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Abstract: Shifts in wildflower phenology in response to climate change are well documented in the
scientific literature. The majority of studies have revealed phenological shifts using in-situ observations,
some aided by citizen science efforts (e.g., National Phenology Network). Such investigations have
been instrumental in quantifying phenological shifts but are challenged by the fact that limited
resources often make it difficult to gather observations over large spatial scales and long-time
frames. However, recent advances in finer scale satellite imagery may provide new opportunities to
detect changes in phenology. These approaches have documented plot level changes in vegetation
characteristics and leafing phenology, but it remains unclear whether they can also detect flowering
in natural environments. Here, we test whether fine-resolution imagery (<10 m) can detect flowering
and whether combining multiple sources of imagery improves the detection process. Examining
alpine wildflowers at Mt. Rainier National Park (MORA), we found that high-resolution Random
Forest (RF) classification from 3-m resolution PlanetScope (from Planet Labs) imagery was able to
delineate the flowering season captured by ground-based phenological surveys with an accuracy of
70% (Cohen’s kappa = 0.25). We then combined PlanetScope data with coarser resolution but higher
quality imagery from Sentinel and Landsat satellites (10-m Sentinel and 30-m Landsat), resulting in
higher accuracy predictions (accuracy = 77%, Cohen’s kappa = 0.39). The model was also able to
identify the timing of peak flowering in a particularly warm year (2015), despite being calibrated on
normal climate years. Our results suggest PlanetScope imagery holds utility in global change ecology
where temporal frequency is important. Additionally, we suggest that combining imagery may
provide a new approach to cross-calibrate sensors to account for radiometric irregularity inherent in
fine resolution PlanetScope imagery. The development of this approach for wildflower phenology
predictions provides new possibilities to monitor climate change effects on flowering communities
at broader spatiotemporal scales. In protected and tourist areas where the flowering season draws
large numbers of visitors, such as Mt. Rainier National Park, the modeling framework presented here
could be a useful tool to manage and prioritize park resources.

Keywords: phenology; alpine wildflowers; CubeSat; Landsat; Sentinel-2; PlanetScope; random
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1. Introduction

Shifts in seasonal timing of biological events in plants, such as germination, flowering, and fruiting,
in response to climate change have been observed across numerous species [1,2]. For example,
many species demonstrate earlier onset of development and advances in other key life-history events
as the climate warms [3]. Alpine wildflowers are considered good indicators of climatic change, as their
phenology is highly sensitive to spring and summer temperatures and the timing of snowmelt [4].
Such shifts in the timing of flowering of Alpine wildflowers is concerning, as it could disrupt
interactions between Alpine wildflowers and other members of the community, such as pollinators [5].
Understanding and anticipating the impacts of climate change on flowering is therefore paramount to
help inform conservation efforts to ensure the preservation of wildflower meadows in the future [6].

Mounting evidence from field studies on wildflower phenology compiled by scientists and
volunteer networks document shifts in the timing of flowering [7–9] that seem linked to climate
warming at those locations [10–12]. However, whether it is possible to extrapolate information gained
at smaller spatial scales to larger spatial scales remains uncertain [13]. Quite simply, monitoring
flowering phenology across broader spatial and temporal domains is challenged by limited monetary
and human resources. The ability to detect flowering phenology via remote sensing, if possible,
therefore has the potential to aid in the quantification of fine-scale flowering phenology at large
spatiotemporal scales. Hyperspectral and multispectral imagery has proven to be useful when
analyzing vegetation type and leaf green-up [14] in crop phenological studies [15–17] but, to the best
of our knowledge, has not been used to assess other plant phenological stages in natural systems.

Recent developments of small satellites, so-called CubeSats, have introduced new possibilities to
monitor land cover at fine spatial and temporal scales. CubeSats have the advantage of high spatial
resolution (in comparison to more traditional satellite imagery) but are limited to few spectral bands
and usually have a small form-factor (dimensions in the order of 10 cm by 10 cm by 30 cm). The low
costs associated with their deployment have resulted in several companies using CubeSat technology
to provide high spatial and temporal coverage of the earth. One such provider is Planet Labs, Inc. [18],
which uses over 150+ (as of 2019) CubeSats to image the entire land surface of the Earth at a daily
time interval and 3–5 m resolution. This imagery provides ecologists with the exciting opportunity to
track a wide array of natural processes that occur at fine spatial scales. Radiometric quality remains an
issue of this data [19]; however, this shortcoming may be improved by cross-calibration using highly
calibrated coarser resolution imagery, like Landsat and Sentinel [20].

Multispectral bands have long been used to detect plant physiological properties, and CubeSats
offer the possibility of doing so at finer spatial resolutions than other commonly used satellite imagery.
Multispectral products are produced by examining the reflectance spectra that are captured in the
corresponding electromagnetic spectrum and are often used in calculating band ratios [20]. For example,
a commonly used band ratio (or radiometric index) that is used to measure vegetation state is NDVI
(Normalized Difference Vegetation Index—ratio of red and near infrared bands), which has been
found successful when applied to crop type estimation, e.g., in maize, soybean, and wheat, because
of the inherent uniformity in the vegetation [21]. In addition, it has been shown that yellow flowers
can decrease NDVI values in alpine meadows [22], and a cut-off of 0.4 NDVI has been reported as
indicative of full flowering in a study involving sunflower crops [23].

