used to monitor forest dynamics and rarely used to monitor urban expansion
because limited indices could not support the classification of many land cover types [53]. The CCDC
algorithm, on the other hand, uses all spectral bands in Landsat images to detect many kinds of surface
change by fitting multiple surface reflectance models with sines and cosines simultaneously [54],
and has been applied to study the changes in vegetation, impervious surface expansion, and surface
temperature dynamic after land use change [55-57].

The Chang-Zhu-Tan urban agglomeration (CZTUA), located at the middle reach of the Yangtze
river basin, is the fastest growing region in Hunan Province, showing the typical developing pattern that
can be currently found elsewhere in China [26,58]. The development of CZTUA has benefited from a
series of urban development policies such as “The Rise of Central China Plan” in 2004, “Resource saving
and Environment friendly” dual-type society experimental areas in 2008, and “Middle Yangtze River
Urban Agglomeration Planning” in 2015[26,59,60]. These urban development policies, which promoted
the prosperity of provincial cities and poorer neighbor regions, have been among the key drivers of the
co-evolution of multi-cities [28]. Therefore, a comprehensive understanding of urban expansion in
CZTUA is not only a prerequisite for comprehending the urbanization process and economic growth,
but also the basis for better urban planning. We focused on the urban expansion dynamics in CZTUA
during 2001 to 2017 when the majority of the development urban policies were formulated and carried
out. The objectives of this study were to (1) map the annual LULC and landscape dynamics using the
Landsat data and CCDC; (2) quantify the spatiotemporal patterns of urban expansion on the regional
and city scales; and (3) analyze the co-evolution pattern, driving forces, and implemented policies
of multi-cities.

2. Study Area and Datasets

2.1. Study Area

The CZTUA, located in the central-eastern part of Hunan Province, is one of the most important
urban agglomerations in the Middle Yangtze River Basin [21,58]. It has been the testbed for coordinated
urban agglomeration development theories. Changsha City, Zhuzhou City, and Xiangtan City are
the core cities of the CZTUA. These three cities present a unique triangular formation geographically
forming a good foundation for developing a polycentric urban agglomeration (Figure 1). In addition
to the core cities, the CZTUA includes several satellite cities, counties, or districts: Wangcheng District
and Changsha County for Changsha City; Shaoshan City and Xiangtan County for Xiangtan City;
and Liling City and Zhuzhou County for Zhuzhou City [58,61].
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Figure 1. The location of the study area: (a) the study area in China; (b) the study area in the Hunan
Province; (c) the distribution of the nine regions in Chang-Zhu-Tan.

2.2. Data and Pre-Processing

In this study, all available Level 1 Terrain (L1T) Landsat 5, 7, and 8 images for the World Reference
System 2 (WRS2) path/row 123/040 and 123/041, with the percentage of cloud cover below 80%,
were obtained (Figure Al). There was a total of 637 images meeting these criteria from 2001 to 2017.
The image preprocessing was completed using ESPA (https://espa.cr.usgs.gov/), which provides an
order mode to batch processing Landsat images [62]. All images were atmospherically corrected to
the surface reflectance with established algorithms and presented a high consistency between the
different sensors [63-65]. Specifically, Landsat 5 and 7 surface reflectances were processed by the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (version 3.4.0) [66]
and the Landsat 8 surface reflectances were processed by the Land Surface Reflectance Code (LaSRC)
(version 1.4.1) [67]; auxiliary input data, such as water vapor, ozone, atmospheric pressure, and aerosol
optical thickness, were retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS);
and the digital elevation derived from the Earth Topography Five Minute Grid [68]. For each Landsat
image, six surface reflectance bands (Blue, Green, Red, NIR, SWIR1, and SWIR2), one thermal
band (Brightness Temperature) and one quality assessment band were employed. To detect clouds,
cloud shadows, and snow, we used the Function of Mask algorithm (FMask) combined with potential
cloud pixels and the cloud probability mask to derive the potential cloud layer through discarding
most unusable observations to reduce noise in the analysis [69,70]. We downloaded the CCDC version
12.30 from the Global Environmental Remote Sensing (GERS) Laboratory, and the data preparations
were finished by the CCDC workflow and supported by the software ArcGIS 10.2 and ENVI 5.1 [54].
The overview flowchart is shown in Figure 2. City and county boundary datasets were obtained
from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences
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(RESDC) [22,71]. Auxiliary data were obtained from FROM-GLC and included the ground truth
samples for the classification and reference data for the temporal-spatial accuracy assessment [72].
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Figure 2. Methodology flowchart in this study.

3. Methods

3.1. CCDC Algorithm and Annual LULC maps

Annual land cover changes were detected and mapped using the CCDC algorithm [37]. First,
all available Landsat observations for each pixel were used to develop time series models with the
seasonality, trend, and break components to detect the intra-annual, inter-annual, and abrupt changes
by the following Equation (1) [37,73].

