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Abstract: Achieving reproducibility and replication (R&R) of scientific results is tantamount for
science to progress, and it is also necessary for ensuring the self-correcting mechanism of the scientific
method. Topics of R&R have sailed to the forefront of research agenda in many fields recently
but have received less attention in remote sensing in general and specifically for studies utilizing
hyperspectral data. Given the extremely local environments in which many hyperspectral studies are
conducted (e.g., agricultural field plots), purposeful attention to the repeatability of findings across
study locales can help ensure methods are generalizable. This study undertakes an investigation
of the nutrient content of tef (Eragrostis tef ), an understudied plant that is growing in importance
due to both food and forage benefits, but does so within the context of the replicability of methods
and findings across two study sites situated in different international and environmental contexts.
The aims are to (1) determine whether calcium, magnesium, and protein of both the plant and grain
can be predicted using hyperspectral data with partial least squares (PLS) regression with waveband
selection, and (2) compare the replicability of models across differing environments. Results suggest
the method can produce high nutrient prediction accuracy for both the plant and grain in individual
environments, but selection of wavebands for nutrient prediction was not comparable across study
areas. The findings suggest that the method must be calibrated in each location, thereby reducing
the potential to extrapolate methods to different areas. Our findings highlight the need for greater
attention to methods and results replication in remote sensing, specifically hyperspectral analyses,
in order for scientific findings to be repeatable beyond the plot level.
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1. Introduction

The reproducibility and replication (R&R) of scientific findings has recently moved to the forefront
of research agenda in many fields [1–5] since it has been discovered that findings often cannot be
reproduced or replicated [5,6]. While the two “R’s”—reproducibility and replicability—are intertwined,
there are key differences between their goals. Adopting the definitions from the National Science
Foundation [7] and the National Academy of Science, Engineering, and Medicine [8], we define
reproducibility as the ability of a researcher to duplicate the results of a prior study using the same data
and methods as the original investigator. In short, if a researcher makes the data and methods/code
available, another researcher should be able to produce the exact same results. In comparison,
replicability is the ability of a researcher to duplicate results using similar methods but with new data.

Achieving R&R is critical for advancing scientific discoveries, yet neither topic has received much
attention in geography and the spatial sciences, where investigations tend to be observational instead
of experimental or theoretical [9]. R&R has received even less attention in remote sensing (but see [10]
for an early take), even though the field is uniquely positioned to contribute to R&R on several fronts.
First, there is a rich archive of publicly available remote sensing datasets (e.g., Landsat), supporting
opportunities for reproducibility [9,11]. Second, remote sensing studies, and in particular hyperspectral
studies, are often situated in extremely local contexts (e.g., agricultural plots) due to the need for
ground reference data and the high labor and time costs of operating equipment. Yet, an implicit
goal of science is to develop widely applicable methodologies and generalizable findings that can be
applied in different contexts. Thus, working toward the replicability of methods and findings across
different study areas is important for advancing remote sensing science.

Despite the myriad opportunities for remote sensing scientists to explore R&R issues, very few
formal efforts have been documented. One reason is likely because remote sensing scientists often work
with large datasets and perform complex spectral and spatial manipulations [12–16], which makes
R&R difficult if processing code is not made available. Until recently, many scientific publications did
not require code to be submitted as part of the manuscript review process, although this is changing.
Replication in remote sensing is also hindered by attributes of local environments, which makes the
transfer of results from one landscape to another difficult. However, if we are to develop methodologies
that are transferrable across space, it is necessary to begin developing and implementing protocols
for testing the R&R of remote sensing studies. One way to do this is to incorporate multi-field,
multi-environment analyses into studies to self-test the replicability of methods and results.

Precision agriculture is one field where immediate gains can be made toward testing the replicability
of methods while also contributing a larger understanding of the extent of R&R issues in remote sensing.
Since the overall goal of precision agriculture is to decrease the ambiguity of decisions required on
agricultural lands that are often highly variable [17], the ability to transfer methods and findings from
one environment or location to another requires them to be replicable [18]. However, most studies
capture data in a single region or location (often in a single crop field) under uniform conditions [12,15],
thus limiting their generalizability across environmental or geographical contexts. Furthermore,
the implicit assumption is that methods and findings are extendable beyond the single field in which
they were tested, but in most cases, no such evidence is provided. Many studies lack basic explanation
for environmental variances such as soil, hydrology, and topography that can cause reflectance
variations, thereby altering results across space [16]. Ultimately, remote sensing methodologies are of
little practical value for precision agriculture if they are developed, tested, and applicable in a single
location where these multiple and often confounding factors are held constant.

Partial least squares (PLS) regression has become an accepted technique in vegetation studies
using hyperspectral data for estimating a range of biophysical and biochemical properties [19–23].
In situations where the number of independent variables is large and the variables are collinear,
which is common with hyperspectral data, multiple linear regression will often overfit the model [24,25].
PLS regression standardizes model construction from the preprocessed hyperspectral data via latent
variables, from which the predictive capabilities of the model can be tested. Recently, variations of PLS



Remote Sens. 2020, 12, 2867 3 of 21

regression using a waveband selection procedure [13] have been proposed and adopted, but there has
been little effort to test the replicability of these methods across environments to determine whether
results might be transferable.