For this paper, we determined whether multi-spectral imagery obtained from Planet Labs, Inc.,
could help to quantify peak flowering in sub-alpine meadows. We did so by combining satellite
imagery with an existing long-term on-the-ground datasets. The long-term datasets identify the
growing season phenology of wildflower meadows during a period of five years along an elevation
gradient at Mt. Rainier National Park in Washington, USA. We evaluated whether phenological stages
are observable via the spectral bands of PlanetScope (a 3-m, 4-band multispectral image product from
Planet Labs) by using reflectance in the red and near infrared (NIR) bands. Additionally, we evaluated
whether PlanetScope-derived NDVI can be used to delineate flowering. We also combined finer
resolution imagery from Planet with coarser resolution imagery from Sentinel (10 m) and Landsat
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(30 m) to assess whether more accurate phenological detection is possible when combining high these
two types of imagery. Our objective involved the two following questions. First, can peak flowering
be detected via either PlanetScope NIR and red bands or a normalized measure, like NDVI? Second,
is detectability of flowering improved when fine-resolution PlanetScope is combined with coarser
resolution imagery (with higher quality images), like Landsat and Sentinel?

2. Materials and Methods

2.1. Study Site

Study sites are located in Mt. Rainier National Park (46.8529◦ N, 121.7604◦ W; summit elevation
4392 m), part of a stratovolcanic mountain range in the Cascade Range of Washington State, USA.
The regional climate is maritime with dry summers and wet winters. The vegetation is dominated by
coniferous forests at lower elevations (<1450 m), and sub-alpine wildflower meadows at mid-elevations
(1450–1900 m). We restricted our analyses to meadows spanning an elevational gradient, where
phenology has been quantified in a long-term study from 2010–2015 (Theobald et al., 2017). Spatial
polygons encompassing meadows were manually drawn to include all sampling locations in this
study. These meadows are adjacent to a trail where additional long-term monitoring of flowering
phenology is ongoing (2013–present) through a citizen science project called MeadoWatch (http:
//www.meadowatch.org/), providing additional information on flowering phenology after 2015.
The selected meadow sites were on the south slope of Mt. Rainier, along Mazama Ridge, approximately
100 m apart (Table 1 and Figure 1).Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 24 

 

 

Figure 1. Meadow study sites at Mt. Rainier National Park; five sub-alpine meadows colored in purple 
are approximately 100 m apart in elevation and cover an elevational gradient from 1490 m to 1900 m. 
Polygons are the sites from the study Theobald et al. (2017), and the dots annotated with RL1-9 are 
plots from MeadoWatch. 
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imagery (2017–2018), 6 years of imagery from Landsat (2013–2018), and 2 years of imagery from 
Sentinel, which was initiated in 2015 (2017–2018). We excluded data from 2016 because of quality 
issues with Sentinel imagery (see Appendix D for imagery acquisition and resolution). Thousands (n 
= 2893) of images of meadows were analyzed over 5 years of study across providers Landsat 8, 
Sentinel-2, and Planet. For all three providers, we extracted summary reflectance values across red, 
green, blue, and NIR bands for each meadow area polygon (see Appendix C for band wavelengths). 
Additionally, we calculated summary reflectance in short-wave infrared (SWIR) and green chromatic 
coordinate (gcc) for Sentinel imagery for each meadow. We briefly describe the three providers below. 

The Landsat 8 OLI (Operational Land Imager) platform offers 30-m data with high-quality 
spectral calibration. The Landsat-8 satellite is one of a series that were launched by the National 
Aeronautics and Space Administration (NASA)/U.S. Geological Survey (USGS). Landsat Collection 
1 Level-1 data products are used in the Landsat analysis (here onwards referred as L8).  

Sentinel-2 is owned by the European Space Agency (ESA) and offers 10-m data for red, green, 
blue, and NIR bands. Officially called the Copernicus Sentinel-2 mission, Sentinel-2 consists of two 
polar-orbiting satellites in the same sun-synchronous orbit, phased at 180 degrees to each other 
(Sentinel-2, 2019). Sentinel-2 Level-1B products are used in the Sentinel workflow (here onwards 
referred as S2-1B). 

Planet Labs PlanetScope constellation consists of 120+ CubeSats which orbit in two near-polar, 
sun-synchronous orbits of ~8° and ~98° inclination angle at an altitude of roughly 475 km. The 
CubeSats acquire both visible (RGB) and NIR data with 12-bit radiometric resolution that images the 

Figure 1. Meadow study sites at Mt. Rainier National Park; five sub-alpine meadows colored in purple
are approximately 100 m apart in elevation and cover an elevational gradient from 1490 m to 1900 m.
Polygons are the sites from the study Theobald et al. (2017), and the dots annotated with RL1-9 are
plots from MeadoWatch.
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Table 1. Elevation and area of meadow sites.

Meadow Elevation (m) Area (m2)

1 1487 877
2 1595 1328
3 1678 4694
4 1779 1357
5 1894 1136

2.2. Remote Sensing Data

Remote-sensed imagery were collected from Landsat, Sentinel, and Planet Labs. PlanetScope
imagery from Planet Labs became available only after 2016, so we extracted two years of PlanetScope
imagery (2017–2018), 6 years of imagery from Landsat (2013–2018), and 2 years of imagery from
Sentinel, which was initiated in 2015 (2017–2018). We excluded data from 2016 because of quality
issues with Sentinel imagery (see Appendix D for imagery acquisition and resolution). Thousands
(n = 2893) of images of meadows were analyzed over 5 years of study across providers Landsat 8,
Sentinel-2, and Planet. For all three providers, we extracted summary reflectance values across red,
green, blue, and NIR bands for each meadow area polygon (see Appendix C for band wavelengths).
Additionally, we calculated summary reflectance in short-wave infrared (SWIR) and green chromatic
coordinate (gcc) for Sentinel imagery for each meadow. We briefly describe the three providers below.