. 2 . (2
F(i,x) = ag i + alricos(?nx) + b1,is1n(Tnx) + c1x 1)

where F is the fitted model for band 7 and time x (Julian date), g ; is the coefficient for the mean of band
i,a1,; and by ; are the coefficients representing intra-annual change, c1, ;x is the coefficient representing
the inter-annual change, or trend, and T is the number of days per year (T = 365.25). If the land cover
pattern does not change, the time series model will be continued. Once, the breaks were found by
fitting a linear model to a stable history period of up to two dates. New observations were added and
their residuals compared to the RMSE (Root Mean Square Error) of the history period. Whenever the
error in the new observation was too high, the algorithm would place a break point and regard it as a
potential change. If breaks accumulated enough in a point, a change was affirmed and a new stable
model would be initialized. Generally, six breaks per pixel are used to provide a high confidence
when the land-use pattern changed. The coefficients in Equation (1) were recorded as the input for the
second part of the CCDC algorithm: land cover classification.

LULC classification in the CCDC was accomplished using a Random Forest Classifier (RFC) [74],
because of its robustness in mapping large-area land cover, especially effective when a large number of
features are included. The RFC model parameters were the model coefficients and RMSE. To balance
computation time and classification accuracy, 500 bagging iterations were implemented in the RFC
procedure, and the number of variables to split each node was limited to the square root of the total
number of explanatory variables. The output of the RFC for each year was a six-category land cover
map to satisfy our demand. According to the FROM-GLC Level 1 Type land cover system [72] and the
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actual situation in CZTUA, the LULC in the study was classified as Cropland (FROM-GLC classes of
Crop), Forest (FROM-GLC classes of Forest), Grassland (FROM-GLC classes of Grass, Shrub), Wetland
(FROM-GLC classes of Wetland), Water (FROM-GLC classes of Water), and Impervious Surface
(FROM-GLC classes of Impervious, Bareland). We set the dynamics from the impervious surface as the
urban expansion indicator. The ground truth samples were collected via visual interpretation, aided
by very high resolution (VHR) images from Google Earth™ and prior research [22,75]. We randomly
selected 26,670 samples within the study area among the six land cover categories; the samples
proportion for each LULC category was controlled by the percentage of each class area in FROM-GLC10
(2017) [54,76]. Dividing the samples into two groups, 90% of the samples were used to train the RFC,
and the remaining 10% were used for the accuracy assessment. The user’s and producer’s accuracy
were calculated for each land cover type along with the overall accuracy [77].

3.2. Annual Urban Expansion Rate

In order to study the characteristics of urban expansion quantitatively (e.g., speed, extent, intensity,
and direction), the annual increment (AI) (kmzyear_l) and the annual urban growth rate (AGR) (%)
were calculated and used to quantify and compare the urban expansion speed of CZTUA during the
study period. Al could show the newly developed impervious surface area per year and AGR could
be used to make a better comparison among the cities, which could eliminate the influence of different
primary city sizes [10]. The two indices were defined as follows:

Al — (Aend - Asturt)

— @

1
Aend d

AGR = [( ) - 1] x 100% 3)

start
where Astqrt and A,y are the urban area at the start and end year, respectively, while d is the time span
of the study.

3.3. Urban Expansion Types

Urban growth patterns were generally classified as infilling, edge-expansion, and leapfrogging by
Forman (1995) [78]. Infilling is defined as a new urban patch formed via filling in the gaps within existing
urban patches. Edge-expansion is a type of urban growth in which a newly developed urban patch
extends outward along the edge of existing urban patches. Leapfrogging growth represents new urban
patches developed independently and without any existing urban patches. The landscape expansion
index (LEI) [79] was calculated to define these three urban growth types using the following equation:

A

LE] = ———
AO +Ay

x 100% @
where A is the area of the intersection between the buffer zone of the new patch and the existing
patches (occupied category) and A, is the area of the intersection between the buffer and the vacant
category. Infilling growth patch is defined by an LEI larger than 50 and an edge-expansion growth
patch is defined by an LEI smaller than 50 but not equal to zero. The patches with a zero LEI were
defined as leapfrogging growth.

3.4. Landscape Metrics

In order to reveal the evolution of the landscape pattern in the process of urbanization,
six prominent landscape metrics based on spatial and complexity criteria were calculated to illustrate
the characteristics of the CZTUA, which could avoid the influences of the different scales and extents
of the regional boundary. These metrics include the Percentage of Landscape (PLAND), Largest Patch
Index (LPI), Landscape Shape Index (LSI), Patch Density (PD), Patch Cohesion Index (COHESION)
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and Interspersion and Juxtaposition Index (IJI). These metrics could reflect the impervious surface
patches’ spatial distribution and connectivity, which are relevant to urban expansion and able to
show the results effectively [80]. PLAND describes the proportion of impervious surface in the total
region area. LPI represents the percentage occupied by the largest patch, reflecting the city center.
LSI and PD demonstrate the edge and density in the landscape, respectively. With impervious surface
increase and the landscape becoming fragmented, the LSI and PD will increase, while the LSI and PD
may decrease when the impervious surface patches merged [23]. COHESION explains the physical
connectivity between the different impervious surface patches. IJI indicates the complexity of the
patches around the impervious surface patches [81]. All of the landscape metrics were calculated for
the impervious surface [20,23,27]. These metrics were computed for each of the selected cities at the
landscape class with the help of FRAGSTATS 4.2. A detailed description for each metric is listed in
Table 1. The formulas for the landscape metrics are listed in Equations (A1)-(A6).