The objective of this study is to investigate the replicability of PLS regression methods, including
PLS with waveband selection, for predicting nutrient content in plant and grain material across
multiple environments. This study addresses gaps in the remote sensing R&R literature by replicating
a methodological workflow using hyperspectral data and PLS regression for predicting nutrients in a
single crop but in two varying environments in different international contexts to determine the degree
to which the methods are replicable. The focus is on Eragrostis tef (tef), a cereal crop primarily grown
in Ethiopia, although production has been expanding to other parts of the world due to its versatility
and resistance to drought. Tef is ideal for studying replicability because it is grown in different
international contexts and is known for being successfully cultivated across differing environments.
Additionally, very few hyperspectral analyses have been performed on non-milled grains [26], so this
study contributes knowledge in that realm as well.

Tef is a grass (Family: Poaceae) that has received little attention from the remote sensing and
precision agricultural communities despite its versatile cultivation characteristics. Tef is thought to be
one of the earliest domesticated plants [27], with the center of origin and diversity in Ethiopia/Horn
of Africa [28]. It is drought and heat resistant, has a high nutrient content, and is grown for animal
feed as well as a staple food crop [29]. While tef can be cultivated across many environments, it is
primarily grown in Ethiopia, where it is the most commonly harvested crop, popular for its highly
nutritious, gluten-free grain [30–35]. Recently, cultivation has been spreading outside the region; in the
United States, tef is planted as a sequential forage crop for livestock feed but is currently only grown in
a handful of locations [29,36].

2. Data Collection and Processing

2.1. Study Sites

This study focuses on four sites in two countries. The two US sites (US1: 21.45 ha; US2: 24.19 ha) are
located in Hydro, Oklahoma, which is part of the Central Great Plains ecoregion. The region experiences
cold winters (average temperature minimums from 4 to −12 ◦C) and hot summers (temperatures
greater than 38 ◦C). Precipitation is variable, and temperature changes can be considerable across
all seasons. The US sites are located within three kilometers of each other, so the environmental
characteristics are similar. Both sites have similar soils (vertisols) and are located at the same elevation
(474 m). The two Ethiopia sites (ET1: 0.77 ha; ET2: 1.23 ha) are also in close geographic proximity
(Figure 1). The first site is located in the warm, sub-moist lowlands, while the second site is in the
warm, humid lowlands. Soil composition at both sites is similar (vertisols), but the sites are at different
elevations (1919 m and 2201 m, respectively).
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samples were dried and separated in the laboratory where the grain was imaged and both the plant 
material and grain were subjected to nutrient analyses. Third, the relationship between the nutrients 
and spectral components were modeled using PLS regression with both the full spectrum and a 
waveband selection method. Lastly, the replicability of the PLS regression methods were tested 
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In Phase 1, canopy-level hyperspectral measurements and plant material were collected at each 
site immediately prior to harvest during peak maturity, which was late June/early July 2016 in the US 

Figure 1. Locations of the four study sites.

2.2. Spectral Data Collection and Nutrient Processing

Data collection and processing methods included in situ spectral data collection and ex situ
laboratory nutrient analyses. The methodology proceeded in four general phases (Figure 2), which are
briefly described here and detailed below. First, canopy spectral measurements and plant samples were
collected at the four sites immediately prior to peak crop maturity (seed head stage). Next, plant samples
were dried and separated in the laboratory where the grain was imaged and both the plant material
and grain were subjected to nutrient analyses. Third, the relationship between the nutrients and
spectral components were modeled using PLS regression with both the full spectrum and a waveband
selection method. Lastly, the replicability of the PLS regression methods were tested through statistical
comparisons of model fits and similarity of results.
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In Phase 1, canopy-level hyperspectral measurements and plant material were collected at each
site immediately prior to harvest during peak maturity, which was late June/early July 2016 in the
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US and October 2017 in Ethiopia. For each of the four sites, 40 random points were generated in
ArcGIS, providing 80 possible sampling location in each country. These points were then located in
the field using a hand-held GPS unit (Trimble Juno 3B, Corvallis, OR, USA). In some cases, locations
could not be accessed due to sampling on the days of harvest and attempting to not interfere with the
harvesting practices of the respective farmers, so the actual number of samples is below 40 for each
field and below 80 for the region. At all sampling sites, canopy spectral data were captured using the
same spectroradiometer (FieldSpec Pro FR: Analytical Spectral Devices [ASD], Boulder, CO, USA),
measuring reflectance from 350–2500 nm with a spectral sampling width of 1.4 nm from 350–1000 nm
and 2.0 nm from 1000–2500 nm. The spectroradiometer was calibrated using a Spectralon diffuse
reference panel (Analytical Spectral Devices [ASD], Boulder, CO, USA) approximately every 15 min.
The spectralon was held at a distance from the spectroradiometer fiber to ensure no shadows were
measured. The spectroradiometer fiber was held 1.2 m above the ground; since the top of canopy was
about 0.3 m above ground, the cone of acceptance was 25◦, resulting in a footprint with a diameter of
0.40 m for each sample. This diameter ensured a sufficient mass of plant/grain matter was collected for
nutrient testing (10 g of grain; SSSA, 1990; [37]). Reflectance data were captured between 11:00 a.m. and
2:00 p.m. local time under a cloud-free sky. It is important to mention that the same spectroradiometer
was operated by the same individual in all locations to ensure the exact same data collection process
was reproduced. Each location was imaged five times in succession, and spectra were averaged.
Plant material in the footprint of the imaging fiber was then clipped at the base, stored in plastic bags,
and placed on ice in a cooler for transport back to the laboratory.