The Landsat 8 OLI (Operational Land Imager) platform offers 30-m data with high-quality spectral
calibration. The Landsat-8 satellite is one of a series that were launched by the National Aeronautics
and Space Administration (NASA)/U.S. Geological Survey (USGS). Landsat Collection 1 Level-1 data
products are used in the Landsat analysis (here onwards referred as L8).

Sentinel-2 is owned by the European Space Agency (ESA) and offers 10-m data for red, green,
blue, and NIR bands. Officially called the Copernicus Sentinel-2 mission, Sentinel-2 consists of two
polar-orbiting satellites in the same sun-synchronous orbit, phased at 180 degrees to each other
(Sentinel-2, 2019). Sentinel-2 Level-1B products are used in the Sentinel workflow (here onwards
referred as S2-1B).

Planet Labs PlanetScope constellation consists of 120+ CubeSats which orbit in two near-polar,
sun-synchronous orbits of ~8◦ and ~98◦ inclination angle at an altitude of roughly 475 km. The CubeSats
acquire both visible (RGB) and NIR data with 12-bit radiometric resolution that images the entire land
surface on Earth daily. Specifically, we used PlanetScope item PSScene4Band (type analytic_sr) in the
Planet workflow (here onwards referred as PS).

2.3. Training and Validation Data: Peak Flowering from on-the Ground Observations

To associate the satellite images to peak flowering, we developed a method to determine peak
flowering window by elevation: first, we deduced flowering windows from field-based MeadoWatch
observations (collected on the trail adjacent to meadow polygon) observations for 2017 and 2018 when
PS, L8, and S2-1B imagery was available. Then for validation, we determined flowering time for
2013–2015 from observations from MeadoWatch and Theobald et al. (2017) when only L8 imagery
was available. Example kernel density curves of observed flowering of top 10 recorded species for 6
years from MeadoWatch (2013–2018) are presented in Figure 2; 2015 showed a considerable shift in
peak flowering day due to unprecedented warm temperatures (in contiguous United States average
temperature was 2.4 ◦F above the 20th century average). See Appendix D for imagery and study
period details.
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Figure 2. In-situ observed flowering of 10 of the most abundant meadow species across a 6-year period
(2016 shown for completeness). The dotted lines indicate start of the month. Species include Valeriana
sitchensis (VASI), Polygonum bistortoides (POBI), Pedicularis bracteosa (PEBR), Microceris alpestris (MIAL),
Lupinus arcticus (LUAR), Ligusticum grayi (LIGR), Erigeron peregrinus (ERPE), Erythronium montanum
(ERMO), Castilleja parviflora (CAPA), Anemone occidentalis (ANOC).

Flowering windows were estimated using flowering observations by the MeadoWatch program
and those reported in Theobald et al. (2017). In both the cases, observer(s) recorded the species, the date
(day of the year) and flowering status (‘yes’ or ‘no’) in multiple plots (plots measured 1 m × 1 m
in Theobald et al. 2017 and were estimated at ~2 m × 1 m in MeadoWatch). The main difference
between these datasets is that multiple 1 m × 1 m plots were sampled within one of five meadows
sites by Theobald et al. (2017), whereas sampling occurred at nine single MeadoWatch plots, along a
prominent hiking trail. MeadoWatch plots were close to the five Theobald sites, and spanned the
same elevation gradient. Plots within the Theobald et al. (2017) sites were combined to delineate
an area (purple polygons in Figure 1) to fetch the satellite imagery. For the purposes of this study,
the MeadoWatch plots were grouped by elevation using the shortest distance to nearby Theobald site
(Figure 1). Once grouped by elevation, the observations were then separated by year to calculate mean
and standard deviation (SD) of peak flowering day (Figure 3A). The days in one ±SD of the mean was
considered to be peak flowering window for that year and elevation (Figure 3B). Our determination
of flowering windows assumes that all 10 focal species are found in all plots in all years. This is not
a valid assumption but making it does not bias our conclusions as we are making inference at the
community-level. In other words, we are determining peak flower as the date at which there is the
highest probability of seeing any species in flower and are using the 10 most prominent and abundant
species to make this assessment.
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Figure 3. Peak flowering windows using MeadoWatch observations. (A) Kernel density of flowering
observations by elevation (in meters) and year. (B) Estimated flowering windows calculated using
mean flowering day and ±1 SD; error bars indicate length of the flowering window with the dot
signifying mean peak flowering day. Note the shift in flowering phenology in 2015, a historically
warm year.

2.4. Satellite Data Processing

All processing of satellite imagery data was performed using SWEEP [24], a workflow management
platform for distributed execution in cloud infrastructures. SWEEP workflows for acquiring and
analyzing imagery were developed for PS, L8, and S2-1B and are briefly outlined in the Appendix B.

