
  

Remote Sens. 2020, 12, 2860; doi:10.3390/rs12172860 www.mdpi.com/journal/remotesensing 

Article 

Impact of Three Gorges Reservoir Water 
Impoundment on Vegetation–Climate Response 
Relationship 
Mengqi Tian 1,2, Jianzhong Zhou 1,2,*, Benjun Jia 1,2, Sijing Lou 1,2 and Huiling Wu 1,2 

1 School of Hydropower and Information Engineering, Huazhong University of Science and Technology, 
Wuhan 430074, China; tmq@hust.edu.cn (M.T.); jbj@hust.edu.cn (B.J.); d201880944@hust.edu.cn (S.L.); 
wuhuiling@hust.edu.cn (H.W.) 

2 Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China 
* Correspondence: jz.zhou@hust.edu.cn; Tel.: +86-13607174132 

Received: 13 July 2020; Accepted: 31 August 2020; Published: 3 September 2020 

Abstract: In recent years, the impact of global climate change and human activities on vegetation 
has become increasingly prominent. Understanding vegetation change and its response to climate 
variables and human activities are key tasks in predicting future environmental changes, climate 
changes and ecosystem evolution. This paper aims to explore the impact of Three Gorges Reservoir 
(TGR) water impoundment on the vegetation–climate response relationship in the Three Gorges 
Reservoir Region (TGRR) and its surrounding region. Firstly, based on the SPOT/VEGETATION 
NDVI and ERA5 reanalysis datasets, the correlation between climatic factors (temperature and 
precipitation) and NDVI was analyzed by using partial correlation coefficient method. Secondly, 
nonlinear fitting method was used to fit the mapping relationship between NDVI and climatic 
factors. Then, the residual analysis was conducted to evaluate the impact of TGR impoundment on 
vegetation–climate response relationship. Finally, sensitivity index (SI), sensitivity variation index 
(SVI) and difference index (DI) were defined to quantify the variation of vegetation–climate 
response relationship before and after water impoundment. The results show that water 
impoundment might have some impacts on the response of vegetation–climate, which gradually 
reduced with increasing distance from the channel; comparing with the residual analysis method, 
the SI and DI index methods are more intuitive, and combining these two methods may provide 
new ideas for the study of the impact of human activities on vegetation. 

Keywords: Three Gorges Reservoir; vegetation–climate relationship variation; water impoundment 
impact; NDVI; ERA5 

 

1. Introduction 

Vegetation, which plays a significant role in controlling desertification and conservation of soil 
and water [1], is an important component of terrestrial ecosystems and acts a pivotal part in climate 
change by affecting carbon storage, hydrological cycle and energy balance [2,3]. Therefore, vegetation 
coverage is an important indicator of ecological environment and global climate change [4–6]. For 
nearly half a century, the continuous impact of climate change and anthropogenic disturbances on 
global scale has become the main driving force for ecosystem change and has brought a huge impact 
on the vegetation ecosystem [7–9]. Undoubtedly, there is a close internal relationship between 
vegetation evolution and climate factors, but human activities can also interfere with vegetation 
evolution [4]. Understanding vegetation evolution and its response to climate change and human 
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activities is a key task in predicting future ecosystem evolution, providing a basis for ecological 
management, ecosystem protection and decision-making [10–12]. 

The relationship between climate and vegetation has been widely discussed and studied by 
many scholars. Xu et al. [13] investigated the dynamic evolution of vegetation and its relations with 
climatic factors during 1982–2011 in China. They discovered that the spatiotemporal variations of 
vegetation dynamic evolution are controlled primarily by temperature and secondly by precipitation. 
However, the combined effects of temperature and precipitation exhibit strong spatial heterogeneity 
[14], and the complexity of the climate–vegetation relationship is also spatially and temporally 
variable [15]. For example, in northwestern China, the precipitation might be the key driving factor 
of vegetation growth [16], while, in Chinese Loess Plateau, the temperature is a main control factor 
of the seasonal change of vegetation and precipitation is an important factor for vegetation variation 
[17]. In addition, Xie et al. [18] showed temperature has a positive effect on vegetation in most periods 
in the semi-humid region but has no significant effect in the arid region, and precipitation has a 
positive effect on vegetation in summer in the arid region and in autumn in the semi-arid region. 
Because of the close relationship between climate and vegetation, the climate change inevitably has 
a certain impact on the vegetation ecosystem. Xu et al. [19] found that, from 1982 to 2000, global 
climate change has contributed to an increase in vegetation cover in the Qinghai-Tibet Plateau, and 
precipitation is the major climatic factor influencing interannual variation of average vegetation 
cover. Kong et al. [20] investigated vegetation response to climate change at Northern Hemisphere 
(NH) scale., Their research results show that factors potentially influencing vegetation growth in 
different parts of NH were complex and varied; for instance, temperature was recognized as the 
critical factor behind vegetation greenness in high latitudes especially for spring and autumn 
temperature in North America and Siberia. Additionally, some studies showed that vegetation 
changes and the response of vegetation to climate varied with seasons [18,21–23]. The relationship 
between vegetation and climate is not only the response of vegetation to climate, but also the impact 
of vegetation on regional climate. Some studies also indicated that vegetation impacts the regional 
climate by modulating the land–atmosphere exchanges of heat, water and momentum [24–26]. 

