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Abstract: Time series land cover data statistics often fluctuate abruptly due to seasonal impact and
other noise in the input image. Temporal smoothing techniques are used to reduce the noise in
time series data used in land cover mapping. The effects of smoothing may vary based on the
smoothing method and land cover category. In this study, we compared the performance of Fourier
transformation smoothing, Whittaker smoother and Linear-Fit averaging smoother on Landsat 5,
7 and 8 based yearly composites to classify land cover in Province No. 1 of Nepal. The performance
of each smoother was tested based on whether it was applied on image composites or on land cover
primitives generated using the random forest machine learning method. The land cover data used
in the study was from the years 2000 to 2018. Probability distribution was examined to check the
quality of primitives and accuracy of the final land cover maps were accessed. The best results
were found for the Whittaker smoothing for stable classes and Fourier smoothing for other classes.
The results also show that classification using a properly selected smoothing algorithm outperforms a
classification based on its unsmoothed data set. The final land cover generated by combining the best
results obtained from different smoothing approaches increased our overall land cover map accuracy
from 79.18% to 83.44%. This study shows that smoothing can result in a substantial increase in the
quality of the results and that the smoothing approach should be carefully considered for each land
cover class.

Keywords: remote sensing; temporal smoothing; google earth engine; machine learning;
random forest; land cover

1. Introduction

Thematic land cover and forest maps are important sources of information for managers and policy
makers for local and national-level policies and development strategies [1–4]. Important decisions
regarding land use allocation, food production, hydrological modelling and natural resource
management need to be supported by accurate information on spatial and temporal land cover
dynamics which is occurring at a tremendous rate [3,5–7]. Remote sensing is a widely-accepted method
for land cover classification. Since commercial high resolution images, free medium resolution images
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and open source cloud computing platforms are becoming more available, using machine learning
(ML) techniques to classify land cover types with remotely-sensed data has gained popularity [8,9].

Dealing with noise is one of the main challenges in satellite image classification
schemes. Satellite images can contain noise from different sources. Atmospheric effects while the
image is taken, sensor degradation and thermal noise, and processing of signals received by sensors
are some of the sources that can introduce noise to the images [10]. Noise might propagate through
the classification scheme and negatively affect the performance of the model and quality of the
outputs [10,11]. Pixel-based classifications in particular were found to be especially sensitive to noise
as a considerable proportion of the signal of a pixel might come from the surrounding pixels [12,13].
Various techniques have been proposed to reduce the impact of noise. These methods include
pre-processing of the input images or post-processing the results [12].

Even without these processes, random forest, among other machine learning methods, has been
found to adapt and reduce the impacts of noise. This is because it uses bootstrapping and random
split construction unlike other algorithms [14]. Random forest has been found to perform well in
similar classification problems [15]. While convolution neural networks (CNN) has been gaining
momentum in the remote sensing community, it is still a budding field and needs more research [16].
Another method to reduce noise and improve classification accuracy is the use of time-series remote
sensing data [17,18]. However, one caveat to this technique is that image noise and sensor-introduced
noises from individual scenes compound when information from multiple scenes are combined. This
is because, if even one scene has noise it can impact the whole series. [19,20]. The issue of noise can
also be remedied by smoothing the data either early in the process or before final assemblage of a land
cover map so that the noise and inconsistencies are filtered out.

Smoothing is a method of identifying the underlying structure of data such as trends [21,22].
There are multiple studies that explore the use of smoothing algorithms on time-series data in order to
reduce noise. For example, Lunetta et al. [20] explored the use of Fourier transformation on normalized
difference vegetation index (NDVI) values; Chen et al. [23], Cao et al. [24] applied smoothing to
vegetation index data by using a modified Savitzky–Golay filter; Jonsson and Eklundh [25,26]
developed the TIMESAT software package, which can assimilate Savitzky–Golay, asymmetric
Gaussian, and double-logistic algorithms to smooth NDVI time-series data from different sensors.
However, these smoothing algorithms were found to be mathematically complex and computationally
intensive. Therefore, various groups proposed methodologies that simplify the process. For example,
Sakamoto et al. [27], Geerken et al. [28] explored the use of Fourier transforms for smoothing NDVI
data, where the raw data is converted to harmonics and then frequencies corresponding to noise are
removed. Eilers [29] introduced the Whittaker smoother, which uses a simple algorithm that runs
quickly, yet still balances the fidelity of noisy data with the smoothness of the resulting curve [30].
The Whittaker smoother has also been recently adopted in Google Earth Engine (GEE) to smooth
MODIS EVI time series data [31]. Khanal et al. also used the Whittaker smoother to map built-up areas
of Kathmandu with improvements in results [32].

Techniques for smoothing remote sensing data have been widely-used; however, there are few
studies that compare the smoothing algorithms themselves. Shao et al. [33] focused on smoothing
MODIS-NDVI data to support land cover classification. However, since classifications using ML
algorithms use more than just NDVI data, studies on how smoothing multiple input features
and then training models with this data are needed. Similarly, Atkinson et al. [34] compared
Fourier, Whittaker Smoother, Asymmetric Gaussian and Double Logistic smoothing approaches
on phenology. Other studies have been done to test the performance of multiple smoothers on
MODIS-LAI products [35] and hyper-spectral imagery [36] as well. Performance of some smoothers
have also been tested in the context of land cover but with smoothers such as majority filter, Gaussian
smoothing and bilateral filtering [37].

This study follows the Regional Land Cover Monitoring System (RLCMS) approach to perform
land cover classification [38,39]. RLCMS is a joint USAID and NASA collaborative project that provides
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support to dedicated development and sustainable landscape projects [40]. This approach introduces
the concept of primitives, which can be described as biophysical layers that represent information
required to segregate land cover types [38,41,42], for example, tree canopy cover for forest/non-forest
classification. The primitives are prepared from composites that are pre-processed with cloud/shadow
masking, BRDF correction and terrain correction. ML techniques such as random forest are then used
to generate primitives in the form of probability layers [38,40]. These primitives are then used in
accordance with land cover typology in a decision tree that outputs required land cover map. While a
land cover type can depend on multiple primitives, in this study we focus on definitions that allow
single primitives per type as our focus is on studying the impact of smoothing rather than building an
extensive land cover map.