2.5. Analysis

2.5.1. Importance of Spectral Bands in Flowering

To assess the relevance of the NIR and red spectral bands to flowering phenology, we employed
Principal Component Analysis (PCA) to summarize dominant patterns of variation in the spectral band
data and relate it back to flowering phenology. PCA, a multivariate ordination approach, is a preferable
way to account for correlations among spectral bands [25,26]. We hypothesized that a shift in reflectance
signature in NIR and red bands would be observed in known flowering months and would differ
from the signature when meadows green-up (early summer, after snowmelt) or when the meadows
are covered in snow (early summer and spring). Therefore, for each satellite image we extracted the
minimum, maximum and average pixel value by spectral band for each meadow. We created a spectral
matrix where rows (or objects) corresponded to satellite images (from PS), and columns (descriptors)
included summary measures (minimum, maximum, and mean) of all the bands and NDVI (calculated
using the corresponding red and NIR band). PCA was conducted using PS imagery only because a fine
resolution of 3 m has more spectral representation for an average meadow (typically 30 m by 30 m) and
is more likely to capture the spectral variability in a meadow, i.e., 9-pixel values for an average meadow.
We used PCA in part because it could potentially help identify the reflectance bands that are related to
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months when flowering is typically observed. Hence, we characterized the relationship between the
flowering meadows and spectral reflectance to understand which band captures flowering.

2.5.2. Flowering Prediction Using Random Forest (RF)

We used a Random Forest (RF) classifier [27] to predict the occurrence of flowering (binary yes or
no) as a function of the spectral variables for years 2013–2015. Random Forest (RF) classifiers are a
model-averaging or ensemble-based approach in which multiple classification tree models are built
using random subsets of the data and predictor variables. This approach uses a recursive partitioning
algorithm to repeatedly partition the data set according to the predictor variables into a nested series
of mutually exclusive groups, each as homogeneous as possible with respect to the response variable.
It requires fewer parameters to be fit, has been shown to be less biased than other machine learning
methods, and is known to be effective in classifying vegetation in remote sensing applications [28,29].
We used Cohen’s kappa statistic to quantify model performance (comparing expected vs. observed
error), and Gini importance to obtain the predictive contributions of the spectral features in the Random
Forest (RF) classifier. We picked the threshold for determining the predicted probability of flowering
by evaluating the receiver operating curve (ROC) and the distribution of true positive rate (sensitivity)
and true negative rate (specificity) with respect to threshold.

We compared how finer resolution imagery compared to the combined resolution imagery by
comparing their Random Forest (RF) performance metrics. We qualitatively assessed peak flowering
using L8 imagery from the years 2013–2015 with two surveys; in-situ observed flowering survey by
Theobald et al., 2017 and MeadoWatch.

All the statistical analyses were performed in R (R Development Core Team 2008).

3. Results

3.1. Importance of Spectral Bands in Flowering

The PS data showed that reflectance in the NIR band is comparatively higher in July and August,
with the other bands showing a high degree of correlation (Figure 4C,D). There is a steady decrease in
reflectance from June to July during snowmelt, and then a rapid decrease in reflectance during July
and August, aligned with the timing of green-up and flowering.

Strong patterns are evident in red and NIR with respect to temporal patterns in observed flowering.
Reflectance in green band is lower when compared to other bands until early July, and then close to
zero reflectance in visible bands (i.e., red, green and blue; also means strong absorption). Increasing
reflectance in the blue band reflects the snowmelt period until early June, followed by months
characterized by decreasing reflectance that indicate greening-up of vegetation. Green-up causes a
steady decrease in reflectance in all bands until an inflection point around late August, evident in 2017
and 2018 (Figure 4C,D). Higher absorbance in visible bands is observed in flowering months except for
NIR, which is correlated with other bands until June, but then shows higher reflectance in flowering
months (Figure 4).