In the laboratory, samples were dried to remove excess moisture, and the grains were separated
from the plant using a traditional method of hand threshing with the assistance of a basket weaved
surface. The grains from each sample, which measure approximately 1 mm in length, were aggregated
in a petri dish to generate a sufficient amount to fully cover the lens of the imaging equipment.
The grains were spectrally imaged in a dark room using a contact probe (Contact Probe: Analytical
Spectral Devices [ASD], Boulder, CO, USA) with a halogen light source, while not equivalent to the
sun, still emitted spectral wavelengths (350–2500 nm) capable of being identified using the same
spectroradiometer used in the field (Figure 3). As with the in situ samples, five spectral readings were
collected for each sample, and the values averaged.
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Figure 3. Use of spectroadiometer in the field (left) and a close-up of Eragrostis tef (tef; right).

2.3. Spectral Processing

The raw spectral curves from both the plant (in situ) and grain (ex situ) were smoothed using a
Savitsky–Golay filter [38] to reduce noise (SG; Figure 4a). A third-order, 10-band moving polynomial
was fitted upon the original spectral signatures [39]. Data within each 5 nm window were averaged
(e.g., the value at 600 nm is average of 598–602 nm). First derivatives (hereafter, FD) were computed
from the smoothed spectra (Figure 4b). Computing derivatives allows minor differences in reflectance
values to be exploited and permits discrimination of key points along the spectral curves (i.e., inflections
and maxima) corresponding to biophysical and biochemical components that would otherwise be
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difficult to detect [40,41]. Lastly, wavebands associated with atmospheric noise (1290–1495, 1705–2045,
and 2355–2500 nm) and splicing points within the spectroradiometer (350–395 and 1005–1015 nm)
were removed, resulting in 277 wavebands between 400–2350 nm, at a spectral resolution of 5 nm.
The reflectance/derivative values at these wavebands ultimately serve as the independent variables for
the statistical analyses discussed below.
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2.4. Nutrient Analysis

Since tef serves as both a food (grain) and forage (plant) crop, nutrient analyses were performed
on both the plant and grain. All samples were analyzed for calcium (Ca), magnesium (Mg), and protein
content (Table 1). For details on Ca and Mg laboratory procedures, readers are directed to the Soil
Science Society of America [42] plant analysis guidelines. For details on protein analysis, readers
are directed to the National Forage Testing Association’s (NFTA) Forage Analysis Procedures [37].
For the US samples, nutrient analyses were performed at the Oklahoma State University Soil, Water,
and Forage Analytical Laboratory. For the ET samples, analyses were performed by the Ethiopian
Public Health Institute of Addis Ababa. These labs were chosen for their rigor and location as samples
could not be transported across country boundaries. Moreover, the procedures used by both institutions
followed these established standards [37,42], with aim to minimize impact on results. Ca and Mg
values are expressed in ppm mg/kg, while protein values are expressed in percent (%) of total sample
weight. All are expressed as dry matter weight. These nutrient data from the plant material and grains
ultimately serve as the dependent variable in the PLS regression analyses (discussed below).

Table 1. Number of samples of each component collected in each study location.

Component Nutrient Number of Samples (n)

United States Ethiopia

Plant
Ca 67 78
Mg 67 79

Protein 67 79

Grain
Ca 66 78
Mg 66 79

Protein 65 79
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3. Analytical Methods

Partial least squares (PLS) regression was implemented to assess the relationship between
reflectance (independent variable) and nutrient content (dependent variable) of both the plant and
grain. PLS, which can also stand for projection to latent structures [43], was selected over other
forms of regression because it accounts for overfitting errors common when analyzing hyperspectral
data [13,44]. Briefly, PLS regression finds a set of components (called latent factors) from X, a matrix of
predictors collected on the observations, that best predict Y, a matrix of dependent observations [43].
These latent factors, or latent vectors, are orthogonal, and thus explain as much of the covariance
between X and Y as possible, often resulting in a smaller number of variables than principal component
regression. PLS regression extracts X-scores from the latent variables to construct a model to predict
the Y-scores. In PLS, the X- and Y-scores are subject to redundancy analysis that seeks directionality in
factor space until the most accurate prediction is found [25,45]. When implementing PLS regression
with hyperspectral data, it is important to ensure the number of latent variables does not far exceed the
number of independent variables being used, as overfitting can occur [13].

3.1. Specification of the PLS Regression Model Using the Full Spectrum

The PLS equation follows a standard regression (Equation (1)):

ŷ = β1x1 + β2x2 + · · ·+ βkxk + ε (1)

where the response variable ŷ is the nutrient value, and the predictor variables x1 to xk are the reflectance
(SG) or derivative (FD) values for bands 1 to k (here, 277). β1 to βk are the estimated weighted regression
coefficients computed directly from the PLS loadings corresponding to the model with the optimal
number of latent variables, and ε is the error vector. The optimal number of latent variables (NLV) is
determined through a leave-one-out (LOO) cross-validation and assessed through the minimum root
mean square error:

RMSECV =

√∑n
i=1

(
ŷc

i − yc
i

)2

n
(2)

where ŷc
i represents the predicted response when the model is built without sample i, yc

i represents
the measured nutrient value for sample i, and n represents the number of samples used in the
calibration [46]. Twelve, standard PLS regressions were performed, each corresponding to a dataset in
Table 1, and each including the full set of 277 bands (PLS-Full).