Saah et al. [38] applied the Whittaker smoothing algorithm on primitive layers before assembling
the final land cover map to stabilize the time-series and remove noise. However, they did not explore
and evaluate the impact of including smoothing at a different stage of the image processing. Moreover,
specific primitives or land cover classes may show better performance using a different smoothing
algorithm. Therefore, this study explores the impact of temporal smoothing on image classification
accuracy by following the RLCMS methodology and testing the approaches across all the classes in
multiple stages of the workflow. This was done by applying three different smoothing algorithms on
eight land cover classes. We compared the final accuracy of applying smoothing during pre-processing
and post-processing. This study will help guide future work on land cover mapping on the appropriate
choice for smoothing methodologies towards increasing the accuracy of the final results.

2. Materials and Methods

2.1. Study Area

Province No. 1, the easternmost province of Nepal, was selected as the study area. The province
stretches from approximately 88.2217◦E to 86.1358◦E and 28.1310◦N to 26.3298◦N. This area was
chosen because it has extensive topographical and land cover type variation within a short north–south
distance: the south contains the flat plains of the Terai region, which progress to hills and snowy
mountains in the north. The 2010 land cover map of Nepal (Figure 1) shows that the study region
contains all land cover types presented by Uddin et al. [43].

Figure 1. Province 1 (right) is located in the eastern part of Nepal (left). The different colours indicate
the 2010 land cover classes.
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2.2. Land Cover Typology

The land cover maps of Nepal prepared by Uddin et al. [43] were used to develop the land
cover typology for this study. From the 12 classes presented in the Uddin et al. land cover map,
we derived eight classes to further examine. For this study all forests were consolidated into a single
class. Additionally, we created a new class “river bed” in order to obtain better segregation from classes
such as built-up and barren land. When not separated, river beds have a tendency to be classified as
either built-up or barren land with no real consistency. The complete typology used for this study is
shown in Table 1.

Table 1. Typology of the land cover classes used for the study.

Class Description

forest Land covered with canopy vegetation and shrubs
cropland Land used for cultivation of crops

settlement Land containing artificial surfaces
wetland Areas containing surface water, e.g., lakes and rivers
river bed Sandy banks of water bodies especially rivers
grassland Land covered with herbaceous plants that are not trees or shrubs

snow Land covered in snow
bare Land without vegetative cover and also not occupied by settlement

2.3. Reference Data Collection

The reference data were labelled using visual interpretation using Collect Earth [44,45] where the
plot size was set to equal the spatial resolution of the 30 m Landsat images that were used in land
cover mapping. Each plot had 49 points which were labelled according to observed land cover type.
The plots were generated on a systematic grid with 2 km between sample plots and additional reference
points were added with opportunistic sampling for underrepresented classes. The label land cover
type for each plot was derived based on the majority type occurrence within the plot. The training
points and validation points were randomly split from this reference data set with 86,093 points being
used for training and 4299 for validation. The distributions of these points can be seen on Appendix A.
The maximum number of points per class for validation was capped in order to avoid skewed accuracy
because of a large number of points in a more accurate class. Because of persistent cloud covers,
from 4307 validation data only 3677 points were used to perform accuracy assessment.

2.4. Land Cover Classification

The overall methodology of classification and comparison using various approaches is shown in
Figure 2.

2.4.1. Optical Image Processing

Landsat 5, 7 and 8 surface reflectance images in GEE were used to prepare time series composites
from the years 2000 to 2018. First, each scene was pre-processed by shadow masking, cloud masking,
and then applying BRDF and topographic corrections [40]. The pre-processed scenes were used to
create yearly composites. In order to prepare these composites, six bands from each scene were
used: blue, green, red, nir, swir1 and swir2. The closest real pixel to the median, referred to as
’medoid’, 20 percentile and 80 percentile of those bands were stored in a composite. Additionally,
20 and 80 percentile of NDVI, NDWI were also stored. In addition, information from auxiliary layers
such as the JRC global water and SRTM DEM layers were added to the composite. The resulting
layer, along with labelled reference data, was used to create primitives for each land cover type.
The primitives were generated using a random forest classifier with 100 trees. Feature importance was
also calculated to avoid overfitting. These primitives were then run through a decision tree classifier to
obtain the final land cover maps.
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Figure 2. Overall methodology of the study.

2.4.2. Application of Smoothing

Three smoothing algorithms were tested using two different approaches, while everything else
was kept constant. In the first approach, smoothing was applied during pre-processing on the
composites where all spectral bands were smoothed temporally within our study period starting
from 2000 and extending to 2018. These smoothed bands were then combined with the reference data
to train a random forest classifier. This classifier was next used to create primitives for each class.
This technique was repeated with each of the three smoothing algorithms. In our second approach,
primitives for each class were first prepared using composites without smoothing and reference data.
Then, each probability layer was smoothed temporally to obtain a smooth time series of primitives for
each class. This technique was repeated for each of the three smoothing algorithms. The GEE codes
for these implementations can be found in Appendices B.1 and B.2. This process resulted in 7 layers:
three for each of the three smoothing algorithms applied on composite image, three for each of the
three smoothing algorithms applied on primitives and one original data layer where smoothing was
not applied.

The three algorithms that were used are detailed below:

Whittaker Smoothing

The Whittaker smoother is a popular smoothing approach that has been shown to work well
with evenly-spaced data [29,46]. The Whittaker smoother can be considered as a special case of
B-spline smoothing where the number of knots are equal to the data points [47]. Studies conducted
by Hermance et al. [48,49] have successfully demonstrated its use in signal processing. The Whittaker
smoother works by fitting a smooth series to a discrete data set. For a noisy y-series and its
corresponding smooth z-series, the fidelity of data and roughness of z has to be balanced. Fidelity S is
the sum of squares of differences and R is the roughness of the smooth data which is expressed
as second order differences. With the goal of minimizing the balanced combination of the two,
the combination Q can be expressed as

Q = S + κR (1)
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where,
S = ∑

i
(yi − zi)

2 (2)

and
R = ∑

i
((zi − zi−1)− (zi−1 − zi−2))

2 (3)

κ controls the degree of smoothness where the larger the κ is, the smoother z is. This can be noted in
matrix form as in Equation (4).