The NDVI profile of the meadow sites by elevation for two years (2017, 2018) show alignment
with flowering months (Figure 4G,H). NDVI is most elevated in late July and August (Figure 4D,E);
coincidently, there is a ramp-up late June followed by a decline in greenness index after August
(Figure A5). NDVI values between −0.1 to +0.1 signifies snow, which is evident in months until June
(Figures A2 and A3). Additionally, NDVI variability is lower at the highest elevation, where vegetation
is sparse, than at the lower elevations; also evident is the lag in peak NDVI by elevation (Figure A4A,B).
We found that average NDVI was linked to flowering months July and August (Figure A4C), also,
NDVI drops after plateauing in late July–early August (PS imagery, Figure A6).
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Figure 4. (A,B) A typical flowering meadow at peak, and a meadow past the peak flowering. (C,D)
Reflectance profile of all the meadows across two years (2017 and 2018) using PlanetScope item
PSScene4Band (type analytic_sr) in the Planet workflow (PS). (E,F) Normalized Difference Vegetation
Index (NDVI) profile of all the meadow sites by elevation for two years (2017, 2018) using PS. On the
alternate y-axis is the elevation in meters, and y-axis shows the number of PS captures/meadow having
the corresponding NDVI threshold. The NDVI thresholds are determined by taking the average of
NDVI metric across the entire meadow. (G,H) Flowering observations for years 2017 and 2018 from
MeadoWatch; showing dominant 10 flowering species.
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A large proportion of the variability in the spectral bands of PS was captured by the first two
principal components (PCs) (Figure 5A,B). In peak flowering months (July and August), PC1 was
positively correlated to mean NDVI, and negatively correlated to mean NIR reflectance values
(Figure 5). Additionally, in peak flowering months, the reflectance in visible and NIR bands are
negatively correlated to PC1. In non-flowering months, PC1 is positively correlated to reflectance
in visible and NIR bands. Seasonal trends are evident, as snow starts declining in the meadows in
May and continues with vegetative growth towards late June and flowering peaking around August.
In typical flowering months July and August, NDVI values are strongly clustered with correspondingly
higher positive mean values of NDVI in the range between 0.6 and 0.8 (Figure 5A,B). Spatial variability
of flowering across elevations is also evident with lower elevations strongly tied to increased NDVI
than higher elevations (Figure 5C).Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 24 
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Figure 5. Biplot ordination from the principal component analysis (PCA) for 2 years (2017 and 2018) of
spectral data from PS for the 5 meadow sites. (A–C) PC1 and PC2, overlain with the centroid (filled
large dots) and average summary reflectance’s captured in visible and near infrared (NIR) bands
colored by month, NDVI, and elevation (blurry dots); (D) the ordination without any highlighting of
the individual summary reflectance’s. (A) Seasonal trends are evident; snowmelt in the meadows to
flowering from upper left to upper right in the panel; blurry dots are colored by month. (B) Flowering
months (late July and August) demonstrate higher positive mean values of NDVI in panel; blurry dots
are colored by NDVI. (C) Flowering at sites showing the spread by elevation explained by increase
in NDVI in the flowering months; blurry dots are colored by elevation of the meadow. (D) Strong
correlation between visible bands, and NDVI metric that is orthogonal to NIR/visible bands.



Remote Sens. 2020, 12, 2894 10 of 22

3.2. Flowering Predictions Using Random Forest (RF)

Random Forest (RF) was trained to estimate the flowering window from PS and PS combined
with coarser resolution satellite imagery. The results showed that the accuracy, i.e., correct classification
rate when only PS was used was 70% (Kappa 0.25), when combined with coarser providers was
77% (Kappa 0.39). However, when only coarser imagery was used, accuracy was 72% (Kappa 0.37).
PS explained the most variation at 55% and combined imagery without PS was the lowest with 29%
(Table 2). We used a threshold of 0.25 to determine the predicted probability of flowering.

Table 2. Metrics when different types of imagery was used. Model combining the PS imagery with
coarser providers yielded better results than PS only-based model.

Metrics PS + L8 + S2-1B L8 + S2-1B PS

Accuracy (%) 77 72 70
Median CV 1 RMSE 0.29 0.27 0.31

Median CV 1 Variation (%) 50 29 55
Kappa 0.39 0.37 0.25

1 99 cross-validations with 0.10 proportion withheld at each run.

In our Random Forest (RF) variable importance analysis, NIR was less relevant than NDVI for
identifying peak flowering. Mean values of reflectance in NDVI were most important in the RF model
when only fine resolution imagery was used (Figure 6A), whereas, when using combined imagery,
the blue band was most important (Figure 6B). However, NIR is integrated into NDVI as part of being
a normalized measure with the red band, and NDVI does stand out in both the datasets, but NIR does
not stand out as much as the red band.
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Figure 6. Relative importance of predictor spectral variables related to flowering when fine resolution
imagery was used versus when fine-level imagery was combined with coarser resolution imagery.
(A) Using PS only highlights NDVI as the top contributor. (B) PS, along with L8 and S2-1B, highlights
the blue band as the top contributor.

Predicted peak phenology windows from spectral images aligned with observed phenology in
some years than the others. The RF model captures the middle (or median) of the flowering window
when compared to in-situ but tends to be longer, and the predicted window does not align in most
cases when compared to MeadoWatch (Figure 7A,B). In comparison with both in-situ and MeadoWatch
observations, there is over- and underestimation, which is evident in misaligned start of peak flowering
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window in certain years/elevations and overlapping intervals in some years/elevations. For 2015,
an exceptionally warm year, both Random Forest (RF) models predict with less overlap but exhibit
longer flowering windows that show delayed onset of flowering. Both the models overpredict the start
of the flowering in average years (2013 and 2014) than in a warm year (2015). The predicted flowering
windows aligned better when combined imagery was used than when only the finer imagery was used.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 24 
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Figure 7. Qualitative comparison of observed window from the in-situ observations of (Theobald
et al., 2017), MeadoWatch program, and Random Forest (RF) based flowering window. (A) Predicted
and Observed peak flowering window when only 3-m (PS) resolution data was used for training.
(B) Predicted and Observed peak flowering window when 3-m (PS) resolution, along with 10-m (S2-1B)
and 30-m (L8) data, was used for training.

4. Discussion

Our study demonstrates that the timing of peak flowering in alpine meadows is detectable using
fine resolution CubeSat imagery, and that the addition of coarser resolution imagery also substantively
improves model accuracy. We also found that NDVI (a metric often used to quantify vegetative
phenology) better predicted flowering phenology than did the NIR spectral band. The flowering
window predicted from our model overlapped with the observed window in many site-year
combinations but not in others, suggesting that accuracy is still an issue when using remote sensing
imagery to detect flowering in meadows. Finally, more years where fine-resolution imagery overlaps
with on-the-ground phenology data would likely have allowed for improved model and model
assessment, as we only had 2 years of PS imagery to relate to our MeadoWatch observations.