Table 1. Landscape metrics used in this study.

Landscape Metric Abbreviation Description

The percentage the landscape of the

Percentage of Landscape PLAND corresponding patch type.

Patch Density PD The number of patches of per 100 ha.

Proportion of total area occupied by the

Largest Patch Index LPI largest patch of a land cover type.

A modified perimeter-area ratio of the form
Landscape Shape Index LSI that measures the shape complexity of the
whole landscape or a specific cover type.

The overall distribution and juxtaposition

Interspersion and Juxtaposition Index I of various patch types
Patch Cohesion Index COHESION Measuring the phy51f:al connectedness of
the corresponding patch type.
4. Result

4.1. Accuracy of the LULC Classification

For the entire study area, we selected five years of the LULC maps (i.e., 2001, 2005, 2010, 2015,
and 2017) for our spatiotemporal accuracy assessment. Validation samples were the remaining 10% of
the samples. The classification results achieved an overall accuracy of 90.44%-92.31% across these five
years (Table 2). Our results show that the highest overall accuracy (92.31%) was in 2001, followed by
92.20% (2005), 90.89% (2010), 90.63% (2017), with the related lowest one being 90.44% in 2015.
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Table 2. Results of the spatiotemporal accuracy assessment for the CCDC.

Year LULC
Cropland Forest Grassland Wetland Water Impervious surface
Cropland 1117 69 4 3 2 24
Forest 34 948 0 3 3 2
Grassland 1 0 10 0 4 1
Wetland 6 2 1 39 0 2
2001 Water 15 1 0 1 132 1
Impervious surface 20 2 0 2 2 216
Producer’s Accuracy 93.63% 92.76% 66.67% 81.25% 92.31% 87.80%
User’s Accuracy 91.63% 95.76% 62.50% 78.00% 88.00% 89.26%
Overall Agreement 92.31%
Cropland 1127 69 4 3 2 24
Forest 54 944 0 5 2 1
Grassland 0 0 10 0 0 1
Wetland 7 2 1 39 3 0
2005 Water 2 1 0 1 122 1
Impervious surface 1 10 0 2 2 217
Producer’s Accuracy 93.84% 92.01% 66.67% 78.00% 93.13% 88.93%
User’s Accuracy 91.70% 93.84% 90.91% 75.00% 96.06% 89.67%
Overall Agreement 92.20%
Cropland 1098 98 4 2 3 25
Forest 44 930 1 3 4 1
Grassland 0 2 11 3 0 1
Wetland 6 2 0 38 0 1
2010 Water 3 1 0 2 131 0
Impervious surface 21 9 1 3 3 216
Producer’s Accuracy 93.69% 89.25% 64.71% 74.51% 92.91% 88.52%
User’s Accuracy 89.27% 94.61% 64.71% 80.85% 95.62% 85.38%
Overall Agreement 90.89%
Cropland 1115 84 3 3 3 27
Forest 57 924 0 3 8 2
Grassland 2 7 12 0 0 1
Wetland 6 2 0 37 0 2
2015 Water 7 1 0 2 117 0
Impervious surface 16 9 3 3 4 207
Producer’s Accuracy 92.68% 89.97% 66.67% 77.08% 88.64% 86.61%
User’s Accuracy 90.28% 92.96% 54.55% 78.72% 92.13% 85.54%
Overall Agreement 90.44%
Cropland 1107 85 3 3 3 25
Forest 43 910 5 3 2 4
Grassland 5 0 19 0 3 1
Wetland 6 2 0 37 0 1
2017 Water 7 1 0 2 130 2
Impervious surface 21 12 4 3 4 214
Producer’s Accuracy 93.10% 90.10% 61.29% 77.08% 91.55% 86.64%
User’s Accuracy 90.29% 94.11% 67.86% 80.43% 91.55% 82.95%
Overall Agreement 90.63%

The classification results of the cropland, forest, and water classes were more accurate, while those
of grassland and wetland were relatively poor. The difference in classification accuracy of different
land covers may be due to the fact that the number of training samples for the grasslands and wetlands
were less than those of the other land-cover types, typical for rare land cover types [82,83]. Besides,
seasonal variations may also lead to the related low classification accuracy. For example, the probability
of a misclassification between a cropland and forest was still high, and the grasslands and wetlands
were confused easily. Nevertheless, the small differences in overall accuracy among the different years
suggest that the CCDC model performed well in mapping the time series of LULC. So, the results
could meet the requirement for monitoring and analyzing the urban expansion process. Figure 3 shows
the Landsat images and resultant land cover maps in 2001 and 2017, respectively, in a typical area.
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Figure 3. Example of the CZTUA LULC change between the year of 2001 and 2017: (a) the high-
technology development zone in Changsha County 28 June 2001 Landsat image with true color;
(b) a Landsat image with true color 17 December 2017; (c) the Continuous Change Detection
and Classification (CCDC) LULC map contemporaneous with (a); and (d) the CCDC LULC map
contemporaneous with (b).