Human activities, which is another important factor affecting vegetation, should not be 
neglected in analyzing the vegetation dynamic evolution under the changing environment [18]. 
Zhang et al. [27] used the Carnegie–Ames–Stanford approach model to assess the status of vegetation 
in the Three-River Source Region across different periods from 1982 to 2012 and found that human 
activities had a weak negative impact from 1982 to 2000 and a favorable impact from 2001 to 2012 on 
vegetation growth or recovery. Hua et al. [28] found that land use change was the dominant factor 
driving long-term changes in vegetation greenness in China. Brandt et al. [29] reported that, in Sub-
Saharan Africa, the increases in woody cover were associated with low population growth and were 
driven by increases in CO2 in the humid zones and by increase in precipitation in drylands, whereas 
the decreases in woody cover were associated with high population growth. In addition, Li et al. [30] 
analyzed the main characteristics, spatial-temporal distribution and driving forces of vegetation 
restoration in the Shaanxi–Gansu–Ningxia Region, reporting that human activities are the main 
driving forces in vegetation restoration. For example, the “Grain for Green Project”, which turns 
cultivated land into forest land and aims to protect the ecological environment in China, was 
identified as the main cause leading to gradual vegetation stabilization in the Shaanxi–Gansu–
Ningxia Region [31,32]. In addition to environmental protection projects, water conservancy project 
construction may also has an impact on vegetation. For example, Zhang et al. [33] analyzed the impact 
of the Three Gorges Water Conservancy Project on environment and reported that cropland, 
woodland and grassland areas reduced continuously, while river and built-up area increased from 
2000 to 2005, and significant changes in land use and vegetation cover have occurred in the Three 
Gorges Reservoir (TGR) Area. 

Climate change and human activities are the two main driving forces of vegetation cover change 
[4]. It is a key task to distinguish the effects of human activities and climate change on vegetation 
evolution for vegetation ecosystem protection and human activities impact assessment. The residual 
analysis method was firstly applied to discriminate between climate or human-induced dryland 
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degradation by Evans et al. [34]. Then, this method began to be widely used to distinguish the impact 
of climate and human activities on vegetation [35,36]. For example, Jiang et al. [37] used a residual 
analysis trend method to distinguish the effects of climatic change and human activities on vegetation 
evolution dynamics in Central Asia. Their research works highlighted that sparse vegetation and the 
degradation of some shrubs in the southern part of the Karakum Desert, the southern Ustyurt Plateau 
and the wetland delta of the Large Aral Sea were mainly triggered by human activities. Similarly, by 
using residual analysis, Sun et al. [38] found that human activities played a major role in vegetation 
variation of North China. In addition, based on residual analysis of NDVI variation, Wang et al. [39] 
pointed out that human activities had either improved or degraded vegetation cover in some parts 
in southern China. In theory, the residual analysis method is feasible, and establishing an ideal model 
of vegetation–climate is the key to identify the impact of human activities on vegetation. However, 
in practice, it is difficult to find the data without human intervention. Therefore, to overcome the 
shortcomings of residual analysis method, this study only investigated the impact of the TGR 
impoundment and did not consider other human activities. Then, a vegetation–climate model was 
established, which is not affected by impoundment, and the impact of water storage was studied by 
residual analysis. 

The Three Gorges Water Conservancy Project at the upper end of the Yangtze River is currently 
the world’s largest water conservancy project. Many studies in the Three Gorges Reservoir Region 
focused on the land use/cover changes [33] and the response of vegetation to natural and 
anthropogenic driving factors [40]. These studies did not pay attention to the impact of the Three 
Gorges Reservoir’s impoundment. At present, there are few studies on the impact of TGR water 
impoundment on vegetation–climate relationship. Therefore, this study focused on vegetation–
climate relationship and the impact of impoundment in different zones. The NDVI was chosen as a 
valid indictor for vegetation coverage variation, while precipitation and temperature were chosen as 
climate factors. The aims of this study were as follows: (1) to establish a vegetation–climate model 
and explore the relationship between them; (2) to propose a new method for analyzing the impact of 
water impoundment; (3) to quantify the impact of impoundment on climate–vegetation response 
relationship; and (4) to compare and verify the proposed new method with the existing method. 
Hopefully, knowledge of the vegetation variation and vegetation–climate relationship will promote 
the protection of the ecological environment in this region and manage ecosystem under the impacts 
of climate change and human activities. 

2. Data and Methods 

2.1. Study Area 

The study area is the Three Gorges Reservoir Region (TGRR) and its 100-km buffer zone (Figure 
1), which covers about 220,000 km2. TGRR in this paper is a geographical region, which is located in 
the Cuntan-Yichang sub-catchment of the upper Yangtze River. The region of the TGRR is slightly 
different from the official TGRR, which is commonly defined as an administrative region containing 
21 counties impounded by the Three Gorges Reservoir (TGR) [41]. Geographically, the TGRR is 
located at the junction of the Sichuan Basin and the middle and lower reaches of the Yangtze River. 
It crosses the mountainous canyons in Hubei and the ridge valleys in eastern Sichuan and is adjacent 
to Daba Mountain in the north and Hubei Plateau in Sichuan in the south. Its elevation is between 
−12 and 3070 m. The climate of the study area is a subtropical monsoon climate with an annual rainfall 
of 1000–1800 mm. The current land use types of the TGRR are farmland and forest (including 
secondary forest and virgin forest) that have resulted from long-term anthropogenic activity and a 
highly dense population [42]. 

The water level of TGR was raised from 66 to 135 m in June 2003, and reached the normal water 
level of 175 m for the first time in 2010. The impoundment of the TGR caused changes in the 
underlying surface along the river. The increase in water area will increase local evaporation and 
may cause changes in water vapor vertical movement of the Yangtze River’s water vapor channel. It 
is likely to further change local climate and vegetation coverage in the TGRR and its buffer zone. 
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Figure 1. Geographic location and elevation of the study area. 

2.2. Data 

2.2.1. NDVI and Land Use/Land Cover Data 

For ecologists, satellite remote sensing has become a potential goldmine for monitoring and 
predicting changes in vegetation activities over large regions in a repeatable manner [6,43,44], which 
is also widely used by climatologists [24–26,45–47] and researchers in natural disasters [48–50]. 
Normalized Difference Vegetation Index (NDVI), as an effective indicator to monitor vegetation and 
natural environment at regional and global scales, has been widely used in the research on vegetation 
activity [51–53]. The NDVI [54,55] is derived from the red, near-infrared reflectance ratio: 

NDVI = (NIR - RED)/(NIR + RED) (1) 

where NIR and RED are the amounts of near-infrared and red light, respectively, reflected by the 
vegetation and captured by the sensor of the satellite. 