3.2. PLS Regression with Waveband Selection

A modified form of PLS regression, known as the waveband selection (or iterative stepwise
elimination) method, was developed to eliminate noisy and unhelpful predictors in hyperspectral
studies [13,44]. Instead of including all 277 wavebands, the number is reduced iteratively [44] by
dropping the least important wavebands (similar to stepwise linear regression). Waveband importance
(vk) is determined as:

vk =

∣∣∣βk
∣∣∣sk∑K

k=1

∣∣∣βk
∣∣∣sk

(3)

where βk and sk are the regression coefficient and standard deviation corresponding to waveband
k. The selection begins with all 277 wavebands, and the waveband contributing least to the model
(lowest vk) is removed. The model (Equation (1)) is then re-run with 276 variables, and so on, until the
maximum predictive capability is achieved [47]. A representation of the iterative processes to determine
the maximum predictive capability is shown in Figure 5. This version of the model is hereafter referred
to as PLS-Wave.
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(dotted line), which in turn determines the coefficient of determination (solid line) using the given
number of wavebands in the partial least square regression (PLS). Top figure is for the Savitsky–Golay
filtered data. The bottom figure is for the first derivative.

3.3. Predictive Ability of PLS Regression

To test the predictive capabilities of the PLS-Full and PLS-Wave models, we implemented a
bootstrapping procedure by dividing the data into calibration (65–75%) and validation (25–35%) sets
replacing the data of these sets n = 1000 times (following [48,49]). After each separation, the models
were calibrated (assessed through RMSECV) and then validated using root mean square error of
prediction (RMSEP):

RMSEp =

√∑n
i=1

(
ŷv

i − yv
i

)2

n
(4)

where ŷv
i represents the predicted nutrient values, yv

i represents the measured nutrient values, and n
represents the number of samples in the validation subset [46]. Mean coefficient of determination (R2),
R2 standard deviation (R2 std.), and RMSEP standard deviation (RMSEP std) are also reported for the
validation. PLS regressions were performed in Matlab v2016a (MathWorks, Sherborn, MA, USA).

3.4. Replication across Environments

To assess the replicability of the PLS-Full and PLS-Wave regression methodologies for predicting
nutrient content across environments, we compared model performance between the US and ET
using a difference of means (t-test) for each component–nutrient combination (e.g., grain–calcium,
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plant–calcium, etc.) between the two sites from the bootstrapped results. To compare the similarity of
wavebands selected by the PLS-Wave model, the Jaccard index [50] was used to measure the overlap in
selected wavebands compared to the total number of wavebands selected for each site (Equation (5)):

J(A, B) = |A∩ B|/|A∪ B| (5)

where A and B are the set of selected wavebands in the two locations, respectively. A Jaccard value
of 1.0 indicates that the models for the two locations overlap completely in terms of the wavebands
selected as important for prediction; 0 indicates the two locations share none of the same wavebands.

4. Results

4.1. Plant and Grain Nutrient Analyses

Plant nutrient values for Ca, Mg, and protein were considerably higher for the US compared to ET
(Table 2). Mean Ca was five to six times higher; mean Mg almost four times higher; and mean protein
nearly 2.5 times higher in the US. Results were similar for grain nutrients (Table 2), with values in the
US typically two to four times higher than ET. Additionally, the standard deviation and ranges for
Ca and protein at both the plant and grain level were higher in the US, except for Mg, which showed
similar standard deviation and ranges across both locations for plant and grain.

Table 2. Descriptive statistics for the calcium (Ca), magnesium (Mg), and protein measured for the
plant and grain samples from each location.

Nutrient Descriptive Statistics

United States (US) n Min. Mean Max. Range SD

Plant
Ca (ppm mg/kg) 67 3760 6651 9360 5600 1371
Mg (ppm mg/kg) 67 1860 2753 3620 1760 327

Protein (%) 67 5.74 15.68 23.52 17.78 5.42

Grain
Ca (ppm mg/kg) 66 1620 2267 3240 1620 465
Mg (ppm mg/kg) 66 1750 2015 2510 760 186

Protein (%) 65 12.13 17.59 34.42 22.29 4.71

Ethiopia (ET)

Plant
Ca (ppm mg/kg) 78 437 1223 1772 1335 195
Mg (ppm mg/kg) 79 115 740 1181 1066 297

Protein (%) 79 3.02 5.77 9.93 6.91 1.69

Grain
Ca (ppm mg/kg) 78 716 1283 2128 1411 460
Mg (ppm mg/kg) 79 270 553 841 571 155

Protein (%) 79 8.16 10.84 14.57 6.41 1.43

4.2. Model Performance

4.2.1. Results for the PLS-Full Model

At the plant level (Table 3, top), the PLS-Full models varied considerably in performance between
the two sites with cross-validated calibration coefficients of determination (R2

CV) ranging from 0.03
(Mg US) to 0.88 (Mg ET) at the plant level. The validation coefficients of determinations (Mean R2)
closely matched the calibration values, except in the case of ET (Ca and Protein (SG)) where the
validation R2 was approximately double that of the calibration. Interestingly, when comparing the
US and ET, one generally outperformed the other, but the relationship changed depending on the
nutrient. Differences in filtering (SG vs. FD) were largely negligible, with the exception of protein in ET,
where the model fit for the FD was about twice that for the SG data (0.41 vs. 0.18). The bootstrapped
R2 values were normally or semi-normally distributed in all cases except for Mg in the US and Ca
in ET (Figure S1, Supplementary Material). Importantly, t-test comparisons for replicability indicate
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the PLS-Full regression model did not replicate well across the two environments, with significant
differences in fit for every nutrient at the plant level (Table 3, top).

Table 3. Partial least squares (PLS) regression and t-test results for the full spectrum model (PLS-Full)
for plant and grain. SG: Savitsky–Golay; FD: First derivative; NLV: Number of latent variables; std:
Standard deviation.