4.2. Temporal LULC Change from 2001 to 2017

Based on the yearly classification maps, the land cover in CZTUA has significantly and rapidly
changed in the past 17 years (Figure 4). In general, the impervious surface area increased while the
cropland and forest decreased continuously, and the water area, wetland, and grassland remained
relatively stable. The land cover was composed of cropland of 5297 km?, forest of 4355 km?, grassland
of 12 km?2, wetland of 152 km?, water of 344 km?2, and impervious surface of 808 km? in CZTUA in
the year of 2001 (Table A1). Overall, an increase of 371 km? in impervious surface, and a decrease of
169 km? and 206 km? in cropland and forest, respectively, were observed from 2001 to 2017 in the study
area (Figure 4). Most of the impervious surface was gained from both forest and cropland and the
transformation from wetland, water, and grassland was not obvious (Table A2).

300

200

z
H

Cumulative change (%)
2
Area (km')

o 100

F-200

2002 2004 2006 2008 2010 012 2014 2016
Year

Cropland ~— Grassland ~—— Wetland —— Water  —— Impervious surface
—— Forest

Figure 4. The cumulative LULC changes in area of various land covers between 2001 and 2017 for the
total CZTUA.
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The impervious surface area increased from 808 km? to 1179 km? over the past 17 years with the
net increase rate of 45.90% (Table Al). There was large spatial variation in the area of impervious
surface increase among subregions: from 211 to 246 km? (16.59%) for Changsha City; 145 to 227 km?
(56.55%) for Changsha County; 126 to 217 km? (72.22%) for Wangcheng District; 82 to 106 km? (29.27%)
for Zhuzhou City; 31 to 64 km? (106.45%) for Zhuzhou County; 63 to 94 km? (49.21%) for Liling City;
83 to 103 km? (24.10%) for Xiangtan City; 57 to 110 km? (92.98%) for Xiangtan County; and 9 to 13 km?
(44.44%) for Shaoshan City (Table A4).

Figure 5 demonstrates the annual increment (AI) and annual growth rate (AGR) of the impervious
surface for nine regions over the past 17 years. The Als of impervious surface for Changsha County
in the year of 2006, Wangcheng District in the year of 2011 and 2012, and Xiangtan County in the
year of 2012 were the highest, which were greater than 10 km? in the observation. A very small
decrease in impervious surface was also presented in Changsha City during the years from 2013 to
2015. The relatively low Als of impervious surface were appeared in Shaoshan City, which was lower
than 0.1 km? for most of the time. The Als in the rest of the regions of CZTUA were increasing steadily.
The highest AGR was presented in the Xiangtan county in 2012. AGRs in Changsha City, Xiangtan
City, and Zhuzhou City became negative during certain periods. Zhuzhou County, Xiangtan County,
and Wangcheng District had a relatively high AGR among the nine regions (Table A3).

2

Annual increase impervious surface (km’)
Annual growth rate (%)

2002 2004 2000 2008 2010 2012 2014 2016 2002 2004 2006 2008 2010 012 2014 2016
Year Year

Changsha City —— Wangcheng District Shaoshan city Xiangtan County —— Zhuzhou County
Changsha County ~—— Liling city Xiangtan City Zhuzhou City

Figure 5. Annual increase (Al) of impervious surface (km2) (left) and annual growth rate (AGR) (%)
(right) for CZTUA from 2001 to 2017. The vertical gray lines are milestones of significant policies.

4.3. Spatiotemporal Dynamics of Urban Expansion

CZTUA demonstrated great spatial variability in urban development from 2001 to 2017 (Figure 6).
Changsha City, Xiangtan City, and Zhuzhou City are the belt-shaped cities that were initially developed
along the river. In recent years, urbanization in the southern part of Changsha City, the northeast
of Xiangtan City and the northwest of Zhuzhou City has been active, showing a trend of triangular
convergence (Figure 6¢). For Changsha County and Wangcheng District, the primary core has been
constantly expanding outward, especially in the eastern part of Changsha County and western part
of Wangcheng District (Figure 6a,b). Meanwhile, the urban area of Zhuzhou County and Xiangtan
County expanded rapidly after the year 2010, resulting in a doubling growth. Shaoshan City and
Liling City were developmentally restrained.
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Figure 6. The spatial distribution of the time (in year) of urban expansion (i.e., conversion from
non-impervious surface to impervious surface) from 2001 to 2017: (a) Wangcheng District; (b) Changsha
County; (c) the core conversation; and (d) the junction between Zhuzhou City and Xiangtan City.