We found that higher reflectance was observed in NIR and red bands when flowering occurred
and can potentially be combined with reflectance captured in other bands for improved flowering
detection. Meadow sites exhibited visibly higher reflectance in the NIR when flowering as compared to
meadow green-up, an expected result as flowers decrease absorption after the initial green-up [15,30].
Strong absorbance was also found in red and green bands during flowering, as well equal absorbance
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in the blue band when comparing to NIR. The blue band is typically associated with green-up time;
it is a likely indicator of plant photosystems being active as allocation to vegetative growth is needed to
support the energy required to produce flowers [31]. We found that NIR was correlated to flowering as
is NDVI (which is a function of NIR). We also explored other indices, like green chromatic coordinate
(gcc) index, which is a proxy for greenness that has been found to be useful for detecting flowering other
studies [32]. Our findings suggest that there is a decrease in greenness (i.e., gcc) past peak green-up
prior to flowering (Figure A5).

Use of visible and NIR bands are instrumental in phenological explorations but might be better
when coupled with additional bands. We show that using visible bands (red, green, and blue) and NIR
bands were sufficient in narrowing down the flowering window, but use of finer bands at the red-edge
region might help further augment the flowering signal [33,34]. For example, use of SWIR has been
found to be useful in accentuating signals of senescent vegetation. In addition, a recent announcement
by Planet to provide additional bands (between 5 to 8) on next generation CubeSats could improve the
phenological assessment at finer resolutions.

NDVI was found to be a significant predictor of peak flowering phenology in alpine/subalpine
meadows. NDVI normalizes NIR and red bands and has been shown to be associated with green-up [35].
Furthermore, flowering must be preceded by peak green-up, which is evident by plateauing of NDVI
(Figure A4A,B), signifying saturation because of chlorophyll accumulation [36]. Although reflectance
in NIR visually shows the strongest pattern during peak flowering (Figure 4C,D), we actually found
that a normalized measure like NDVI (which incorporates NIR) better predicts flowering (Figure 6A,B).
The NDVI-based metric is usually applied in crop classification studies [37], but we also found it useful
for detecting flowering in alpine meadows—an important result as it indicates this metric may also be
applicable in studies which are looking to differentiate other phenological stages.

Despite the fact that NDVI was a reliable metric in our study, we recognize that it also has a
number of shortcomings. Remotely sensed NDVI has been acknowledged as differing from true NDVI
because of atmospheric effects and varying soil brightness, both of which can differ from image to
image [38]. Although soil blotches are not common in alpine meadows except at very high elevations,
the largest challenge is associated with canopy background limitations [39]. For this reason, Enhanced
Vegetation Index (EVI) is often used as an alternative to NDVI to address the soil and atmospheric
limitations [16]. We therefore suggest that EVI and the other related indices should be explored for
their utility in predicting phenological stages beyond vegetative ones, including the combination of
several indices to improve measurement accuracy.

We show that combining several types of satellite imagery leads to enhanced predictions of
flowering phenology. Specifically, by combining 3-m spectral imagery with 10-m and 30-m imagery,
our model predictions showed better overlap with observed flowering windows when compared to
just the finer resolution model. However, the combined model tended to overpredict the start of the
flowering windows (except in the anomalously warm year—2015). Similar studies have shown that
multi-resolution data analysis improves results: “fuzzier” low resolution data can provide “big picture”
information, and, when combined with the lower-resolution data, finer details can be revealed [40].

Our results also suggest that coarser 30-m Landsat imagery can be useful to infer peak flowering.
The model parameterized with combined imagery (including finer scale Planet imagery) was able to
infer peak flowering when applied to Landsat in years where only coarser scale imagery was available.
Additional improvements to model predictions are possible by refining atmospheric corrections used
for Landsat and Sentinel; in this study, we uniformly applied corrections across each individual band
in order to account for atmospheric absorption, such as the effect of haze (Appendix A). However,
these effects are not likely to be uniform. Future work should examine the effect of band-specific
atmospheric corrections on phenology prediction accuracy.

Despite having an amalgam of satellite imagery of the meadows, one fundamental question is that
are we able to distinguish the flowering signal from the background, i.e., soil, rocks or green vegetative
growth [41,42]. PS comes with only 4 bands and has overlapping bands that might lead to pixel quality



Remote Sens. 2020, 12, 2894 13 of 22

issues [43,44], and other coarser providers have constraints of resolution and frequency of captures.
However, meadow wildflower phenology progresses seasonally in a predictable manner. In the
springtime, plants are covered with snow; when snow melts, they green-up, and then peak-flowering
happens, and then snow falls again, covering all vegetation. This cycle culminates in about 4 months.
We see this same 4-month cycle in the satellite signal through RGB composite and NDVI (Figure A6).
Our method is bound by these constraints, but having more on-the-ground observations in time
and even better satellite resolution (e.g., <3 m from DigitalGlobe) might be a significant next step.
One option of combining imagery of various resolutions as we showed here is a promising approach.
We plan on exploring the possibilities of augmenting the model training with more on-the-ground
data and/or using the sub-meter imagery to create the training data.