Loc.
Calibration Validation Comparison

NLV R2
CV RMSECV Mean R2 R2 Std Mean RMSEP RMSEP Std t-test

Plant

Calcium

SG
US 2 0.53 935.79 0.52 0.12 976.86 168.52

−58.75 ***ET 3 0.10 229.07 0.18 0.14 221.14 42.02

FD
US 2 0.51 954.17 0.50 0.12 1000.47 156.54

−56.12 ***ET 1 0.09 231.48 0.20 0.17 233.25 82.71

Magnesium

SG
US 3 0.03 327.93 0.06 0.08 345.49 65.33

276.75 ***ET 7 0.87 108.63 0.86 0.04 117.70 16.45

FD
US 3 0.03 334.21 0.05 0.07 359.43 61.58

326.52 ***ET 7 0.88 104.66 0.86 0.04 117.47 16.25

Protein

SG
US 9 0.86 2.04 0.82 0.06 2.40 0.37

54.64 ***ET 5 0.18 1.34 0.38 0.12 1.42 0.16

FD
US 4 0.84 2.13 0.81 0.04 2.38 0.29

481.18 ***ET 2 0.41 1.30 0.44 0.12 1.35 0.15

Grain

Calcium

SG
US 7 0.88 159.89 0.87 0.04 176.55 28.41

−50.57 ***ET 14 0.78 216.06 0.74 0.07 253.12 31.16

FD
US 2 0.88 163.19 0.86 0.04 183.84 28.04

−44.96 ***ET 8 0.80 205.09 0.78 0.05 234.28 25.71

Magnesium

SG
US 6 0.71 99.49 0.70 0.10 108.77 18.81

219.53 ***ET 15 0.71 84.09 0.65 0.10 99.31 15.57

FD
US 3 0.73 96.49 0.72 0.10 104.89 17.96

144.8 ***ET 9 0.74 79.67 0.71 0.08 90.55 12.24

Protein

SG
US 15 0.93 1.23 0.90 0.05 1.59 0.51

−115.03 ***ET 5 0.47 1.03 0.49 0.14 1.09 0.18

FD
US 5 0.91 1.43 0.89 0.04 1.65 0.47

−106.51 ***ET 7 0.64 0.86 0.62 0.11 0.95 0.15

*** t-test significant at 0.001, ET served as first group.

At the grain level (Table 3, bottom), results were more consistent across the study sites and
nutrients. This is believed to be the case in-part to grain spectral values measured in a controlled
setting, while plants were measured in a field setting. Calibration R2 ranged [0.47, 0.93], and validation
R2 ranged [0.49, 0.90] (Table 3). The results for ET protein using the SG data were a slight outlier
though, and when considering only the FD values, the minimums increase to 0.64 and 0.62, respectively.
The differences between the SG and FD filters were again negligible, except in the Mg ET case.
The t-test comparisons for grain indicate the PLS-Full regression method did not replicate well across
the environments.
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4.2.2. Results for the PLS-Wave Model

At the plant level, the PLS-Wave models varied in performance in both environments with
calibration R2 ranging [0.11, 0.94] (Table 4, top). Differences between the SG and FD were negligible
in most cases. Fits for Mg in ET and Protein in the US were high (0.88–0.94), but there was little
consistency across locations. T-test comparisons show significant differences in model performance for
all nutrients/processing methods between the two locations indicating the PLS-Wave regression model
did not replicate well in terms of predicting plant nutrients across these two environments.

Table 4. Partial least squares (PLS) regression and t-test results for the waveband selection model
(PLS-Wave) for plant and grain. SG: Savitsky–Golay; FD: First derivative; NLV: Number of latent
variables; std: Standard deviation.

Loc.
Calibration Validation Compare

NLV R2
CV RMSECV # of Waves Mean R2 R2 Std Mean RMSEP RMSEP Std t-test

Plant

Calcium

SG
US 3 0.56 899.24 9 0.55 0.10 954.24 113.58

−52.36 ***ET 2 0.12 226.93 49 0.23 0.17 221.46 74.21

FD
US 1 0.53 929.65 9 0.55 0.10 937.88 125.67

−39.102 ***ET 1 0.11 228.37 2 0.25 0.19 219.72 75.70

Magnesium

SG
US 2 0.08 312.41 121 0.10 0.11 323.94 56.66

−11.34 ***ET 10 0.92 100.04 15 0.88 0.03 109.74 14.80

FD
US 4 0.30 277.97 50 0.28 0.14 296.41 48.51

−2.33 *ET 5 0.94 84.14 38 0.92 0.02 88.49 12.98

Protein

SG
US 6 0.88 1.84 46 0.88 0.04 1.93 0.29

−85.95 ***ET 3 0.45 1.25 31 0.46 0.11 1.32 0.12

FD
US 5 0.92 1.53 46 0.90 0.04 1.78 0.28

−72.48 ***ET 1 0.42 1.28 166 0.47 0.12 1.31 0.16

Grain

Calcium

SG
US 8 0.90 149.80 14 0.88 0.03 169.35 25.42

−40.05 ***ET 7 0.81 200.20 43 0.79 0.06 223.68 28.61

FD
US 2 0.91 142.23 47 0.89 0.04 156.88 25.36

17.45 ***ET 12 0.93 122.84 44 0.92 0.02 142.35 20.65

Magnesium

SG
US 4 0.73 96.74 77 0.73 0.10 102.28 22.78

−0.7781ET 12 0.73 80.54 15 0.73 0.07 87.75 11.56

FD
US 4 0.78 86.09 7 0.78 0.06 90.85 11.74

31.02 ***ET 8 0.87 56.29 33 0.85 0.04 63.38 9.02

Protein

SG
US 12 0.95 1.00 74 0.94 0.03 1.17 0.29

−94.58 ***ET 6 0.52 0.99 23 0.53 0.14 1.05 0.17

FD
US 4 0.93 1.24 33 0.92 0.03 1.43 0.33

−76.55 ***ET 7 0.67 0.82 159 0.65 0.11 0.91 0.14

* t-test significant at 0.05, ** at 0.01, *** at 0.001.