Figure 7 shows the dynamics for the proportion of three urban growth types (i.e., leapfrogging,
edge-expansion, and infilling) of the newly developed impervious surface patches in CZTUA during
the study period. It could be seen that there was large spatial and temporal variability during the
urban expansion processes across regions. Over the entire study period, infilling was the dominant
growth type with a steady trend to decrease, possibly as the gaps became filled. On the other hand,
leapfrogging had a marginal occurrence at the beginning of the time series, to later become the
dominant urban growth type in 2016. Edge-expansion remained more stable throughout the time
series. The proportion of infilling reduced steadily from about 80% in 2001 to 40% in 2016 in Changsha
City, while the proportion of edge-expansion increased smoothly from about 20% to 40% and the share
of leapfrogging increased from about 0% to 10% (Figure 7). In 2016, leapfrogging increased sharply in
Changsha County and Wangcheng District. Most of the newly developed urban land in Changsha
County concentrated around the existing urban area and is distributed with the newly developed
highways and airport in the region (Figure 3b).

4.4. Landscape Changes during Urban Expansion

Figure 8 shows the annual changes in landscape metrics in CZTUA. The PLAND and LPI increased
slowly for all nine regions during whole period. Changes in LPI suggested the proportion of the largest
urban patch (the existed impervious surface) in each region. Specifically, Changsha City presented the
highest proportion in PLAND and LPI with a steady increased rate among the nine regions, while the
rest of the regions showed a similar pattern in PLAND and LPI though the values were lower than
those for Changsha City. The LPI in Xiangtan City, Shaoshan City, and Wangcheng District has greatly
increased from 2007 to 2010.
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Figure 7. The dynamics of the three urban growth types in terms of the composition (%) of patches of
newly developed impervious surface for the nine regions and total region from 2001 to 2016.

The landscape metrics PD and LSI described the complexity and fragmentation for the impervious
surface. The PDs in Wangcheng District, Changsha County, and Zhuzhou City were relatively higher
than those in other regions, with a slow decline in the early stage and rapid growth in the latest period.
The remaining regions had a relatively lower PD and could form a different group. Changsha City
was different from all other regions by presenting a steady decrease in PD over the past 17 years.
Contrarily, Liling City, Xiangtan County, and Zhuzhou County increased in the latest period and had
no significant changes in the earlier stage. In the total area of CZTUA, PD changed a little during the
observation and kept a relatively low value. For the LSI, CZTUA had the highest LSI with the U-shape
function changed. In this study, the LSI was lower than 150 in the past 17 years. According to the value
of the LSI, the cities in CZTUA could be roughly divided into three groups, the first group of which
were greater than 90, including Changsha County, Shaoshan City, Liling City, and Xiangtan County;
for the second group, which includes Zhuzhou County, the LSI was between 60 to 90; the last group,
with an LSI lower than 60, includes Zhuzhou City, Changsha City, Xiangtan City, and Shaoshan City.
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Most of regions in CZTUA were under a steady and similar pattern in LSI. The IJI and COHESION
metrics represent aggregation and connectivity. IJI in Changsha City was the highest throughout the
period, rising from 50 in 2001 to just under 70 until 2013, when there was a levelling off for three years.
The remaining regions presented a similar pattern, which decreased first and then increased or kept
the value without change for IJI. Wangcheng District and Changsha County had a reverse U-shape
during this observation. For COHESION, Changsha City, Xiangtan City, Zhuzhou City, Wangcheng
District, and Changsha County had a relatively higher value, which was close to 100, and presented a
steady value or slight increase from 2001 to 2017. Xiangtan County, Shaoshan City, and Liling City
increased steady before 2009 and stabilized in the latest period, while Xiangtan County, with a little
bit of hysteresis, persisted by increasing up to 2013. Zhuzhou County presents sustainable growth
in COHESION.

70 8
60 - 7
50 4 6
a
= 40
Z g5
= 30+
—— 4
20—
10 ____—————'—'—"_’—/_F—’ 3
0 E T T T T T T 2 L T T T T T T
2001 2004 2007 2000 2013 2016 2001 2004 2007 2010 2013 2016
Year Year
60 1 250
N \‘_h/
200
4{] <
&= 30 7 150 -
| o
0 | e éﬁ
wd -_—
; @ - - I
04
2001 2004 2007 2010 2013 2016 2001 2004 2007 2010 2013 2016
Year Year
- 100
6 9
50 z %7
-
= 2 o
0 Q
)
m - 92 |
20 90 1
2001 2004 2007 2010 2013 2016 2001 2004 2007 2010 2013 2016
Year Year
—— Total Changsha City —— Wangcheng District —— Shaoshan city ——— Zhuzhou City
—— Xiangtan County Changsha County —— Liling city Xiangtan City —— Zhuzhou County

Figure 8. Dynamics of the landscape metrics for the impervious surface in CZTUA from 2001 to 2017.
5. Discussion

5.1. Co-Evolution of Multi-Cities in CZTUA

For the nine regions in CZTUA, Changsha County, Wangcheng District, and Xiangtan County
had the greatest magnitude of urban expansion from 2001 to 2017, with the net increase area of 82 km?,
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91 km?, and 53 km?, respectively. Xiangtan county, Zhuzhou county, and Wangcheng District had
the highest net increase rates, with 92.79%, 105.10%, and 71.91%, respectively (Table A4). Besides,
Changsha City had the greatest primary impervious surface area, but its net increase rate was the
smallest among the study area (Table A4).