The formula is based on the fact that chlorophyll absorbs RED, whereas the mesophyll leaf 
structure scatters NIR. NDVI values thus range theoretically from −1 to +1, where negative values 
correspond to an absence of vegetation [55]. 

NDVI can accurately reflect the surface vegetation coverage. In this study, 1998–2018 annual and 
monthly vegetation index datasets with a spatial resolution of 1 km were used, which are based on 
the continuous time series of SPOT/VEGETATION NDVI satellite remote sensing data using the 
maximum value composite method [56].This dataset can effectively reflect the vegetation coverage 
distribution and change status in various regions of the country on space and time scales, and it is a 
very important reference for monitoring the changes of vegetation status, using vegetation resources 
reasonably and other research in related fields of ecological environment. 

This study used land use/land cover data in 2000 and 2018 [57]. The land use/land cover data in 
2000 and 2018 are based on Landsat-TM/ETM and Landsat 8 remote sensing image data, respectively. 
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The classification system of land use/land cover data in China adopts a three-level classification 
system [58]. The first level, is divided into six categories based on land resources and their utilization 
attributes: arable land, forest land, grassland, water area, construction land and unused land. The 
second level is mainly classified according to the natural attributes of land resources, and the third 
level is mainly classified according to the topography of the arable land. 

2.2.2. Meteorological Data 

ERA5 [59] is the fifth generation ECMWF (European Centre for Medium-Range Weather 
Forecasts) atmospheric reanalysis of the global climate, and it will replace the ERA-Interim reanalysis, 
which is now 10 years old. Reanalysis combines model data with observations from across the world 
into a globally complete and consistent dataset using the laws of physics [59]. The 4D-Var 
assimilation method, which takes account of the exact timing of the observations and model evolution 
within the assimilation window, makes providing estimates worldwide for each hour of the day 
possible. This hourly output resolution is quite an improvement with respect to ERA-Interim and 
provides a more detailed evolution of particular weather events. Some researchers have compared 
and found that ERA5 shows improvements relative to ERA-Interim, which represents the previous 
generation reanalysis product [60–62]. For example, the precipitation and precipitable water vapor 
of ERA5 perform better than those of ERA-Interim in China [46,63,64], while the temperature 
difference between ERA5 and ERA-Interim is relatively smaller [65]. The ERA5 dataset has a time 
scale from 1979 to the present. The data format is a grid point with a spatial resolution of 0.25° × 0.25°. 
In this study, the precipitation and temperature data from 1998 to 2018 in the ERA5 dataset were 
used. 

2.3. Methods 

2.3.1. Partial Correlation Coefficient Method 

In a multi-factor system, the partial correlation coefficient is used to study the influence or 
correlation of one factor to another factor and to exclude the influence of other factors in the process. 
This study used this method to analyze the correlation between the monthly NDVI and the monthly 
average temperature or monthly precipitation in each grid point. According to the definition, under 
the condition that the effect of z remains unchanged, the partial correlation coefficient between the 
variable x and the variable y is calculated as: 
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z
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r

r r

−
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− + −  (2) 

where rxy, rxz and ryz, respectively, represent the Pearson correlation coefficient between the three 
variables x, y and z, and the calculation formula of the Pearson correlation coefficient of x and y is: 
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where N is the number of years, xt is the value of the x-variable in the tth year, yt is the value of the y-
variable in the tth year, x is the average of the x-variables in all years and y is the average of the y-
variables in all years. 
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2.3.2. Grid Point Analysis 

The resolution of the vegetation index NDVI is 1 km × 1 km. When using 1 km × 1 km grid points 
as the benchmark units for statistical analysis, the large number of grid points will lead to long 
calculations. Therefore, based on weighing the calculation cost and accuracy, this study used 5 km × 
5 km grid points as the benchmark analysis units. Interpolated NDVI, temperature and precipitation 
data to the grid by Inverse Distance Weight method. For the boundary grid processing, take those 
whose centroid is in the study area as benchmark analysis units. Thus, the research area is finally 
divided into 8933 benchmark statistical analysis units. 

2.3.3. Establish Vegetation–Climate Regression Model 

Regression model is a mathematical model that quantitatively describes statistical relationships. 
It studies the relationship between the dependent variable and the independent variable and can also 
show the strength of the influence of multiple independent variables on a dependent variable. Under 
the double effects of human activities and climate change, vegetation is constantly adapting to 
changes in external conditions to make its own activities more favorable. However, this process is 
dynamic and nonlinear, and it is necessary to further study this non-linear response relationship. In 
this paper, there are two independent variables (temperature and precipitation) and the dependent 
variable is NDVI. To express the nonlinear relationship between vegetation and climate, a polynomial 
regression model as shown in Equation (8) was selected. 

0 1 2 3+ +n m i i
n m iz p p x p x p y p y p xy p x y= + + + + + + +    (4) 

where z represents dependent variable, x and y represent independent variables and p0, …, pi 
represent regression coefficients. 

Before establishing the model, the correlations between NDVI and temperature/precipitation 
was analyzed. According to the results of partial correlation analysis, an appropriately simplified 
vegetation–climate regression model was established as Equation (5). 

2
0 1 2 3 4z p p x p y p x p xy= + + + +  (5) 

where z represents NDVI, x represents temperature, y represents precipitation and p0, p1, p2, p3 and p4 
are regression coefficients. 

After determining the regression model, the least squares method was used to fit the regression 
coefficients. Finally, residual sum of squares (SSE), coefficient of determination (R2) and F-test were 
used to evaluate the fitting results. 