At the grain level, the PLS-Wave models performed generally well for all nutrients across the two
locations, with calibration R2 ranging [0.52, 0.95] (Table 4, bottom). Fits for protein were lower for
ET than US, but fits for Ca and Mg were similar. Bootstrapping resulted in normal and semi-normal
distributions for all nutrients and processing (Figure S2, Supplementary Material). For Ca ET, a bimodal
distribution was observed. Upon further investigation of the original Ca ET data, the distribution
deviated from a normal distribution and instead was bimodal and skewed to the right, explaining the
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bimodal and skewed distribution of the R2 bootstrapping values (Figure S2, Supplementary Material).
T-test comparisons again indicate significant differences in all cases, despite similar R2 values for some
of the nutrient-component combinations, indicating the PLS-Wave regression model did not replicate
well across these two environments.

In addition to significant differences in the model fits, the PLS waveband selection procedure also
indicated considerable differences in the number and position of important wavebands for nutrient
prediction (Figure 6). At both the plant and grain level, Jaccard indices were low (<0.2), with three
instances having no overlapping bands (Table 5). For instance, nine wavebands were selected as
important for predicting plant-level Ca in the US (SG): One at 760 nm, and eight from 1020–1060 nm
(Figure 6). In contrast, the important bands for predicting Ca from the ET samples (SG) included fifteen
bands positioned from 1045–1115 nm. The Jaccard index for this set was 0.069 (Table 5) indicating
minimal overlap in the band positioning.

Table 5. Jaccard index for similarity between bands selected by partial least square regression (PLS) for
the US and Ethiopia (ET) datasets for the various models.

Plant SG FD

Ca 0.069 0.00
Mg 0.081 0.148

Protein 0.052 0.185

Grain SG FD

Ca 0.00 0.110
Mg 0.00 0.046

Protein 0.025 0.104

In summary, the results from this study indicate that the PLS regression, using both the full model
and the waveband selection process, did not generate replicable findings across the two study areas.
We found statistically significant differences in model fits for 11 of the 12 comparisons; only the model
for grain Mg using the SG filtering (Table 4) was not statistically different. Even though model fits
were not comparable, it is still possible for the wavebands identified as important for prediction to be
similar. However, the Jaccard index (Table 5) and plots of the important wavebands for each model
(Figure 6) indicate very little overlap in the important wavebands between the US and ET samples,
further diminishing the case for replicability across these two study sites.
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Figure 6. Selected wavebands (red) from the partial least square regression (PLS) using waveband selection for (a) plant, and (b) grain. Abbreviations: SG: Savitsky–
Golay; FD: First derivative; US: United States; ET: Ethiopia. 
Figure 6. Selected wavebands (red) from the partial least square regression (PLS) using waveband selection for (a) plant, and (b) grain. Abbreviations: SG: Savitsky–Golay;
FD: First derivative; US: United States; ET: Ethiopia.



Remote Sens. 2020, 12, 2867 14 of 21

4.3. Combined Samples for Multiple Environments

Following the single environment analytics, we tested the performance of a PLSR for the two
environments (US and ET) combined. We re-ran the analytics with the same methodologies for the
PLS-Full and PLS-Wave models using the combined samples (named USET), and found this generally
resulted in better model fits compared to the single sites for both calibration and validation for both
the PLS-Full (Table 6) and PLS-wave models (Table 7). Calibration and validation coefficients of
determination (R2) were all greater than 0.9 for all plant and grain nutrients using both SG and FD
data and for both the PLS-Full and PLS-Wave models. RMSE values from the validation were slightly
higher than those from the calibration, which is expected, and RMSEp values were all within 11 percent,
so the models do not appear to be overfit.

Table 6. Partial least squares regression (PLS) results for the full spectrum model (PLS-Full) for plant
and grain using the combined United States and Ethiopia (USET) dataset. SG: Savitsky–Golay; FD:
First derivative; NLV: Number of latent variables; std: Standard deviation.

Calibration Validation

NLV R2
CV RMSECV Mean R2 R2 Std Mean RMSEP RMSEP Std

Plant

Calcium

SG 7 0.94 674.18 0.94 0.01 693.01 70.18
FD 5 0.94 684.48 0.94 0.01 694.93 87.95

Magnesium

SG 12 0.93 274.06 0.93 0.02 287.42 32.92
FD 6 0.93 269.72 0.93 0.02 289.64 37.94

Protein

SG 8 0.91 1.86 0.91 0.01 1.96 0.19
FD 4 0.90 1.94 0.90 0.02 2.03 0.22

Grain

Calcium

SG 14 0.90 216.52 0.80 0.03 240.30 22.71
FD 11 0.91 203.73 0.90 0.02 223.02 19.95

Magnesium

SG 14 0.97 118.87 0.97 0.01 128.61 13.50
FD 9 0.98 117.99 0.97 0.01 130.00 14.64

Protein

SG 15 0.93 1.25 0.92 0.02 1.37 0.25
FD 9 0.93 1.23 0.93 0.02 1.34 0.24

Table 7. Partial least squares regression (PLS) results for the waveband selection model (PLS-Wave) for
plant and grain using the combined Untied States and Ethiopia (USET) dataset. SG: Savitsky–Golay;
FD: First derivative; NLV: Number of latent variables; std: Standard deviation.