Changsha City is the provincial city of Hunan province, which developed earlier with prior policy
support. Cheap labor promoted manufacturing and heavy industry, and thousands of natural resources
were developed in that early stage. The large existence of backward primary industry presented a
great challenge for sustainable development pattern of the city [43]. Consequently, a strategy has
been put in place to promote industrial upgrading, translocation, and co-evolution with neighboring
cities [84]. Changsha County and Wangcheng District became the main receiving area for some of
the city’s industries, especially in 2003, 2007, and 2013. In these periods, Changsha City had slowed
down the pace of urban expansion while Changsha County and Wangcheng District accelerated the
pace of urban expansion and achieved the greatest Als in CZTUA (Figure 5). Both PD and LSI in
Changsha City, Wangcheng District, and Changsha County decreased from 2001 to 2013, indicating
that the impervious surface patches gradually merged (Figure 8). Besides, the COHESION of Zhuzhou
county, Xiangtan City, and Xiangtan County increased beyond 3%, especially after 2009, indicating the
connectivity in these regions achieved a high level in a short time (Figure 8). The AGR in Xiangtan
County and Zhuzhou county had presented the highest values, reflecting that these regions were also
promoted (Figure 5). The co-evolution pattern of the multi-cities could be summarized as follows:
the core city developed first due to policy advantages, and the surrounding cities developed primarily
benefited from the industrial upgrading of the core city. As a result, all cities were developed and
presented co-evolution pattern where the cities in a specific region play a coordinated urban function.
Many social, economic, and industrial studies show a similar pattern [12,15,16,85].

The co-evolution pattern of multi-cities in CZTUA may be an example of city development in other
regions as some international megalopolises experienced a similar urbanization process. For instance,
the Northeast megalopolis, the most populous megalopolis in US, has spent a very long time in
integrating the major cities such as Boston, New York City, and Washington, D.C., along with their
metropolitan areas and suburbs [86]. The urban industrial upgrading and transformation from major
cities in the later 20th century had promoted the development of the surrounding cities. The Atlantic
Ocean coastal cities connected with each other from northeast to southwest and differentiated into
diverse specific functions, which could be regarded as the co-evolution model [84,87]. China and other
developing countries are following this urbanization pattern and promoting urban area integration,
sustainability, and livability in relatively short term [42,88].

5.2. Spatiotemporal Dynamics of Urban Expansion and the Possible Drivers

CZTUA presents a triangle pattern in geography, which made the urban agglomeration develop
a polycentric pattern. Besides, the Xiang River winds its way through the core cities and provides a
natural urban developing pattern [61]. On one hand, urbanization brings vitality to the city, promoting
residents’ lives more efficiently and conveniently; but on the other hand, the negative consequences,
especially in the old town, also emerged with urban expansion. Therefore, managing and promoting
the urban areas to be livable and sustainable is a crucial and thorny issue for the management of the
national and local governments. All these characteristics lead to distinct specific dynamics in the
landscape metrics and urban expansion types during the urbanization process in CZTUA. In the earlier
period, the three core cities were relatively independent, physically along the Xiang River, and the
suburbs were not associated. As the transportation systems, such as highways, the G-series high-speed
train, and urban rail, were built up, all regions in CZTUA were gradually connected, resulting in an
increased IJT and COHESION.

The spatiotemporal difference between urban and suburban development was an important
driving force of landscape change in CZTUA [89]. For urban areas, such as Changsha City, Zhuzhou City,
and Xiangtan City, the dominant urban growth type had experienced an obvious transformation from
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infilling to edge-expansion. That would be explained by urban development theory [90,91], building
main roads inside a city firstly and improving the connectivity between the urban and suburban areas,
which also promote the inner-city grid gradually (Figure 6 a, b). Most newly developed impervious
surfaces were distributed between the roads and filled-up blanks, resulting from the dominant urban
growth and infilling (Figure 7). Subsequently, the inside city was gradually filled up, and with the
continuous increase in land prices, the urban expansion type turned to edge-expansion, as shown
by previous similar studies [10,23,27]. For the suburban areas, urbanization was relatively slow and
natural, and there was no significant dominant urban growth type presented in the earlier period.
With the three core cities built well, the expansion type was converted to edge-expansion because the
capital and workforce transferred from urban to suburban [20]. In the latest period, a series high and
new technology industrial development zones were designated in urban—rural fringe areas far away
from the existing impervious surface (Figure 6¢,d). These zones played a crucial role in both economic
development and urban construction [92]. As a consequence, the urban expansion type shifted from
edge-expansion to leapfrogging [61].

5.3. Urban Expansion under the Guidance of Policy

The nine regions in CZTUA had a steady urban increase over the past 17 years. The scale of
urban expansion was ranked in the order of Zhuzhou County, Xiangtan County, Wangcheng District,
Changsha County, Liling City, Shaoshan City, Zhuzhou City, Xiangtan City, and Changsha City
with the net increase rate (2001-2017) of 105.10%, 92.79%, 71.91%, 56.80%, 47.54%, 44.56%, 28.95%,
23.64%, and 16.38%, respectively (Figure 6, Table A4). These rates were highly dependent on the
administrative level, which can be roughly divided into three types of growth: the stable-growing
type, including Changsha City, Zhuzhou City, and Xiangtan City; the fast-growing type, including
Wangcheng District and Changsha County; and the slow-growing type, including Shaoshan City
and Liling City. These characteristics of the CZTUA had a very important and close overlap with
national development strategies and economic policies, as well as the local government measures and
implementations [93].