(I + λD′dDd)z = y (4)

where,
I = Identity matrix
λ = Smoothing degree, the larger λ is, the smoother z will be
D = differential matrix with m-2 rows and m columns with d as the order of differences Each row

of the differential matrix D with the order of differences 2 contains the pattern 1 −2 1, shifted in a way
where for each row i, di,i = 1, di,i+1 = −2, di,i+2 = 1 and all other values are 0. For example,∣∣∣∣∣∣∣

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

∣∣∣∣∣∣∣
This matrix equation can be solved to compute the matrix z to obtain the smooth series.

Fourier Smoothing

Fourier smoothing is another popular smoothing approach based on the Fourier transformation
of data. There are multiple scenarios where it has been used [25,33,34,50,51]. First, the raw data is
converted to frequency domain by implementing a direct Fourier transformation (DFT). The DFT is
defined by Equation (5) [52]

An =
N−1

∑
k=0

Xke(−2πink/N) n = 0, 1, ..., N − 1 (5)

where,
An = nth coefficient of the DFT
Xk = kth data in the times series
N = Number of data in the time series
i =
√
−1 It can also be written as (6),

An =
N−1

∑
k=0

XkWnk n = 0, 1, ..., N − 1 (6)

where,
W = e(−2πi/N) (7)

However, since computations with the complex exponential are not straightforward on GEE yet,
Equation (7) is re-expressed using Euler’s formula as follows:

W = cos(−2πnk/N) + isin(−2πnk/N) (8)

The real and imaginary parts were handled separately. From the results, the data located in
indices greater than the specified smoothing degree were set as zero. After reducing the higher
harmonics to zero, the resulting values are reverted back to the time domain by applying inverse DFT.
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This essentially means that, first we fit the whole data set using a set of cyclic functions and then
discarding the higher harmonics to remove the overfit so that we essentially are left with smoothened
data set. The Fourier smoother along with Whittaker smoother was found to be two of the best
smoothers in terms of classification in a study done by Shao et al. [33].

Linear Fit Smoothing

Linear Fit Smoothing is what we refer to as a simple derivative of moving window averaging
where the window, a subset of the whole data set is used to average and obtain smooth values [53].
In this case, instead of taking the average over the moving window, data within a window is used to
estimate a linear fit which is further averaged to get the final smoothened results.

The nature and smoothing effect of these algorithms can be explored through Figure 3a,b which
were explored on different points exhibiting different types of time series data. From the plots it can be
seen that, Fourier smoothing tends to preserve the shape of the time series more than others while
Whittaker smoothing gave us the most flattened smoothing among the others. The value of smoothing
degree of all of these algorithms was decided based on trial and error method of testing multiple
values and deciding on the one that gave the best result. The parameters used for these smoothing
algorithms are listed below in Table 2.

Table 2. Parameters used for smoothing algorithms.

Smoothing Algorithm Parameters

Whittaker Smoothing smoothing degree (λ) = 5
order of differences (d) = 3

Fourier Smoothing smoothing degree (harmonics to preserve) = 2
Linear-Fit Smoothing window size = 3

(a)

Figure 3. Cont.
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(b)
Figure 3. Exploring the nature of smoothing in composites, (a) un-smoothed data vs. smoothing
applied on composites. NO = No smoothing applied, SCF = Fourier smoothing applied on composite,
SCL = Linear-fit smoothing applied on composite, SCW = Whittaker smoothing applied on composite,
(b) un-smoothed data vs. smoothing applied on primitives. SPF = Fourier smoothing applied on
primitive, SPL = Linear-fit smoothing applied on primitive, SPW = Whittaker smoothing applied
on primitive.

2.4.3. Final Land Cover Map Generation and Accuracy Assessment

Primitives were assessed based on how well it could distinguish the feature it was supposed
to represent vs the others. From the seven sets of primitives, the best primitive for each land cover
type was picked based on their performance; this was used to create the eighth set of primitives.
Different land cover maps were prepared in an assemblage logic using a decision tree classifier.
For each set of primitives, the same assemblage logic was applied to produce land cover maps
(see Appendices B.3 and C). The decision tree was kept constant so that only smoothing had an effect
on the change in accuracy of the land cover maps. The accuracy of and change in accuracy between
each land cover type was compared in order to understand the impact of different algorithms on
different land cover types.

3. Results

The primitive assessment (Figure 4) shows the performance of the six different smoothing
approaches on each of the eight different land cover types (snow, forest, cropland, wetland, riverbed,
settlement, barren and grassland). A primitive is said to have better separability when the two box
plots generated from it, one representing the probability distributions of its corresponding land cover
type and another representing others, have either narrower plots or larger distance between its two
plots. Narrower plots represent more consistent probability distribution while increased distance
between the box plots means a clearer separation between the primitive’s corresponding type and
others. This results in reduced omission and commission when the proper threshold is applied for
classification. Therefore, better separation is used to identify better primitives. We found that for
snow and forest there is a clear separation between the class itself and other classes, followed by
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wetlands, settlement and riverbed. For grassland and cropland there is more overlap between the
probability distributions.

Figure 4 also shows that Fourier smoothing results in the best separation for snow, wetlands,
riverbed, barren land and grassland. For the other land cover types, Whittaker performed better than
Fourier. Linear-fit was found to perform better than Fourier for forest, cropland and settlement but not
as good as Whittaker. On the other hand, it performed better than Whittaker for other types but did
not consistently outperform either Whittaker or Fourier. Furthermore, it was found that smoothing
on the composite generally shows narrower distributions for snow, wetland and riverbed classes as
compared to primitives. For forest, cropland and settlement the distributions are narrower when
smoothing is applied on the primitives as opposed to on composites.