2.3.4. Residual Analysis 

The residual analysis approach, which can separate NDVI changes caused by human activities 
from those resulting from climatic variations, assumes that there is a strong relationship between 
vegetation production and climate [34]. First, the regression between NDVI and climatic factors 
(temperature and precipitation) is calculated in each zone. Second, the residual between the observed 
NDVI and the predicted NDVI is calculated. Finally, these residuals are regressed on time to obtain 
the trends. When the trend of NDVI residuals is insignificant, changes in NDVI are explained by 
climatic factors. In contrast, when the trend of NDVI residuals is significant, changes in NDVI are not 
explained by climatic factors and may have been caused by human activities. this study took June 
2003 as the demarcation point of the water impoundment of TGR and established vegetation–climate 
models before and after impoundment. The precipitation and temperature data after impoundment 
were input into the regression model before impoundment to obtain the predicted NDVI. The 
residuals between the predicted value and the observed value were calculated. Since the impact of 
human activities such as environmental engineering and urbanization is continuous, it can be 
assumed that the vegetation–climate relationships before and after impoundment are both affected 
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by human activities. Therefore, the significant trend of NDVI residuals can be explained by 
impoundment. 

2.3.5. Mann–Kendall Test 

Mann–Kendall test (MK test) was first published by Mann [66], and then improved by Kendall 
[67]. It can effectively distinguish whether a natural process has certain trend or not. Suppose a time 
series is 1 2, , , nX X X ; construct MK test statistics S: 

1

1 1
sgn( )

n n

j i
i j i

S X X
−

= = +

= −   (6) 

where Xi and Xj represent the measured data of continuous time, n represents the length of the 
measured data and sgn( )  is a symbolic function with the value: 

1   >0
sgn( ) 0   =0

-1  <0

θ
θ θ

θ


= 



 (7) 

Mann and Kendall proved that the statistical variable S obeyed an asymptotic normal 
distribution, and its expected and variance calculation formulas are: 
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E S
Var S n n n

=
= − +  (8) 

In addition, the statistical variable Z is constructed in the following way: 

1    0
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= 0                0    
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S S
Var S

Z S
S S
Var S

− >
 =
 + <


 (9) 

Z follows the standard Gaussian distribution. If a significance level α is given, when 1 /2Z Z α−≥
, the null hypothesis is rejected, and the series has a significant trend. A positive (negative) Z value 
indicates that the sequence is increasing (declining). In this study, α = 0.05, thus 1 /2 1.96Z α− = . 

3. Results 

3.1. Vegetation Evolution Pattern around the Reservoir 

For each grid point, the annual maximum NDVI value from April 1998 to December 2018 was 
tested by Mann–Kendall method with a significance level of α = 0.05 (Figure 2). The results show that, 
in study area, the grid points with significant increasing trend of NDVI accounted for 82.01%. The 
NDVI changes in 15.93% of the grid points were not significant, and the grid points with significant 
decreasing trend of NDVI accounted for 2.06%. NDVI changed insignificantly or decreased 
significantly in the areas which were mostly located in the densely populated Sichuan Basin or the 
lower reaches of the Yangtze River. 

The land use/land cover of the study area in 2000 and 2018 are shown in Figure 3a,b, respectively. 
Compared with 2000, there was a significant increase in urban construction land in 2018, such as the 
Sichuan Basin, Chongqing and the middle and lower reaches of the Yangtze River. 

Comparing Figures 2 and 3, it is found that most of the areas where NDVI showed significant 
decreasing trends or insignificant trends are urban construction land or arable land. Many people 
live in urban construction land and arable land. Thus, human activities are relatively dense. In other 
words, intensive human activities may have some negative impacts on vegetation coverage. 
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Figure 2. Trends of annual maximum NDVI from 1998 to 2018. 

  

(a) (b) 

Figure 3. Land use/land cover changes in the study area: (a) land use/land cover in the study area in 
2000; and (b) land use/land cover in the study area in 2018. 

In terms of time evolution, the annual NDVI of the study area from 1998 to 2018 was processed 
into areal means, and the results are shown in Figure 4. Since the NDVI changes showed a fluctuating 
rising trend and NDVI grew fastest in 2003, while the water impoundment level of the TGR increased 
from 66 to 135 m, it is speculated that the water impoundment of the TGR may have some impacts 
on its surrounding vegetation. 
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Figure 4. Areal mean change of annual NDVI from 1998 to 2018. 

3.2. Screening the Drivers of Vegetation Change 

The partial correlation coefficients between the monthly NDVI and the monthly average 
temperature, the monthly precipitation from April 1998 to December 2018 in the study area was 
calculated. The partial correlation coefficients of NDVI and temperature, which are referred to simply 
as rN-t below, are shown in Figure 5a. Similarly, the partial relationship between precipitation and 
NDVI is abbreviated as rN-p, and the results are shown in Figure 5b. It is can be seen that, after 
excluding the influence of precipitation, rN-t ranged from 0 to 0.87 and was generally high. Area with 
significant partial correlation (|rN-t| ≥ 0.4) accounted for 98.47% of the study area, with moderate 
partial correlation (0.4 ≤ |rN-t| < 0.6) accounting for 4.18%, high partial correlation (0.6 ≤ |rN-t| < 0.8) 
accounting for 82.93% and extremely high partial correlation (|rN-t| ≥ 0.8) accounting for 11.36%. 
Combining Figures 1, 3 and Figure 5a, it can be seen that the areas with low partial correlation 
coefficients between temperature and NDVI were mainly located in the downstream of TGR, where 
human activities were relatively dense; the areas with high partial correlation coefficients were 
mostly located in mountainous areas and have less human activities. After excluding the influence of 
temperature, rN-p was generally low, as shown in Figure 5b. rN-p ranged from −0.39 to 0.26, and no 
absolute value of partial correlation coefficient higher than 0.4 was found. 