Our work highlights the challenges to detect flowering from satellite imagery in heterogeneous
plant communities, such as those found in alpine meadows. Previous studies reporting promising
results were mostly conducted in simplified systems (e.g., monoculture crops) where there is greater
uniformity in landscape features and phenological trajectories [16,45,46]. By contrast, the effects
of elevation, vegetation composition, and heterogenous snow (in the early season) make it more
challenging to predict flowering from satellite imagery in alpine meadows. In other montane systems,
a modified approach that takes into account species level reflectance profiles might improve the
flowering signal in mixed flowering species, e.g., use of vegetation color specific reflectance profiles in
differentiating between flowering and green-up [15,47].

5. Conclusions

In this study, we tested whether fine-resolution imagery (<10 m) can detect flowering and
whether combining multiple sources of imagery improves the detection process. By examining alpine
wildflowers at Mt. Rainier National Park (MORA), we found that combined PlanetScope (from Planet
Labs) data with coarser resolution but better quality imagery from Sentinel and Landsat satellites
(10-m Sentinel and 30-m Landsat), resulted in higher accuracy in delineating the flowering season
captured by ground-based phenological surveys than a finer 3-m resolution PlanetScope imagery.

Our methodology holds potential in quantifying climate-driven shifts in alpine meadows in
support of both scientific and management goals. Our approach to wildflower phenology predictions
using finer scale satellite imagery serve economic interests as Mt. Rainier National Park receives over 2
million yearly visitors, the majority of whom come in the summertime to enjoy the idyllic wildflower
vistas. Better predictions of peak flowering could help park facilities to prepare for increased visitation
and provide timely visitor updates.
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Appendix A

Data refinement is spread out over reprojection and cropping; however, the bulk of the data
processing is done after cropping. The data is first converted into Top-of-Atmosphere reflectance (TOA)
and then to Bottom-of-Atmosphere reflectance (BOA) also known as surface reflectance (SR). This is
because the data gathered comes as raw Digital Numbers (DN), and the DN values are simply scaled
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values measured by the sensors and have no meaningful value. TOA is converted to BOA because
BOA takes into account atmospheric effects, such as cloud cover, aerosol gases, etc. For Landsat,
the equation for DN to TOA conversion is

ρλ =
Mρ Qcal + Aρ

cos(θSZ)
. (A1)

In Equation (A1), ρλ = TOA planetary reflectance, Mρ = band-specific multiplicative rescaling
factor, Aρ = band-specific additive rescaling factor, Qcal = quantized and calibrated DN pixel value,
and θSZ = solar zenith angle for solar correction.

Mρ is 2 × 10−5, and Aρ is −0.1, which are both provided in the metadata file. The solar elevation
(θSE = 90 − θSZ) angle is provided in the metadata file as an average of the entire tile, but Landsat
provides a tool to get the θSZ for each pixel in a specific band. This is used instead of the approximation.

Once TOA reflectance is calculated, a scatter value is subtracted in order to get BOA reflectance.
TOA is only reflecting from above the atmosphere. This scatter value is calculated by using a method
called Frequency 50 Minus 0.008 (F50 0.8%) developed by GIS Ag Maps [48]. This is an image-based
atmospheric correction model based on the Chavez Landsat TM histogram method [49]. This model
only accounts for atmospheric scattering and assumes a constant haze value throughout the entire
image. This constant haze value is determined by a relative scatter lookup table provided by GIS Ag
Maps. This is by no means the most accurate way to derive surface reflectance as it is an image-based
correction algorithm; however, it was used here because of its accuracy and simplicity.

Appendix B

Workflows for acquiring and analyzing Landsat, Sentinel, and Planet satellite images were written
and executed on SWEEP [24], a scalable workflow management platform.

Appendix B.1. Landsat

The workflow begins with setting the input boundaries of the meadow sites, which are subsequently
run against the USGS Earthdata Explorer API (EE API), along with the date ranges to fetch the available
scenes. Scenes are available on EE API and AWS S3 (a cloud data storage product) as part of its
open data program. EE API provides functionality to search and download Landsat imagery for free.
The workflow was designed from the ground-up and is made available to ensure reproducibility.
We chose to use both of these services to overcome an EE API limit on parallel downloads. Once a
set of scenes is returned by EE API, the list of scenes was checked against AWS S3 for availability.
Once matched scenes are found, they are downloaded from S3 and then re-projected (projection WGS
84 is used for this workflow), cropped, and radio-metrically corrected using the Landsat TM histogram
method by (Chavez Jr, 1988). Next, statistical measures (min, max, and mean) are calculated across
all the bands in visible and NIR spectra at the meadow level. Finally, the results are written to a
comma-separated values (CSV) file which includes the statistical values for each band, the name of the
feature (meadow site), and the date.

Appendix B.2. Sentinel

The workflow starts by setting a list of polygons referring to meadow sites. Next, the workflow
gets the applicable AWS scenes using the sentinelhub Python package with a spatial and temporal filter.
The results include the AWS S3 URL, as well as the date of each of the scenes, which are both extracted
for all of the available scenes. Once the scenes are found for each meadow, retrieving and refining of
the data for each scene is subsequently run in parallel. This includes fetching, re-projecting, cropping,
and refining the image data. Re-projecting and cropping are similar to the Landsat implementation
mentioned above.
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The image data conversion for this workflow is less computationally demanding than that of
the Landsat workflow because Sentinel-2 L1C data comes as Top-of-Atmosphere (TOA) reflectance.
Thus, we only needed to subtract each band’s scatter value to reach Bottom-of-Atmosphere (BOA)
reflectance, also known as surface reflectance. The method used to find the scatter value is the same
one used in the Landsat workflow, except that the Sentinel relative scatter table was used, as opposed
to the Landsat relative scatter table. Both of the tables are provided by GIS Ag Maps [49] to find the
scatter values for the bands.