An example of the accuracy gained by smoothing versus visual assessment alone is shown in
Figure 5. Here, we show that classification of forest without smoothing results in an inconsistent
sudden drop in forest cover for the year 2014 (Figure 5b,f). The seen temporal dynamics of deforestation
and regrowth would not be expected considering the short time frame [54]. Our results show a more
consistent change after temporal smoothing in land cover types, which is more in line with the
expected pathways.

The best performing smoothing algorithms were then used in the land cover assemblage. Figure 6
shows the accuracy of the different land cover classes before smoothing and after combining best
primitives post-smoothing. It can be seen that snow and grassland classes show least improvements,
while settlement, cropland and forest have larger improvements. It can also be noted that smoothing
shows larger improvements for categories with little temporal variability. For example, snow, riverbeds
and wetlands can be expected to have more temporal dynamics and show the least improvement.

The final accuracy assessment (Table 3) demonstrates how smoothing improved results.
The overall accuracy increased from 79.18% to 83.44%. It is important to note that this result means
that using smoothed data sets, given that the smoothing parameters are optimized for the input data
set, is better than using no smoothing at all. However, to ensure that smoothing is not introducing
errors, the nature of land cover type in question needs to be properly identified and the appropriate
smoothing approach needs to be taken. Consequently, to optimize the accuracy of the final maps,
our results showed that it is best to use different algorithms based on the land cover type and then
combine the best primitives to prepare the final land cover map.

Table 3. Comparison of overall land cover time-series accuracy using different approaches
of smoothing.

Smoothing Algorithm Accuracy

No smoothing 0.7968
Fourier on primitive 0.8268

Whittaker on primitive 0.8297
Linear Fit on primitive 0.8270
Fourier on composite 0.8200

Whittaker on composite 0.8294
Linear Fit on composite 0.8217

Merged Using best Primitives 0.8344
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Figure 4. Assessment of primitives prepared using different algorithms. NO = No smoothing applied,
SCF = Fourier smoothing applied on composite, SCL = Linear-fit smoothing applied on composite,
SCW = Whittaker smoothing applied on composite, SPF = Fourier smoothing applied on primitive,
SPL = Linear-fit smoothing applied on primitive, SPW = Whittaker smoothing applied on primitive.
The distance between red and blue box plots in the vertical axis shows the inter-class separability of
a primitive.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5. This figure shows forest (green) and other land cover (yellow) from 2013 to 2016 in the
southern part of the study region. (a–d) shows un-smoothened results for 2013, 2014, 2015 and 2016
respectively. Similarly, (e–h) shows smoothened results for 2013, 2014, 2015 and 2016 respectively.
A huge improvement can be seen in 2014. These are the final results generated from the best primitive
set, i.e., picking best primitives after applying different algorithms on each primitive.

Figure 6. Comparison of class wise accuracy before applying any smoothing and after selecting the
best primitives from various smoothing results. In the plot, accuracy extends from 0% (at centre) to
100% (at the outer edges).

4. Discussion

Three different smoothing algorithms were applied on eight different land cover classes. We found
that improvements vary amongst different categories. We argue that this difference in performance is
caused by the nature of the classes. In the case of Nepal, barren land often interchanges with grassland,
and wetland (mainly rivers) often interchanges with riverbeds. Forest, cropland and settlement are
more constant classes, which changes either once or infrequently. It therefore appears that Whittaker
smoothing works best on land cover types with clear differentiation between them, whereas Fourier
can be used on land cover types that more frequently changing. Fourier transformation showed good
results for land cover types that frequently change as it breaks down a data series into a combination of
cyclic equations; by doing this it preserves many of the highs and lows of the data while still removing
noise. Fourier smoothing therefore works best when applied on the composite layer rather than the
primitives, as the random forest method can then can use the noise-free composite.

In this study, we explored the use of smoothing on remote sensing composites and primitive layers.
However, most studies (e.g., [20,23,24]) apply categorical classification on composites based on indices
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directly and do not have the intermediate primitive layers as used in this study. Moreover, the study
was applied on a relatively small area with distinct climatological and topographic characteristics that
determine the spatio-temporal land cover dynamics. More testing is needed to investigate if these
findings also apply to other regions. It should also be noted that combining our smoothing algorithms
with change detection algorithms such as LandTrendr [55] and Breaks For Additive Seasonal and Trend
(BFAST) [56] might help improve land cover mapping accuracy as these algorithms are specifically
designed to detect changes.

A main issue in generating land cover maps from annual composites is the number of valid
observations (i.e., cloud-free pixels in a year). As such, the intra-annual distribution of pixels varies
from year to year and as a consequence, the phenology is not necessarily fully represented in each
annual composite. This might be captured in the ML model if multiple years are covered, but smoothing
applies some additional noise reduction. This study shows that a smoothing algorithm should be
selected based on the dynamics of a class. For example, Whittaker smoothing shows better results for
stable classes. Fourier shows good results for classes that are dynamic when applied on composites.
In general, it was found that smoothing on the primitives gives better performance than when applied
on the composite layers for stable classes. Primitives are confidence layers generated by the ML
algorithm so smoothing a set of primitives uses temporal information to improve estimates generated
by the ML model rather than observation made by sensors. Stable classes show better performance
after smoothing as it flattens out the inter annual dynamics in surface reflectance or class probability.
For highly dynamic classes temporal segmentation algorithms might be another alternative approach
to capture rapid changes.

We noticed an interesting phenomenon where changes in average probability were largely
insignificant, but the lengths of error bars were significantly reduced. This means that smoothing does
not necessarily increase the average confidence of overall classification but still improves the inter-class
separability by reducing the deviation among pixels. The results line up with Shao et al. [33] while
applying the Fourier and the Whittaker algorithms on an NDVI layer that was used for classification.
Mingwei et al. [57] applied Fourier transformation on MODIS derived vegetation indices and found
good correlation, which seems contradictory to our results. However, it needs to be noted that the
study took a look at phenology, where there is a cyclic change in values, while we are looking at annual
layers for which we do not expect to see much back and forth changes.