Earlier national policies for urbanization in China mainly focused on coastal megacities and
land-locked cities did not catch up with the pace of development, therefore some cities in CZTUA
were relatively backward. Until the year 2002, the Rise of Central China policy was adopted by the
central government, mainly aimed at improving the central China’s capacity for the coordinated
development [2,94]. The local government of Hunan province, promoting the integration of CZTUA
under a scientific and systematic urban planning, shaped up the first urban agglomeration plan in 2005.
This plan considered the differences in physical geography and economic background of the three
core cities, spelled out different urban designations and orientations, eventually made a significant
impact on the evolution of the cities. Specifically, Changsha City is a comprehensive metropolis for
the development of culture, education, finance, science, and technology, and played a leading role;
Zhuzhou City focused on the development of producer services on the basis of transportation and
industries; Xiangtan City was based on the heavy industry and has gradually promoted the incubation
of high-tech industries, which is closer to the producer services. Three core cities along the Xiang River
took the leadership in forming a megacity, while other regions were less driven by policies during this
period. The two policies implemented in 2000 and 2005 promoted the growth of urban expansion from
2000 to 2010, of which Changsha City, Wangcheng District, and Changsha County contributed the
largest proportion of growth, followed by Xiangtan City and Zhuzhou City, and the rest still grew
slowly [95].

Later on, the resource-saving and environment friendly urban development strategy was proposed
by both the central government and the local government in 2007. According to the different
characteristics of the cities, different urban development goals were defined so as to achieve the
suitable and sustainable development goals. It was suggested that the original policies should be
continued in the three core cities and in the suburban areas, such as Shaoshan City and Liling City;



Remote Sens. 2020, 12, 2905 16 of 24

also, a core conservation area connecting the three core cities has been designated as the green heart
and any urban land development would be banned there (Figure 6¢). Some prior urban developing
regions, such as Wangcheng District, Changsha County, and Xiangtan County, have been designated
primarily for economic development. In 2010, the National Economic and Technical Development
Zones were approved and setup in Jiuhua, Xiangtan County, resulted in large-scale expansion of
the city (Figure 5) [96]. Since 2012, the ecological red lines policy has been implemented in CZTUA,
which curbed illegal and activities (e.g., mining in the core conservation regions) and even converted
some urban land (e.g., brown fields) to vegetated surfaces, which leading to negative numbers during
the years from 2013 to 2015 in Changsha City (Figure 5). Managing urban development in accordance
with location-specific features has become the main ideology of the current policy.

The significant difference between the core cities and the surrounding cities may be caused by
the guidance of the national and local policies. The observations showed that the core cities have
grown steadily over the past 17 years, indicating the urban expansion rates have slowed down as these
regions approach their peak in urbanization process. In the prior developing satellite cities, social
capital from the core cities has been attracted to accelerate their urbanization process. We concluded
this pattern as “cool center and hot edge”, describing the pace of the urban expansion in the core
cities that has slowed but having been accelerated in the satellite cities. This pattern may indicate a
transformation in co-evolution of multi-cities with powerful policy guidance in China.

6. Conclusions

Urbanization has been one of the most significant human impacts on the environment, and it
is believed to be one of the biggest challenges for the national and local government in China.
A coordinated development pattern in polycentric urban agglomeration is regarded as a solution
to avoid the adverse impacts from urbanization. However, there are few studies that could reveal
the spatiotemporal details of the urbanization, resulting from inferior data and inappropriate data
processing tools. This study provided a continuous and comprehensive understanding of the
spatiotemporal landscape dynamics in a typical urban agglomeration of China, which was timely and
necessary to support the regional urban master planning.

This study used the CCDC algorithm to integrate all available Landsat images and obtain annual
LULC maps. Since this algorithm was pixel-based, it required substantial computing power but could
effectively capture the annual landscape dynamics in the urban area. Tracking the LULC changes
could provide a unique perspective for decisionmakers and promote more sustainable, livable urban
development. The results showed that CZTUA has experienced a rapid change over the past 17 years.
A total 371 km? (with annual growth rate 2.25%) impervious surface expansion was observed with
cropland and forest decreasing by 169 km? and 206 km? in the CZTUA, respectively; most of the
impervious surface was converted from cropland and forest. Annual growth rates slowed down
gradually in the core cities and accelerated in the surrounding areas; we concluded this pattern as
“cool center and hot edge”, which may indicate an important urbanization transformation pattern in
China. Urban expansion types also had a significant transformation. The dominant urban expansion
type changed from infilling to leapfrogging in the three core cities. While not significant in the earlier
period, edge-expansion and leapfrogging became the main urban expansion types in the latest period
in the suburban areas. The co-evolution pattern funded in this study indicated that multi-cities may
experience an inevitable stage in the process of urbanization and more further studies need to be
conducted to explore and summarize more extensively in different countries with different policy
backgrounds and in the different stages of urban development.
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Figure Al. Overview of the data footprints and the study area boundary. The CZTUA is covered by
two Landsat scenes (blue squares), and the specific study city boundary.