(a) (b) 

Figure 5. Partial correlation coefficient of NDVI–precipitation and NDVI–temperature (Total series). 
(a) partial correlation coefficient of NDVI–temperature; and (b) partial correlation coefficient of 
NDVI–precipitation. 
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The monthly data of NDVI, temperature and precipitation were divided into four series: spring 
(March to May), summer (June to August), autumn (September to November) and winter (December 
to February). The correlation coefficients among NDVI, temperature and precipitation in each season 
were calculated. Figure 6 shows that rN-t was high in spring and autumn and low in summer and 
winter. Combining Figure 3 and Figure 6a,c, it can be seen that the areas with high correlation 
between temperature and NDVI in spring and autumn were concentrated in mountainous areas with 
less human activities, which were roughly similar to the high correlation area calculated from the 
total series. As shown in Figure 7, rN-p was generally low in the four seasons. However, in summer 
and winter, the negative correlation between precipitation and NDVI in a few areas was slightly 
higher. The average rN-t and rN-p of the study area in the four seasons were calculated, as shown in 
Table 1. Comparing the results of the four seasons and the total series, it was found that the 
temperature and NDVI correlation results in spring and autumn were very similar to the results of 
the total series. Whether comparing average values or percentages, the correlation between 
temperature and NDVI was higher than that between precipitation and NDVI in the four seasons. 

(a) (b) 

(c) (d) 

Figure 6. Partial correlation coefficient of NDVI–temperature in four seasons: (a) spring; (b) summer; 
(c) autumn; and (d) winter. 
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(a) (b) 

(c) (d) 

Figure 7. Partial correlation coefficient of NDVI–precipitation in four seasons: (a) spring; (b) summer; 
(c) autumn; and (d) winter. 

Table 1. Average and percentage results of four seasons and total series. 

 Spring Summer Autumn Winter Total Series 
Average rN-t 0.654  0.268  0.532  0.295  0.718  

Percentage of |rN-t| ≥ 0.4 92.086%  23.699%  83.231%  10.075%  98.47% 
Average rN-p −0.037  −0.163  0.057  −0.282  −0.090  

Percentage of |rN-p| ≥ 0.4 0.034%  9.874%  0 9.123% 0 

In summary, the results show that the correlation between temperature and vegetation was 
stronger than that between precipitation and vegetation. Some studies used MODIS NDVI to conduct 
research in administrational TGRR and found that the correlation between temperature and NDVI 
was stronger than that between precipitation and NDVI [68,69]. Temperature can be used as the main 
factor for vegetation change. In addition, the extent of partial correlation varies by region. That is, the 
dynamic vegetation–temperature and vegetation–precipitation responses had strong spatial 
heterogeneity, and there are some differences in the dynamic response relationship in different areas. 

3.3. Vegetation–Climate Regression Model 

The study in presented in Section 3.2 showed that the correlation between temperature and 
NDVI was stronger than that between precipitation and NDVI. Therefore, temperature was 
considered as a main factor in the following study on the response of NDVI to climate. In addition, 
because of the strong spatial heterogeneity of the response, it was necessary to conduct divisional 
study. Based on the water–land boundary after impoundment of TGR, zones were divided every 10 
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km in the radial direction. The monthly temperature and NDVI of each zone from April 1998 to 
December 2018 were extracted and averaged. Taking June 2003 as the demarcation point of the water 
impoundment of TGR, the least square method was used to fit the relationship between NDVI and 
temperature/precipitation before and after water impoundment. The regression coefficient results are 
shown in Table 2. The regression coefficients of different zones were different, and the regression 
coefficients before water impoundment are also different from those after water impoundment. 
However, the difference in regression coefficients caused by different zones was smaller than that 
caused by impoundment. From the evaluation index and p-value of Table 3, it can be seen that the 
regression model fitted well and passed the hypothesis test with significance level α = 0.01. In other 
words, the multiple polynomial regression model established in this paper had good performance in 
fitting the relationship between vegetation and climate. 

Table 2. Regression coefficients results of relationship between NDVI and climatic factors. 

Zones 
(km) 

Before Impoundment After Impoundment 

p0 p1 p2 
(10−5) 

p3 
(10−5) 

p4 
(10−6) 

p0 p1 p2 
(10−3) 

p3 
(10−4) 

p4 

(10−5) 
0–10 0.160 0.026 −1.176 −25.1 4.764 0.212 0.040 −1.136 −8.252 5.065 
10–20 0.179 0.025 1.871 −20.29 1.527 0.239 0.041 −1.288 −8.385 5.578 
20–30 0.209 0.023 −2.125 −10.44 1.035 0.259 0.039 −1.278 −7.8 5.457 
30–40 0.217 0.022 −2.628 −6.946 −0.329 0.264 0.038 −1.231 −7.227 5.175 
40–50 0.218 0.022 −12.73 −7.649 3.68 0.255 0.038 −1.298 −7.168 5.442 
50–60 0.220 0.023 −14.48 −8.769 4.098 0.258 0.037 −1.261 −6.909 5.274 
60–70 0.228 0.022 −18.55 −7.109 5.334 0.261 0.036 −1.21 −6.593 5.072 
70–80 0.223 0.021 −18.27 −4.098 5.491 0.255 0.035 −1.15 −6.115 4.889 
80–90 0.236 0.021 −18.96 −3.693 5.806 0.266 0.035 −1.087 −5.861 4.53 

90–100 0.225 0.021 −14.87 −3.966 4.28 0.256 0.035 −1.075 −5.848 4.444 

Table 3. Evaluation index of fitting result. 

Zones 
Before Impoundment After Impoundment 

SSE R2 p SSE R2 p 
0–10 0.1171 0.913 1.56 × 10−29 * 0.6394 0.854 7.39 × 10−75 * 

10–20 0.1281 0.908 7.82 × 10−29 * 0.6687 0.852 3.12 × 10−74 * 
20–30 0.1357 0.902 4.65 × 10−28 * 0.6588 0.853 1.81 × 10−74 * 
30–40 0.1508 0.893 5.70 × 10−27 * 0.6262 0.861 8.80 × 10−77 * 
40–50 0.1443 0.900 9.82 × 10−28 * 0.5891 0.873 1.78 × 10−80 * 
50–60 0.1436 0.899 1.17 × 10−27 * 0.5749 0.876 2.69 × 10−81 * 
60–70 0.1409 0.900 9.73 × 10−28 * 0.567 0.878 6.84 × 10−82 * 
70–80 0.1304 0.909 5.84 × 10−29 * 0.5479 0.884 6.77 × 10−84 * 
80–90 0.1292 0.906 1.43 × 10−28 * 0.5485 0.880 1.26 × 10−82 * 
90–100 0.1263 0.910 4.05 × 10−29 * 0.5258 0.887 7.19 × 10−85 * 

* Passed the hypothesis test with significance level α = 0.01. 