5. Conclusions

This study tested on using temporal smoothing as a means to improve land cover maps that were
prepared by using a machine learning algorithm. Here the Fourier, Linear-fit and Whittaker smoothing
algorithms were tested on image composites and on image primitives representing individual land
cover types over time. Overall, we found that using temporal smoothing with machine learning
improves the results compared to no smoothing; however, for classes that frequently undergo changes,
Fourier smoothing produces the best results when applied on composite images. Conversely, for classes
that do not undergo regular changes, Whittaker gave the best results when applied on primitives.
Land cover types that do not undergo frequent changes generally were more improved with smoothing;
in some cases, the accuracy of results decreased in classes that show frequent changes. The overall
accuracy of the maps produced by our approach improved from 79.18% to 83.44% when we combined
the best techniques for each land cover type. We therefore recommend that when creating land cover
maps from satellite data, researchers identify the dynamics of the land cover type based on the target
temporal resolution and then apply the appropriate algorithm. In cases where smoothing needs to be
applied to the whole land cover rather than primitives from just one class, we recommend smoothing
each class separately and then using the smoothed layers to prepare the final land cover map.
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Appendix A. Reference Data

Table A1. Training point distribution.

Land Class Training Points Validation Points

bare 1272 545
cropland 29,537 600

forest 45,806 600
grassland 378 162
riverBed 1615 600

settlement 1501 600
snow 3565 600

wetland 2419 600

Appendix B. Smoothing Codes

Appendix B.1. Smoothing Composites

1 DESCRIPTION
2
3 In order to test the impact of smoothing in landcover classification , we need to
4 first
5 check with smoothing the surface reflectance itself as well as smoothing the
6 intermediate smoothing results. In this step we will be smoothing composites
7 themself
8 using different algorithms namely whittaker , fourier and linear fit.
9

10 SCRIPT INFO
11
12 The users can/should change the following
13 1. imageCollection - source image collection that needs to be smoothened
14 2. boundary - the study region
15 3. smoothingAlgorithm - the algorithm to perform smoothing. can be ’whittaker ’,
16 ’fourier ’
17 or ’linearFit ’
18 3. startYear - the start year from when to perform temporal smoothing
19 4. endYear - the end year to which to perform temporal smoothing
20 5. exportPath - the collection in which smoothened images are exported
21
22 DEVELOPER NOTES
23 1. Make sure the masks in each region is common to avoid errors
24
25
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26 AUTHOR
27 Nishanta Khanal
28 ICIMOD , 2019
29 */
30
31 var imageCollection =
32 ee.ImageCollection(’projects/servir -hkh/ncomp_yearly_30/compositesV2 ’);
33 var boundary = ee.FeatureCollection(’users/nkhanal/boundaries/p1_buffer_2000 ’);
34 var smoothingAlgorithm = "fourier";
35 var startYear = 2000;
36 var endYear = 2018;
37 var exportPath = ’users/nkhanal/sm/four/comp’;
38
39
40 var addCovariates =
41 require("users/khanalnishant/ICIMOD:RLCMS/V2/Training /1 _addCovariates_yearly")
42
43 var smoothing = require("users/khanalnishant/EETest:Algo/WhittakerSmoothing")
44 var param = 10;
45 if(smoothingAlgorithm == ’fourier ’){
46 smoothing = require("users/khanalnishant/EETest:Algo/FourierSmoothing");
47 param = false;
48 }else if (smoothingAlgorithm == ’linearFit ’){
49 smoothing = require("users/khanalnishant/Algorithms:LinearFitSmoothing");
50 param = 420;
51 }
52
53
54
55 // #####################################3
56 // # perform smoothing
57 // #####################################3
58 // #add image attribures for smoothing
59 function prepareImage(image){
60 var imgYear = ee.Number.parse(image.id())
61 image = image.unmask (0).clip(boundary).toShort ()
62 return image.set(’year’, imgYear ,
63 ’system:time_start ’, ee.Date.fromYMD(imgYear , 1, 1).millis ());
64 }
65 var imageCollection = imageCollection.map(prepareImage)
66 print(imageCollection.first())
67
68 // # get original band names and add fitted at end to select fitted bands
69 var bandNames = ee.Image(imageCollection.first()).bandNames ()
70 function fittedName(band){
71 return ee.String(band).cat(’_fitted ’)
72 }
73 var fittedNames = bandNames.map(fittedName)
74
75 var smoothingResults = smoothing.runModel(imageCollection , param)
76 var imageCollection = smoothingResults [0]. select(fittedNames , bandNames)
77 var rmse = smoothingResults [1]
78
79 function exportHelper(image , assetID , imageCollectionID){
80 image = image.int16()
81 // # image = setExportProperties(image , args)
82
83 Export.image.toAsset ({
84 image:ee.Image(image),
85 description:smoothingAlgorithm+"-"+assetID +"-from -js",
86 assetId:imageCollectionID+’/’+assetID ,
87 region:boundary ,
88 maxPixels :1e13 ,
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89 scale: 30
90 });
91 }
92
93 for (var year=startYear;year <= endYear;year ++){
94 var image = ee.Image(imageCollection.filter(ee.Filter.eq(’year’,year)).first())
95 .clip(boundary)
96 exportHelper(image , year , exportPath)
97 }
98
99 Export.image.toAsset ({

100 image:ee.Image(rmse),
101 description:smoothingAlgorithm+"-rmse -from -js",
102 assetId:exportPath+’/rmse’,
103 region:boundary ,
104 maxPixels :1e13 ,
105 scale: 30
106 });

Appendix B.2. Smoothing Primitives

1 /*
2 DESCRIPTION
3
4 In order to test the impact of smoothing in landcover classification , we need to
5 first check with smoothing the surface reflectance itself as well as smoothing the
6 intermediate smoothing results. In this step we will be smoothing primitives using
7 different algorithms namely whittaker , fourier and linear fit. The export will
8 generate an image with timeseries data and rmse on different bands. Different
9 script is later required to split them into images.