Calibration Validation

NLV R2
CV RMSECV

# of
Waves Mean R2 R2 Std Mean RMSEP RMSEP Std

Plant

Calcium

SG 5 0.95 658.69 13 0.95 0.01 664.46 72.39
FD 4 0.95 664.55 38 0.94 0.01 690.87 79.27
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Table 7. Cont.

Calibration Validation

NLV R2
CV RMSECV

# of
Waves Mean R2 R2 Std Mean RMSEP RMSEP Std

Plant

Magnesium

SG 9 0.94 265.07 44 0.93 0.01 276.48 31.00
FD 5 0.94 261.27 112 0.94 0.01 271.65 33.62

Protein

SG 5 0.92 1.78 13 0.92 0.02 1.81 0.18
FD 8 0.93 1.68 52 0.92 0.02 1.79 0.16

Grain

Calcium

SG 11 0.91 206.43 59 0.90 0.02 221.41 21.83
FD 10 0.93 173.75 59 0.93 0.02 186.35 17.83

Magnesium

SG 12 0.98 106.71 39 0.98 0.00 114.98 11.90
FD 7 0.98 101.05 51 0.98 0.00 103.95 9.54

Protein

SG 10 0.94 1.12 19 0.94 0.02 1.16 0.19
FD 9 0.95 1.04 31 0.95 0.01 1.10 0.17

5. Discussion

5.1. Replicability of Scientific Methods and Findings

Demonstrating that methods and findings can be replicated across studies is critical for the
self-correcting mechanism of the scientific method to function properly and is imperative for generating
solutions that can be applied widely. Hyperspectral data is commonly used in precision agriculture
for predicting biochemical properties of vegetation and nutrients [18,26,51–53], yet the replicability of
findings is rarely tested across different study sites. Scalable science is needed to develop solutions
that can be applied globally. The adoption of PLS regression has provided a solution to some of the
computational challenges when working with high dimensional, hyperspectral data in remote sensing
in general and precision agriculture more specifically, but whether these solutions are transferable has
not been widely explored. This study used hyperspectral data and in situ samples to build PLS models
to predict plant and grain nutrients for tef and test the replicability of those models for predicting
across different environments.

We found significant differences in model fits for both the PLS-Full and PLS-Wave models along
with differences in the number and locations of wavebands deemed important for prediction with
the PLS-Wave models. Differences in the optimal number and location of wavebands for predicting
nutrients via plant canopy measurements may be influenced by varying management practices, such as
differing irrigation practices, which may lead to variable water content in the crops [41]. The ET
fields were rain fed while the US fields were irrigated through to harvest; therefore variable plant
water content may have influenced which wavebands were selected, as water can cause access noise
in spectral signatures. This noise is particularly prevalent in wavebands that are sensitive to O-H
bonds, including the spectral range 971–1400 nm [54–56]. While we removed a portion of this range
from our data (see Figure 4), it is possible remaining wavelengths were affected by noise making
replication difficult.

The number of wavebands selected in the PLS models for ET was often less than the number
selected for the US (Figure 5). This difference may reflect how the PLS models incorporate water-induced
noise that may have been present in the US samples. These findings suggest that understanding
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how hyperspectral remote sensing methods, such as PLS regression, replicate across agricultural
environments may require greater controls on the conditions under which crops are being cultivated.
In addition to irrigation and other management differences, changes in latitude and sun angle could
have led to differences in scattering and light absorption during field data collection [57], which would
impact replication comparisons. However, hyperspectral readings for the grain samples were collected
in a controlled laboratory setting with the same halogen lamp, so we can assume that any differences
in wavebands were not the result of external factors (i.e., sun angles, latitudes, etc.).

When comparing the nutrient content of the grains, there were clear differences between the study
areas (Table 2). These large differences likely result in varying chemical property relationships within
the grain, which in turn can result in differential absorption and scattering of electromagnetic energy.
The large variance amongst biochemicals within the grain may result in noise for some nutrients as
nutrient reflectance properties are often associated with near or similar portions of the electromagnetic
spectrum [41].

In short, had we completed this study only in the US, the PLS regression method (both with
and without waveband selection) would have produced favorable findings for all three nutrients at
the grain level, and for protein at the plant level. Similarly, had we completed this study only in ET,
PLS regression would have also produced favorable findings for all three nutrients at the grain level,
and for Mg at the plant level. Yet, even where favorable results were found in both environments
(all three nutrients at the grain level), the model fits were statistically different, and the wavebands
selected were not similar. This finding serves as a cautionary tale that urges researchers to refrain from
placing too much confidence on R2 values, which may not translate to different areas. Even when
the R2 values were superficially high, there were statistical differences in their values. This is not to
suggest that hyperspectral investigations with PLS regression are not useful or valuable but rather that
caution should be used when translating findings from one site to another.

5.2. Combining Samples from Multiple Regions

A valid question arises as to whether combining samples from multiple regions can make models
more robust for prediction across environments. Higher performance was obtained when the US and
ET samples were combined. However, these higher R2 values are likely artifacts of a larger spread
among the dataset (larger range of levels of nutrients across locations).

It is worth noting that in three instances, the RMSEP from the combined USET dataset was greater
than the minimum value of the nutrient in ET (see Table 2). These included Ca and Mg at the plant
level for the PLS-Full model (Table 6) and Ca at the plant level for the PLS-Wave model (Table 7).
Upon further investigation, it was determined that two of these samples were outliers (PLS-Full Mg
and Ca), where the value was more than two standard deviations from the mean. Thus, these issues do
not appear to be widespread or have a large impact on predictive capabilities of the models. However,
it is important to keep this point in mind when combining data from differing regions with varying
environmental factors and agricultural practices, where there may be large disparities in nutrient
content. These disparities may result in the identification of between-site variation, requiring a greater
variation of nutrient values to fully establish a generalized model.