Appendix B.3. Planet

Here, all the interactions are made via the Planet API through the SWEEP tasks. The workflow
starts by using the meadow polygons to search for images within the desired date range. The results are
image identifiers that are passed to the next task, which issues an API call to activate each image scene.
The next task sends a clipping request to the API, whereby the meadow is clipped from the larger scene.
A download request is then sent for each image, which, when ready, is furnished via a time-sensitive
link. Finally, the images are downloaded, and metrics calculated for each band. The output is written
to a CSV file that has band metrics time-stamped for each meadow.

Appendix C

Table A1. Wavelengths (in nanometer, µm) of spectral bands by different satellite imagery providers.

Band Landsat 8 Sentinel-2 Planet

Blue 0.45–0.51 0.45–0.52 0.45 = 0.51
Green 0.53–0.59 0.54–0.57 0.50–0.59
Red 0.64–0.67 0.65–0.68 0.59–0.67
NIR 0.85–0.88 0.78–0.90 0.78–0.86

SWIR 1.5–1.6 0.9–1.7 N/A

Appendix D

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 24 

 

Appendix B.3. Planet 

Here, all the interactions are made via the Planet API through the SWEEP tasks. The workflow 
starts by using the meadow polygons to search for images within the desired date range. The results 
are image identifiers that are passed to the next task, which issues an API call to activate each image 
scene. The next task sends a clipping request to the API, whereby the meadow is clipped from the 
larger scene. A download request is then sent for each image, which, when ready, is furnished via a 
time-sensitive link. Finally, the images are downloaded, and metrics calculated for each band. The 
output is written to a CSV file that has band metrics time-stamped for each meadow. 

Appendix C 

Table A1. Wavelengths (in nanometer, μm) of spectral bands by different satellite imagery providers. 

Band Landsat 8 Sentinel-2 Planet 
Blue 0.45–0.51 0.45–0.52 0.45 = 0.51 

Green 0.53–0.59 0.54–0.57  0.50–0.59 
Red 0.64–0.67 0.65–0.68 0.59–0.67 
NIR 0.85–0.88 0.78–0.90  0.78–0.86 

SWIR 1.5–1.6 0.9–1.7 N/A 

Appendix D 

 
Figure A1. Time frame of fine resolution data versus coarse resolution data of the study. 
Figure A1. Time frame of fine resolution data versus coarse resolution data of the study.



Remote Sens. 2020, 12, 2894 16 of 22

Appendix E

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 24 

 

Appendix E 

 
Figure A2. Planet reflectance comparison of NIR and green band showing snowmelt followed by 
green-up and flowering. (A) NIR reflectance is higher in snow months than in vegetative and 
flowering months, signified by positive correlation of reflectance’s with snow-depth. (B) Green 
reflectance shows lower reflectance (i.e., higher absorption) after the snow-melt, signifying green-up. 
(C) Snow-depth plot from the metrological records highlighting snow-free months after June. 

Figure A2. Planet reflectance comparison of NIR and green band showing snowmelt followed by
green-up and flowering. (A) NIR reflectance is higher in snow months than in vegetative and flowering
months, signified by positive correlation of reflectance’s with snow-depth. (B) Green reflectance shows
lower reflectance (i.e., higher absorption) after the snow-melt, signifying green-up. (C) Snow-depth
plot from the metrological records highlighting snow-free months after June.
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Figure A3. Combined Sentinel and Landsat reflectance comparison of NIR and green band showing
snowmelt followed by green-up and flowering. (A) NIR reflectance is higher in snow months than in
vegetative and flowering months, signified by positive correlation of reflectance’s with snow-depth;
however, note the upward trend of NIR in late September and October, signifying onset of snow or
drying vegetation. (B) Green reflectance shows lower reflectance (i.e., higher absorption) after the
snow-melt, signifying green-up. (C) Snow-depth plot from the metrological records highlighting
snow-free months after June.
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Figure A4. NDVI curve (loess smoothing) using Planet reflectance for years 2017–2018, showing the
peak green-up around late July and also showing the phase lag by elevation. (A) 2017 NDVI values
going from −0.2 to 0.8 capturing snow on the ground to flowering; also, notice the lag in peak NDVI
confirming the snow-melt lag that is driven by elevation. (B) Similar patterns as 2017, 2018 NDVI
values going from −0.2 to 0.8, capturing snow on the ground to flowering; also, notice the lag in peak
NDVI confirming the snow-melt lag that is driven by elevation. (C) Histogram of NDVI values binned
by year with the average month that it was observed in shaded.
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Figure A5. Green Chromatic Coordinate (gcc) that is a proxy of greenness calculated using Sentinel
reflectance as data existed after August for years 2017–2018, showing the decline in green-up around
late August but moderated by elevation. (A) 2017, capturing the ramp-up after late June right after
snow-melt and decline after August; highest elevation sites have very short green-up. (B) Similar
patterns as 2017, 2018 shows ramp-up in greenness around late June and drop in greenness after August.
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(B,D,F), then a sharp increase in NDVI (H,J,L), and finally back to low levels of NDVI confirming
snow (N,P,R).
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