10
11 SCRIPT INFO
12
13 The users can/should change the following
14 1. imageCollection - source image collection that contains the unsmoothened
15 primitives
16 2. primitive - the primitive to be smoothened
17 3. boundary - the study region
18 4. smoothingAlgorithm - the algorithm to perform smoothing. can be ’whittaker ’,
19 ’fourier ’ or ’linearFit ’
20 5. startYear - the start year from when to perform temporal smoothing
21 6. endYear - the end year to which to perform temporal smoothing
22 7. exportPath - the collection in which smoothened images are exported
23
24 DEVELOPER NOTES
25 1. Make sure the masks in each region is common to avoid errors
26
27 AUTHOR
28 Nishanta Khanal
29 ICIMOD , 2019
30 */
31
32 var imageCollectionId = ’users/nkhanal/sm/nosm/prims’;
33 var primitive = ’wetland ’
34 var boundary = ee.FeatureCollection(’users/nkhanal/boundaries/p1_buffer_2000 ’);
35 var smoothingAlgorithm = "linearFit";
36 var startYear = 2000;
37 var endYear = 2018;
38 var exportPath = ’users/nkhanal/sm/line/primtemp ’;
39
40 var addCovariates =
41 require("users/khanalnishant/ICIMOD:RLCMS/V2/Training /1 _addCovariates_yearly")
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42
43 var smoothing = require("users/khanalnishant/EETest:Algo/WhittakerSmoothing")
44 var param = 10;
45 if(smoothingAlgorithm == ’fourier ’){
46 smoothing = require("users/khanalnishant/EETest:Algo/FourierSmoothing");
47 param = false;
48 }else if (smoothingAlgorithm == ’linearFit ’){
49 smoothing = require("users/khanalnishant/Algorithms:LinearFitSmoothing");
50 param = 420;
51 }
52
53
54 // #####################################3
55 // # perform smoothing
56 // #####################################3
57 // #add image attribures for smoothing
58 var yearlyPrims = [];
59 for (var year = startYear; year <= endYear; year ++){
60 var image = ee.Image(imageCollectionId+’/’+primitive+’-’+year).unmask (0)
61 .clip(boundary);
62 image = image.set(’year’, year ,
63 ’system:time_start ’, ee.Date.fromYMD(year , 1, 1).millis ())
64 yearlyPrims.push(image);
65 }
66 imageCollection = ee.ImageCollection(yearlyPrims);
67 print(imageCollection.first())
68
69 // # get original band names and add fitted at end to select fitted bands
70 var bandNames = ee.Image(imageCollection.first()).bandNames ()
71 function fittedName(band){
72 return ee.String(band).cat(’_fitted ’)
73 }
74 var fittedNames = bandNames.map(fittedName)
75
76 var smoothingResults = smoothing.runModel(imageCollection , param)
77 var imageCollection = smoothingResults [0]. select(fittedNames , bandNames)
78 var rmse = smoothingResults [1]
79
80 function exportHelper(image , assetID , exportPath){
81 image = image.int16()
82 Export.image.toAsset ({
83 image:ee.Image(image),
84 description:smoothingAlgorithm+"-"+assetID +"-from -js",
85 assetId:exportPath+’/’+primitive+’-’+assetID ,
86 region:boundary ,
87 maxPixels :1e13 ,
88 scale: 30
89 });
90 }
91
92 var img = ee.Image ([])
93 for (var year=startYear;year <= endYear;year ++){
94 var image = ee.Image(imageCollection.filter(ee.Filter.eq(’year’,year)).first())
95 .clip(boundary)
96 img = img.addBands(image.rename(’b’+year));
97 }
98 var img = img.addBands(rmse.rename(’rmse’)).toInt16 ();
99

100 Export.image.toAsset ({
101 image:img ,
102 description:smoothingAlgorithm+"-"+primitive+"-from -js",
103 assetId:exportPath+’/’+primitive+’Results ’,
104 region:boundary ,
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105 maxPixels :1e13 ,
106 scale: 30
107 });

Appendix B.3. Assemblage

1 /*
2 DESCRIPTION
3
4 Now that we have satisfactory primitives we will run them through assembler
5 to obtain a land cover map. The assembler prepares a decision tree based on
6 user specified thresholds which can be tuned based on visual assessment as
7 well as primitive assessment plots. The order of primitives in the list denotes
8 the order in which primitives are placed in the decision tree with the first
9 primitive placed on the top and so forth. This basically means that if a pixel