Nevertheless, the results from the combined dataset are promising because they suggest that
increasing within-sample variation can improve PLS model predictability across study areas. It is also
worth mentioning that this practice could result in a reduction of accuracy of measurement, especially
for field measurements, as the data may take on more noise. In this case, the use of single region
analytics may be more beneficial. Nonetheless, improvement of predictability has been a similar
finding in past studies that have referred to a need for global (i.e., USET) versus local (i.e., US and ET)
modeling within similar measurement collections such as those in soil geochemistry studies [58,59].
Since it is unlikely though that this range of variation would be captured within a single site in
many cases, it becomes necessary to combine samples from a variety of locations, and likely from a
variety of study sites and research groups. To this point, we recommend building a more open and
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transparent culture of data sharing within the remote sensing community that can permit data sharing
to advance our modeling capabilities and promote development of more generalizable predictive
models. We recognize that a shift is already underway in many disciplines to promote data and code
sharing, with some journals mandating these components accompany manuscript submission to allow
reproducibility checks. Our findings here suggest that sharing data may have broader impacts beyond
simply reproducing tests, but rather could result in more robust predictive models.

5.3. Non-Milled Grains

Since very few hyperspectral analyses have been performed on non-milled grains [26], we comment
briefly on those aspects here. We generally found positive results using hyperspectral data with PLS
regression to predict nutrient content of non-milled grains. While the reflectance measurements for
these grain samples were collected in a controlled environment (i.e., a dark room using a contact probe),
the coefficients of determination were noticeably higher for the grains compared to the plant canopy
measurements collected in situ.

An interesting finding emerging from this research is that in the US, several blocks of wavebands
corresponding to the VIS-NIR regions were identified as important for protein prediction when using
FD values (Table S1, supplementary material). We compared these findings to other studies predicting
protein from hyperspectral data [26,56,60]. We do see a considerable amount of overlap in the bands
identified in this study for tef, and the bands identified in those studies for forage quality, cooked hams,
and cereal grains (rice, oats, and maize), particularly for the FD transformation (Table 8). However,
as noted by Talens et al. [56], several of the band ranges found to be important across multiple studies
for protein prediction do fall in the range impacted by O-H bonds. So, it is difficult to determine
whether these consistencies are true positives or are being affected by other factors.

Table 8. Identification of matching bands associated with tef protein content that has also been identified
as important protein indicators in past hyperspectral studies. Abbreviations: S: Savitsky–Golay; F: First
derivative; B: Both; US: United States; ET: Ethiopia.

Object Measured Band(s) US Plant ET Plant US Grain ET Grain Paper

Forage 583 F F

[60]Forage 679 B S F
Forage 700–800 (Red Edge) B F B B
Forage 710 F B

Cooked Hams 930 F

[56]

Cooked Hams 971 S F S F
Cooked Hams 1051 F F S F
Cooked Hams 1137 F B
Cooked Hams 1165 F F
Cooked Hams 1212 S F

Cereal Grains 1216 F [26]
Cereal Grains 1100–1400 B F B B

Cooked Hams 1645 F S [56]
Cooked Hams 1682 S F F

Forage 2091 F
[60]Forage 2128

Forage 2146 F F

5.4. Potential Limitations

Environmental factors such as sun angle, soil types/moisture, agronomic practices, etc.,
can contribute to the reflectance and nutrient differences at the plant the level. Given the number of
samples collected at each location, this study is not meant to be a representative sampling for all tef
varieties at varying growth stages around the world. To establish more generalized models that can be
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applied to a broader range of locations/tef varieties, future studies should focus on obtaining a greater
number of samples across a greater number of location for multiple tef varieties.

6. Conclusions

This study investigated the replicability of PLS regression methods, including PLS with waveband
selection, for predicting nutrient content in plant and grain material across multiple environments.
Using Eragrostis tef (tef) as a target crop, this study compared PLS model fits and selected wavebands
across two environments in the U.S. and Ethiopia to determine the extent to which the methods and
finding are replicable. Three main findings emerge from this study:

First, the model fits and wavebands selected as important for nutrient prediction were not
replicable across the two study sites in the US and Ethiopia. Eleven of the 12 comparisons had
statistically different model fits across 1000 bootstrapped iterations, and the Jaccard index for similarity
indicated very low similarities in the wavebands selected.

Combining samples from both environments improved model fits, suggesting that increasing
within-sample variation may improve the predictability of PLS models across study areas,
though caution is reserved if great disparities in sample values are great. Our recommendation
is to build a more open and transparent culture of data sharing within the remote sensing community
that will permit data sharing in order to advance modeling capabilities and promote development of
more generalizable predictive models.

Results using PLS regression with hyperspectral data from non-milled grains were generally
positive, and wavebands for protein prediction generally agreed with other studies. While more
research is needed to determine whether these consistencies are true positives or are affected by other
factors, this study contributes to the gap in the literature related to non-milled grains.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/18/2867/s1,
Figure S1: Bootstrapping results for plant and grain analyses with the PLS-Full model, Figure S2: Bootstrapping
results for plant and grain analyses with the PLS-Wave model, Table S1: Selected wavebands from the partial least
square regression (PLS) using waveband selection (PLS-Wave) for protein in plant and grain for the combined
United State and Ethiopia samples (USET).
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