3.4. Residual Analysis 

The precipitation and temperature data after impoundment were input into the regression 
model before impoundment to obtain the predicted NDVI. Then, the residuals between the predicted 
value and observed value were calculated. The linear regression model was established with time as 
the independent variable and residuals as the dependent variable. The results of different zones are 
shown in Table 4. Since the residual trends of the 10 zones were roughly similar, the zone of 0–10 km 
was taken as an example for specific analysis. The residual variation is shown in Figures 8 and 9. The 
residuals were mostly negative values, with a decreasing trend over time. It passed the hypothesis 
test of the significance level α = 0.05 with slope k = −6.02981 × 10−4 and p = 7.51 × 10−15. Figures 8 and 9 
show that the predicted NDVI was usually smaller than the observed value in the 0–10 km zone. This 
significant variation trend of residual cannot be explained by temperature and precipitation but can 
be regarded as the result of impoundment. In other zones, the residual variation trends were also 
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significant, which were about the same as that of the 0–10 km zone. The predicted NDVI was usually 
less than the observed value in all zones, which indicated that the TGR impoundment might have a 
partial impact on the increase of NDVI in the study area. However, comparing the linear regression 
models of the residuals in different zones (Table 4), it was found that the regression coefficients were 
different, and the trends of the residuals were not completely similar. Therefore, it is speculated that 
the impact of impoundment on vegetation might be different in different zones. 

 
Figure 8. NDVI residuals and residual trend after water impoundment. 

 
Figure 9. Observed and predicted value of NDVI after impoundment. 

Table 4. Slopes of residual trends and test results. 

Zones k(10−4) p 
0–10 km −6.030 7.51 × 10−15 * 
10–20 km −6.020 2.09 × 10−14 * 
20–30 km −6.015 8.28 × 10−14 * 
30–40 km −6.006 1.83 × 10−13 * 
40–50 km −6.004 2.73 × 10−13 * 
50–60 km −5.999 2.13 × 10−13 * 
60–70 km −5.997 2.62 × 10−13 * 
70–80 km −6.006 5.72 × 10−13 * 
80–90 km −6.005 3.59 × 10−13 * 
90–100 km −6.007 4.06 × 10−13 * 

* Passed the hypothesis test with significance level α = 0.01. 
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3.5. Sensitivity Analysis 

To ascertain the evolution of the NDVI–climate response relationship before and after TGR 
impoundment, the partial derivatives of Equation (5) were calculated and used as a sensitivity index 
(SI) to characterize the vegetation’s sensitivity to temperature or precipitation. When SI is positive, it 
indicates that the change direction of vegetation is consistent with that of temperature/precipitation. 
When SI is negative, it indicates that the change direction of vegetation is opposite to that of 
temperature/precipitation. 

1 3 42x xSI f p p x p y′= = + +  (10) 

2 4y ySI f p p x′= = +
 (11) 

where x represents temperature, y represents precipitation, xf ′  is the partial derivative to x and yf ′  

is the partial derivative to y. SIx represents the sensitivity of vegetation to temperature and SIy 
represents the sensitivity of vegetation to precipitation. 

The absolute value of the difference between the sensitivity index before impoundment and after 
impoundment was taken as the sensitivity variation index (SVI), calculated through Equations (12) 
and (13), and used to observe the variation of the vegetation sensitivity to temperature/precipitation 
between before and after water impoundment. 

2 1x x xSVI SI SI= −  (12) 

2 1y y ySVI SI SI= −  (13) 

where SIx1 is the sensitivity of vegetation to temperature before impoundment, SIx2 is the sensitivity 
of vegetation to temperature after impoundment, SIy1 is the sensitivity of vegetation to precipitation 
before impoundment and SIy2 is the sensitivity of vegetation to precipitation after impoundment. 

From Equation (10), it can be indicated that the sensitivity of vegetation to temperature was 
affected by precipitation and temperature. Assuming three types of precipitation scenarios (PRE = 
100, 200 and 300 mm), the specific analysis based on the zone 0–10 km was carried out. As shown in 
Figures 10–12, there was a threshold Tc (marked by a red dashed line) in the temperature. When the 
temperature T < Tc, the SI after impoundment was higher than that before impoundment, and the 
SVI decreased with temperature increasing; when T > Tc, the SI after impoundment was lower than 
that before impoundment, and the SVI increased with the temperature increasing. Under different 
precipitation scenarios, the temperature threshold was different, and Tc increased with precipitation 
increasing. As shown in Figures 10–12, the temperature increased and then the SI gradually 
decreased. The trends of vegetation’s sensitivity to temperature were roughly similar in different 
zones while temperature thresholds were different, as shown in Table 5. 

 
Figure 10. The sensitivity index (SI) and sensitivity variation index (SVI) for the NDVI–temperature 
response in 0–10 km zone (PRE = 100 mm). 
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Figure 11. The sensitivity index (SI) and sensitivity variation index (SVI) for the NDVI–temperature 
response in 0–10 km zone (PRE = 200 mm). 

 
Figure 12. The sensitivity index (SI) and sensitivity variation index (SVI) for the NDVI–temperature 
response in 0–10 km zone (PRE = 300 mm). 

Table 5. SI of NDVI–temperature and temperature thresholds. 