Table Al. Annual LULC area (km?), Net Change area (km?) (2001-2017) and Net Change rate (%)
(2001-2017) in CZTUA.

Year Cropland Forest Grassland Wetland Water Impervious Surface
2001 5297 4354 12 152 344 808
2002 5298 4340 13 152 346 820
2003 5286 4328 13 151 346 844
2004 5281 4317 13 150 346 863
2005 5279 4301 13 149 347 881
2006 5273 4288 14 148 346 902
2007 5259 4274 14 147 344 933
2008 5252 4266 14 147 343 949
2009 5237 4259 15 146 343 971
2010 5229 4248 15 146 343 989
2011 5218 4239 15 146 345 1008
2012 5197 4225 15 146 345 1043
2013 5178 4202 15 146 345 1084
2014 5174 4191 15 147 344 1099
2015 5165 4174 15 147 344 1123
2016 5151 4160 15 147 345 1144
2017 5128 4147 15 147 343 1179
Net Change area (km?) -169 —206 3 -6 -1 371

Net Change rate (%) -3.19% —4.74% 23.33% -3.70% —0.35% 45.90%
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Table A2. LULC transformation area (km?) matrix from 2001 to 2017 in this study

Year 2001
Cropland Forest Grassland ~ Wetland Water Impervious
Cropland 4920.02 166.90 0.11 4.86 4.69 11.49
Forest 69.11 4069.46 0.03 2.06 0.93 7.05
2017 Grassland 1.87 1.24 10.81 0.05 0.29 1.13
Wetland 6.43 1.03 0.01 132.65 1.36 5.19
Water 13.90 3.17 0.10 2.02 318.53 1.57
Impervious 316.57 108.37 141 5.54 3.51 756.24

Table A3. Annual increase (AI) impervious surface area (km?) and annual growth rate (AGR) (%) for

CZTUA among 2001 to 2017.

Periods Al AGR
2001-2002 11.58 1.43
2002-2003 24.61 3
2003-2004 18.04 2.14
2004-2005 18.63 2.16
2005-2006 21.27 241
2006-2007 30.52 3.38
2007-2008 15.84 1.7
2008-2009 22.28 2.35
2009-2010 18.34 1.89
2010-2011 18.6 1.88
2011-2012 35.31 3.5
2012-2013 41.11 3.94
2013-2014 14.6 1.35
2014-2015 24.24 2.21
2015-2016 21.07 1.88
2016-2017 34.95 3.05

2001-2017 371 225
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Table A4. Annual impervious surface area (km?), Net increase area (2001-2017) (km?) and Net increase rate (2001-2017) (%) in different regions of CZTUA.

Region
Year Changsha City Changsha County Wangcheng District Liling City Shaoshan City Xiangtan City Xiangtan County Zhuzhou City Zhuzhou County
2001 211 145 126 63 9 83 57 82 31
2002 215 146 128 64 9 84 58 84 32
2003 221 152 133 66 9 86 59 86 33
2004 224 158 138 68 9 87 59 87 34
2005 228 160 142 69 9 88 62 89 35
2006 232 164 149 70 9 89 64 90 35
2007 236 175 155 71 10 90 67 91 37
2008 239 178 158 73 10 91 69 93 39
2009 241 183 163 74 10 92 72 94 41
2010 244 187 167 76 10 93 74 96 43
2011 245 191 171 80 11 93 76 97 44
2012 246 197 181 82 11 95 83 100 48
2013 247 204 192 86 12 98 94 102 51
2014 246 207 197 87 12 98 97 103 52
2015 245 212 204 88 12 100 101 104 57
2016 245 219 208 90 12 101 104 105 60
2017 246 227 217 94 13 103 110 106 64
Net increase area (km?) 35 82 91 30 4 20 53 24 33

Net increase rate (%) 16.38% 56.80% 71.91% 47.54% 44.56% 23.64% 92.79% 28.95% 105.10%
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Formulas of the Landscape metrics in this study.

Zj’ =14
PLAND = P; = | —/——— x 100% (A1)
n;
PD = - A2
4 (A2)
max(aij)
LPI = ———= x 100% (A3)
LS — 025 X E (Ad)

—2?1:1211:1:#1[(%) X ln(%)]

]I = 100% A
J (0 5[m(m—1)]) x 100% (A5)
L1 pij 1 ]!
COHESION = |1- —10 |1 L | 100% (A6)
Z]':1 Pij\/ﬂ_ij \/Z

where P; is the proportion of the landscape occupied by patch type i, 4;; is the area (m?) of patch ij, A is
the total area (m?) (A1)(A3)(A6); n; is the number of patches in the landscape of patch type i (A2); E* is
the total length (m) of edge in landscape (A4); ej is the total length (m) of edge in landscape between
patch types i and k, m is the number of patch types present in the landscape (A5); p;; is the perimeter of
patch 7j in terms of number of cell surfaces (A6).
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