10 has high probability on two primitives (according to the specified threshold)
11 the final class will be based on the primitive that is higher up on the decision
12 tree.
13
14 SCRIPT INFOS
15
16 The users can/should change the following parameters.
17 1. boundary - this should contain the boundary of region of interest
18 2. repository - the repository that contains the stack of primitives required
19 3. scale - the spatial resolution of the resulting landCover
20 4. exportPath - the path to which to export the resulting landcover
21 5. primitives - the list of primitives to include in the assembler
22 6. defaultThresholds - (optional) the default thresholds that the interface
23 initiates with.It can be changed in the UI later. This should be in line
24 with the list of primitives.
25 7. year - (optional) the default year to load into the interface
26
27 The users need to do the following
28 1. After the script is run , initiate the export task by going to the "Tasks" tab
29 ------->>>>>>>
30
31 */
32
33 /*
34 Variables - refer above notes section for description on these
35 */
36 var boundary = ee.FeatureCollection("users/nkhanal/boundaries/p1_buffer_2000")
37 .geometry ();
38 var repository = ’users/nkhanal/sm/final/prims/’;
39 var scale = 30;
40 var exportPath = ’users/nkhanal/sm/final/lc’;
41 var primitives = [’snow’,’forest ’,’cropland ’,’wetland ’,’riverBed ’,’settlement ’,
42 ’bare’];
43 var defaultThresholds = [70, 60, 60, 65, 60, 60, 70];
44 var year = 2017;
45
46 /* -------------------------------------------------------------------------------
47 WARNING !!!
48
49 FUNCTIONS AND PROCEDURES BELOW HERE
50
51 edit at your own risk
52 */
53
54 // container for the classified landclass image
55 var landClass = ee.Image();
56
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57 // ************************************************
58 // ui objects
59 // containers for sliders
60 var sliders = {};
61 // containers for inspected values
62 var valLabels = {};
63 // list of all selectable years
64 var availableYears = [’2000’,’2001’,’2002’,’2003’,’2004’,’2005’,
65 ’2006’,’2007’,’2008’,’2009’,’2010’,’2011’,
66 ’2012’,’2013’,’2014’,’2015’,’2016’,’2017’,’2018’];
67 // dropdown to select years
68 var yearList = ui.Select(availableYears , ’year’, ’’+year);
69 // checkbox to visualize primitives using thresholds
70 var primThresholds = ui.Checkbox ({
71 label:’Visualize primitive by thresholds ’,
72 style :{’height ’:’18px’,’fontSize ’:’11px’, ’padding ’:’4px’, ’margin ’:’0px’}
73 });
74 // button to refresh display according to parameters
75 var refreshDisplay = ui.Button ({
76 label:’Refresh Display ’,
77 onClick: refresh ,
78 style: {’fontSize ’:’11px’, ’padding ’:’4px’, ’margin ’:’0px’}
79 });
80 // button to export the current LandCover
81 var exportLC = ui.Button ({
82 label:’Export current landCover ’,
83 onClick: exportHelper ,
84 style: {’fontSize ’:’11px’, ’padding ’:’4px’, ’margin ’:’0px’}
85 });
86 // button to export the current LandCover
87 var exportAllLC = ui.Button ({
88 label:’Export landcover stack ’,
89 onClick: exportAllHelper ,
90 style: {’fontSize ’:’11px’, ’padding ’:’4px’, ’margin ’:’0px’}
91 });
92 // button to export problem regions
93 var exportPA = ui.Button ({
94 label:’Export Problem Regions ’,
95 onClick: exportAreas ,
96 style: {’fontSize ’:’11px’, ’padding ’:’4px’, ’margin ’:’0px’}
97 });
98
99 // ************************************************