Zones 
Before Impoundment After Impoundment Tc (°C) 

p1 2p3 
(10−5) 

p4 
(10−6) p1 2p3 

(10−4) 
p4 

(10−5) 
Pre =  

100 mm 
Pre =  

200 mm 
Pre =  

300 mm 
0–10 0.026 −50.2 4.764 0.040 −16.50 5.065 16.44 20.43 24.43 

10–20 0.025 −40.58 1.527 0.041 −16.77 5.578 16.41 20.68 24.95 
20–30 0.023 −20.88 1.035 0.039 −15.60 5.457 16.1 20.06 24.02 
30–40 0.022 −13.89 −0.329 0.038 −14.45 5.175 16.02 20.01 24 
40–50 0.022 −15.30 3.680 0.038 −14.34 5.442 16.18 20.14 24.1 
50–60 0.023 −17.54 4.098 0.037 −13.82 5.274 16.22 20.25 24.29 
60–70 0.022 −14.22 5.334 0.036 −13.19 5.072 16.18 20.04 23.9 
70–80 0.021 −8.20 5.491 0.035 −12.23 4.889 16.03 19.84 23.64 
80–90 0.021 −7.39 5.806 0.035 −11.72 4.53 16.16 19.75 23.35 
90–100 0.021 −7.93 4.280 0.035 −11.70 4.444 16.24 19.93 23.61 

The sensitivity of vegetation to precipitation was affected by temperature. There was a threshold 
Tc (marked by a red dashed line) in the temperature, as shown in Figure 13. When T < Tc, the SI 
before water impoundment was higher than that after impoundment, and the SVI decreased with 
temperature increasing; when T > Tc, the SI before water impoundment was lower than that after 
impoundment, and the SVI increased with the temperature increasing. As the temperature increased, 
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the SI gradually increased. The trends of vegetation’s sensitivity to precipitation were roughly similar 
in different zones while temperature thresholds were different, as shown in Table 6. 

 
Figure 13. The sensitivity index (SI) and sensitivity variation index (SVI) for the NDVI–precipitation 
response in 0–10 km zones. 

Table 6. SI of NDVI–precipitation and temperature thresholds. 

Zones 
Before Impoundment After Impoundment 

Tc (°C) p2 
(10−5) 

p4 
(10−6) 

p2 
(10−3) 

p4 
(10−5) 

0–10 −1.176 4.764 −1.136 5.065 24.29 
10–20 1.871 1.527 −1.288 5.578 23.91 
20–30 −2.125 1.035 −1.278 5.457 23.29 
30–40 −2.628 −0.329 −1.231 5.175 22.95 
40–50 −12.73 3.680 −1.298 5.442 22.88 
50–60 −14.48 4.098 −1.261 5.274 22.75 
60–70 −18.55 5.334 −1.210 5.072 22.36 
70–80 −18.27 5.491 −1.150 4.889 22.06 
80–90 −18.96 5.806 −1.087 4.530 22.47 

90–100 −14.87 4.280 −1.075 4.444 22.82 

In summary, it was found by comparing SIx (Figures 10–12) and SIy (Figure 13) that the sensitivity 
of vegetation to temperature was higher than that to precipitation, meaning that vegetation was more 
sensitive to changes in thermal factors [70]. It can be seen from the vegetation–climate regression 
model and Figure 13 that, while a slight decrease in precipitation can increase the NDVI at low 
temperature, moderate increase in precipitation can increase the NDVI at high temperature. That is, 
hot and humid conditions will be more conducive to vegetation growth. Moreover, after TGR 
impoundment, the variation trend of vegetation’s sensitivity to temperature or precipitation was 
slightly more obvious than that before impoundment. It can be suggested that impoundment might 
have some effects on the vegetation’s sensitivity to climate. 

3.6. Difference Analysis 

To characterize the difference in the response of NDVI to climate between before and after 
impoundment, a difference index (DI) was defined as Equations (14) and (15), and calculated in 
different zones, as shown Figure 14. 

2 1

1

( , ) ( , )
( , )

f f
DI

f
α β α β

α β
−

=  (14) 
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2 1,
[ , ] arg max ( , ) ( , )

x y
f x y f x yα β = −

 
(15) 

where f1(x, y) is the response of NDVI to temperature and precipitation before water impoundment, 
f2(x, y) is the response of NDVI to temperature and precipitation after water impoundment and [α,β] 
is the value of x and y when the absolute value of the difference between function before and after 
water impoundment is maximum. 

 
Figure 14. The difference index (DI) describing the change of NDVI–climate response in different 
zones. 

As shown in Figure 14, the DI, which indicates the difference in the pattern of vegetation 
response to climate between before and after water impoundment, showed a decreasing trend. It can 
be suggested that vegetation’s response to climate was affected by impoundment, and the degree 
varied by the distance from subarea to TGR, following a rule that the distance increased and then the 
impact degree decreased. 

4. Discussion 

Vegetation in most areas showed an increasing trend (Figure 2), while, in Sichuan Basin or the 
lower reaches of the Yangtze River, vegetation decreased insignificantly or significantly. Urban 
construction land increased in Sichuan Basin, Chongqing, the middle and lower reaches of the 
Yangtze River and other places (Figure 3). Combining Figures 2 and 3 to speculate, urbanization and 
intensive population activities may be the reasons for the heterogeneous distribution of vegetation 
evolution. Furthermore, the relationship between NDVI and precipitation was weaker than that 
between NDVI and temperature, and the relationships varied by region. 

Combining the vegetation–climate regression model and the sensitivity of vegetation to 
temperature (Figures 10–12), it can be seen that NDVI will increase when the temperature increases, 
but it will decrease when temperature exceeds a certain limit. The response mechanism of vegetation 
activity to temperature is mainly reflected in the degree of warming influence on the processes of 
photosynthesis and respiration. Moderate warming can have a positive effect on the enhancement of 
vegetation activity process. However, excessively high temperature will adversely affect the 
vegetation activity process. As excessive increase in temperature may accelerate the evaporation of 
soil and form dryness trends, the vegetation will prevent itself from losing water by reducing leaf 
area and light saturation point, resulting in a corresponding reduction in vegetation coverage and a 
limited photosynthesis rate [71]. On the other hand, the rising temperature increases the rate of 
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autotrophic respiration and transpiration of vegetation, accelerates the consumption of organic 
matter and leads to a reduction in the net productivity, resulting in the inhibition of vegetation 
activity. 

According to the vegetation–climate regression model and the sensitivity of vegetation to 
precipitation (Figure 13), the observation that precipitation has promotion effect and inhibition effect 
on vegetation growth can be made. Water participates in physiological and biochemical processes 
such as photosynthesis and transpiration of vegetation. Many nutrients and minerals in the soil can 
only be absorbed by plants when dissolved in water. Therefore, increasing precipitation will lead to 
an increase in photosynthetic rate and organic matter production in vegetation and promote 
vegetation activities such as growth and cover [72]. However, when the precipitation exceeds the 
requirement for vegetation, it may also adversely affect vegetation activities such as growth and 
development indirectly by reducing radiation and increasing relative humidity. 

The sensitivity analysis results in Section 3.5 show that the sensitivity of vegetation to 
temperature was higher than that of vegetation to precipitation. From a geographical perspective, the 
study area is located in the subtropical monsoon climate and humid zone, with abundant 
precipitation, suitable temperature, high soil moisture and small evaporation. Thus, vegetation 
activity is not restricted by water, and the increase in temperature is conducive to the extension of 
vegetation growth season and accumulation of dry matter quality [73]. 

Residual analysis method and SI and DI indicator method were used to distinguish and quantify 
the impact of TGR impoundment on the vegetation–climate response relationship. The results in 
Figure 14 show that the vegetation–climate relationship may be affected by impoundment, and 
impact degree decreased as the distance from subarea to TGR increased. Judging from the results, 
the impact of TGR impoundment may be the reason for vegetation–climate response relationship 
variation. However, how TGR impoundment affected the relationship is still unknown. In addition, 
residual analysis method and SI and DI indicator method have certain limitations when they are used 
to study the impact of human activities. It is more difficult to build a perfectly ideal model without 
the influence of human activities, but focusing on a specific impact will make it more feasible to build 
a model that is not affected by this specific impact. Improving methods to make it more widely used 
is also one of the directions that can be studied in the future. 

5. Conclusions 

This study used partial correlation analysis, grid point analysis, residual analysis and Mann–
Kendall test methods to analyze and quantify the impact of TGR impoundment on the vegetation–
climate relationship in the TGRR and its 100-km buffer zone, based on SPOT/VEGETATION NDVI 
and ERA5 datasets during 1998–2018. Two types of index were proposed and compared with residual 
analysis method to quantify the impact of TGR impoundment on the vegetation–climate relationship. 
Finally, the conclusion can be drawn as follows: 

In the TGRR and its 100-km buffer zones, NDVI in most areas showed a significant increasing 
trend. However, in Sichuan Basin or the lower reaches of the Yangtze River, intensive human 
activities might be the reason for NDVI decreasing significantly. The partial correlation coefficients 
of NDVI–temperature were higher than those of NDVI–precipitation, and the dynamic response of 
vegetation cover to temperature and precipitation changes had strong spatial heterogeneity. More 
importantly, temperature was the main driving factor of vegetation cover change. 

The multiple polynomial regression, which simplified relationship and explained the physical 
mechanism, could effectively describe the response of vegetation–climate before and after water 
impoundment. The residuals between predicted NDVI and the observed value after impoundment 
were mostly negative and decreased significantly. In other words, observed NDVI was higher than 
predicted. The significant decreasing residuals that cannot be explained by independent variables 
(climatic factors: temperature and precipitation) may be caused by impoundment of TGR. The trends 
of the residuals were not completely similar in different zones, but this difference was not intuitive. 

In this study, SI and DI, which are more intuitive and clearer when displaying the results, were 
proposed, respectively, to describe and quantify the vegetation’s sensitivity to climate and the 
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difference between before and after water impoundment. In terms of the sensitivity of vegetation to 
climate, SI and SVI indices were defined, which can effectively quantify the difference of vegetation–
climate response between before and after water impoundment. The sensitivity of vegetation to 
temperature was affected by precipitation and temperature, while the sensitivity of vegetation to 
precipitation was affected by temperature. The variation of sensitivity after impoundment was 
slightly more obvious than that before impoundment, and the direction of this sensitivity variation 
was related to the temperature threshold. In addition, SI results indicate that vegetation was more 
sensitive to changes in temperature. Hot and humid conditions will be more conducive to vegetation 
growth. In terms of the difference in the response of NDVI to climate between before and after water 
impoundment, the DI results show that water impoundment might have an impact on the response 
relationship of vegetation to climate, and the impact degree decreased with increasing the distance 
between subarea and TGR. 

Comparing residual analysis method and SI and DI indicator method, it can be found that these 
two methods are essential to quantify the difference of the vegetation–climate relationship between 
before and after impoundment to reflect the impact on vegetation. They can both quantify and show 
the difference before and after the impact, but the residual analysis method showed the impact of 
impoundment through the significant change trend of the residual, while SI and DI indicators directly 
showed this impact degree. The results of the residual analysis method are less intuitive compared 
with those of the SI and DI indicators. In addition, it seems that the SI and DI index methods are more 
effective when comparing the impact of impoundment on vegetation in different areas. Therefore, it 
may be desirable to combine the residual analysis method with SI and DI indicator method to better 
and more comprehensively analyze the impact of human activities. A new idea is provided for the 
study on the impact of human activities in the future. 

This study distinguished and quantified the impact of TGR impoundment on the vegetation–
climate response relationship. However, its impact is a complex and far-reaching process, which 
needs to be further studied to find the mechanism and provide a basis for management and decision-
making. 
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