100 // functions
101
102 // function to reclassify stack image using decision tree
103 function reclassify(stackImage , decisionTree){
104 var classifier = ee.Classifier.decisionTree(decisionTree);
105 var landClass = stackImage.classify(classifier);
106 return landClass;
107 }
108
109 // client side list map function to change list of primitives
110 // to a list of images corresponding to the primitives
111 // also adds the primitives to the map
112 function getPrimitiveImages(primitive){
113 var image = ee.Image(repository+primitive).select(’b’+year)
114 .multiply (0.01)
115 .rename(primitive);
116 var primLayer = ui.Map.Layer(image , {max:100}, primitive , false , 1);
117 if (primThresholds.getValue ()){
118 primLayer = ui.Map.Layer(image.gte(sliders[primitive ]. getValue ()),
119 {},
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120 primitive ,
121 false ,
122 1);
123 }
124 Map.layers ().set(primitives.indexOf(primitive), primLayer);
125 return image;
126 }
127
128 // function to build decision tree from interface
129 function buildDecisionTree (){
130 var values = {
131 forest:sliders[’forest ’]. getValue (),
132 wetland:sliders[’wetland ’]. getValue (),
133 settlement:sliders[’settlement ’]. getValue (),
134 cropland:sliders[’cropland ’]. getValue (),
135 snow:sliders[’snow’]. getValue (),
136 riverBed:sliders[’riverBed ’]. getValue (),
137 bare:sliders[’bare’]. getValue ()
138 }
139
140 var DT = [’1) root 9999 9999 9999’]
141 var base = 1;
142 for (var i = 0; i < primitives.length; i++){
143 var a = base * 2
144 var b = base * 2 + 1
145 DT.push(’’+a+’) ’+
146 primitives[i]+’>=’+values[primitives[i]]+
147 ’ 9999 9999 ’+(i+1)+’ *’);
148 if(i == primitives.length -1){
149 DT.push(’’+b+’) ’+primitives[i]+’<’+values[primitives[i]]+’ 9999 9999 8 *’);
150 }else DT.push(’’+b+’) ’+primitives[i]+’<’+values[primitives[i]]+’ 9999 9999 9999’);
151 base = b
152 }
153 return DT.join(’\n’)
154 }
155
156 // function to start the process
157 function process(year){
158 var stackImage = ee.Image(primitives.map(getPrimitiveImages)).clip(boundary);
159 landClass = reclassify(stackImage , buildDecisionTree ());
160 var lcLayer = ui.Map.Layer(landClass , imageVisParam , ’land cover ’, true , 1);
161 Map.layers ().set(primitives.length , lcLayer);
162 }
163
164 // function to add legend to the map
165 function addLegend (){
166 var UTILS = require(’users/khanalnishant/Algorithms:Utilities ’)
167 var palette = imageVisParam.palette
168 palette = palette
169 var labels = primitives.concat(’grassland ’)
170 UTILS.addLegend(palette , labels ,’Legend ’,{
171 ’position ’:’bottom -right’,
172 ’padding ’:’8px 16px’,
173 });
174 }
175
176 // function to add inspect panel to the map
177 function addInspect (){
178 var panel = ui.Panel([],
179 ui.Panel.Layout.Flow(’vertical ’),
180 {maxHeight:’200px’,position:’bottom -center ’});
181 var inspectLabel = ui.Label(’Click to inspect primitive values ’,
182 {’height ’:’18px’,
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183 ’fontSize ’:’11px’,
184 ’padding ’:’0px’,
185 ’margin ’:’1px’});
186 panel.add(inspectLabel)
187 for (var i = 0; i <primitives.length;i++){
188 var insLabel = ui.Label(primitives[i],{’width’:’60px’,
189 ’fontSize ’:’11px’,
190 ’padding ’:’0px’,
191 ’margin ’:’1px’});
192 valLabels[primitives[i]] = ui.Label(’Click Map’,{’fontSize ’:’11px’,
193 ’padding ’:’0px’,
194 ’margin ’:’1px’});
195 var inspectSubPanel = ui.Panel([insLabel , valLabels[primitives[i]]],
196 ui.Panel.Layout.Flow(’horizontal ’));
197 panel.add(inspectSubPanel);
198 }
199 Map.add(panel)
200 }
201
202 // function to update the inspect section once map is clicked
203 function fetchValues(lonlat){
204 var point = ee.Geometry.Point(lonlat.lon , lonlat.lat);
205 var stack = ee.Image ([]);
206 for (var i=0; i<primitives.length;i++){
207 var image = Map.layers ().get(i).get(’eeObject ’);
208 stack = stack.addBands(image);
209 valLabels[primitives[i]]. setValue(’updating values ’);
210 }
211 var pointSampled = stack.sample(point ,30).first().evaluate(updateValues);
212 }
213
214 // update the labels once the sampling is done
215 function updateValues(feature){
216 // print(feature.properties);
217 for (var i=0; i<primitives.length;i++){
218 var value = parseFloat(feature.properties[primitives[i]]).toFixed (2);
219 valLabels[primitives[i]]. setValue(value);
220 }
221 }
222
223 // function to export all Land Covers
224 function exportHelper (){
225 Export.image.toAsset ({
226 image:landClass.toInt8 (),
227 description:’LandCover -’+year ,
228 region:boundary ,
229 scale:scale ,
230 assetId:exportPath+’/’+year ,
231 maxPixels :1e10
232 });
233 }
234
235 // function to export current Land Cover
236 function exportAllHelper (){
237 print("initiating export");
238 var tempYr = year;
239 var decisionTree = buildDecisionTree ();
240 var image = ee.Image ([]);
241 for (var i = 0; i<availableYears.length;i++){
242 year = availableYears[i];
243 var stackImage = ee.Image(primitives.map(getPrimitiveImages)).clip(boundary);
244 var landClass = reclassify(stackImage , decisionTree)
245 image = image.addBands(landClass.rename("b"+year));
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246 }
247 image = image.set(’decisionTree ’,
248 decisionTree ,
249 ’year’,
250 ee.Date.fromYMD(parseInt(year),
251 1,
252 1));
253 Export.image.toAsset ({
254 image:image.toInt8 (),
255 description:’LandCover -stack’,
256 region:boundary ,
257 scale :30,
258 assetId:exportPath+’/lcstack ’,
259 maxPixels :1e10
260 });
261 year = tempYr;
262 }
263
264 // function to export Problem Areas
265 function exportAreas (){
266 var generatedPoints = ee.FeatureCollection.randomPoints(geometry , 100);
267 // add latitude and longitude as attributes
268 generatedPoints = generatedPoints.map(function(feature){
269 var coords = feature.geometry ().coordinates ();
270 return feature.set(’latitude ’,coords.get (1),’longitude ’, coords.get(0))
271 });
272 Export.table.toDrive ({
273 collection:generatedPoints ,
274 description: ’RLCMS -additionalPoints ’,
275 fileFormat: ’CSV’
276 })
277 }
278 // function to refresh display based on parameters
279 function refresh (){
280 // get layer shown state
281 var layers = Map.layers ();
282 var shownStat = layers.map(function(layer){
283 return layer.getShown ();
284 });
285 // get selected year
286 year = yearList.getValue ();
287 // initiate the process
288 process(year);
289 // reassign the previous layer shown status
290 layers = Map.layers ();
291 layers.map(function(layer){
292 return layer.setShown(shownStat[layers.indexOf(layer)]);
293 });
294 }
295
296 // function to initialize the application
297 function init(){
298 var panel = ui.Panel([], ui.Panel.Layout.Flow(’vertical ’),
299 {position:’bottom -left’});
300 var yearLabel = ui.Label(’Year’,{’width’:’30px’,
301 ’height ’:’18px’,
302 ’fontSize ’:’11px’,
303 ’margin ’:’15px 0px’});
304 var yearSubPanel = ui.Panel([yearLabel , yearList],
305 ui.Panel.Layout.Flow(’horizontal ’));
306 panel.add(yearSubPanel);
307 var sliderLabel = ui.Label(’Adjust Probability Thresholds ’,
308 {’height ’:’18px’,
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309 ’fontSize ’:’11px’,
310 ’padding ’:’0px’,
311 ’margin ’:’1px’});
312 panel.add(sliderLabel);
313 for (var i = 0; i< primitives.length;i++){
314 var label = ui.Label(primitives[i],{’width’:’50px’,
315 ’height ’:’18px’,
316 ’fontSize ’:’11px’,
317 ’padding ’:’0px’,
318 ’margin ’:’1px’});
319 sliders[primitives[i]] = ui.Slider ({
320 min:0,
321 max:100,
322 value:defaultThresholds[i],
323 style :{’height ’:’18px’,’fontSize ’:’11px’, ’padding ’:’0px’, ’margin ’:’1px’}
324 });
325 var subPanel = ui.Panel([label , sliders[primitives[i]]],
326 ui.Panel.Layout.Flow(’horizontal ’),
327 {’padding ’:’4px’});
328 panel.add(subPanel);
329 }
330 panel.add(primThresholds);
331 panel.add(refreshDisplay);
332 panel.add(exportLC);
333 panel.add(exportAllLC);
334 panel.add(exportPA);
335 Map.add(panel);
336 addLegend ();
337 addInspect ();
338 Map.onClick(fetchValues);
339 }
340
341 init();
342 process(year);

Appendix C. Datasets

Here are the list of datasets that were used and/or prepared for this study.

• Non-smoothened primitives : users/nkhanal/sm/nosm/prims
• Non-smoothened land cover : users/nkhanal/sm/nosm/lc
• Final smoothened and best selected primitives: users/nkhanal/sm/final/prims
• Final smoothened and best selected land cover: users/nkhanal/sm/final/lc

These addresses refer to the GEE asset ID of the dataset in question.
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