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Abstract: In recent years, the impact of global climate change and human activities on vegetation
has become increasingly prominent. Understanding vegetation change and its response to climate
variables and human activities are key tasks in predicting future environmental changes, climate
changes and ecosystem evolution. This paper aims to explore the impact of Three Gorges Reservoir
(TGR) water impoundment on the vegetation–climate response relationship in the Three Gorges
Reservoir Region (TGRR) and its surrounding region. Firstly, based on the SPOT/VEGETATION
NDVI and ERA5 reanalysis datasets, the correlation between climatic factors (temperature and
precipitation) and NDVI was analyzed by using partial correlation coefficient method. Secondly,
nonlinear fitting method was used to fit the mapping relationship between NDVI and climatic
factors. Then, the residual analysis was conducted to evaluate the impact of TGR impoundment on
vegetation–climate response relationship. Finally, sensitivity index (SI), sensitivity variation index
(SVI) and difference index (DI) were defined to quantify the variation of vegetation–climate response
relationship before and after water impoundment. The results show that water impoundment might
have some impacts on the response of vegetation–climate, which gradually reduced with increasing
distance from the channel; comparing with the residual analysis method, the SI and DI index methods
are more intuitive, and combining these two methods may provide new ideas for the study of the
impact of human activities on vegetation.

Keywords: Three Gorges Reservoir; vegetation–climate relationship variation; water impoundment
impact; NDVI; ERA5

1. Introduction

Vegetation, which plays a significant role in controlling desertification and conservation of soil and
water [1], is an important component of terrestrial ecosystems and acts a pivotal part in climate change
by affecting carbon storage, hydrological cycle and energy balance [2,3]. Therefore, vegetation coverage
is an important indicator of ecological environment and global climate change [4–6]. For nearly half a
century, the continuous impact of climate change and anthropogenic disturbances on global scale has
become the main driving force for ecosystem change and has brought a huge impact on the vegetation
ecosystem [7–9]. Undoubtedly, there is a close internal relationship between vegetation evolution and
climate factors, but human activities can also interfere with vegetation evolution [4]. Understanding
vegetation evolution and its response to climate change and human activities is a key task in predicting
future ecosystem evolution, providing a basis for ecological management, ecosystem protection and
decision-making [10–12].
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The relationship between climate and vegetation has been widely discussed and studied by
many scholars. Xu et al. [13] investigated the dynamic evolution of vegetation and its relations with
climatic factors during 1982–2011 in China. They discovered that the spatiotemporal variations of
vegetation dynamic evolution are controlled primarily by temperature and secondly by precipitation.
However, the combined effects of temperature and precipitation exhibit strong spatial heterogeneity [14],
and the complexity of the climate–vegetation relationship is also spatially and temporally variable [15].
For example, in northwestern China, the precipitation might be the key driving factor of vegetation
growth [16], while, in Chinese Loess Plateau, the temperature is a main control factor of the seasonal
change of vegetation and precipitation is an important factor for vegetation variation [17]. In addition,
Xie et al. [18] showed temperature has a positive effect on vegetation in most periods in the semi-humid
region but has no significant effect in the arid region, and precipitation has a positive effect on vegetation
in summer in the arid region and in autumn in the semi-arid region. Because of the close relationship
between climate and vegetation, the climate change inevitably has a certain impact on the vegetation
ecosystem. Xu et al. [19] found that, from 1982 to 2000, global climate change has contributed to an
increase in vegetation cover in the Qinghai-Tibet Plateau, and precipitation is the major climatic factor
influencing interannual variation of average vegetation cover. Kong et al. [20] investigated vegetation
response to climate change at Northern Hemisphere (NH) scale. Their research results show that
factors potentially influencing vegetation growth in different parts of NH were complex and varied;
for instance, temperature was recognized as the critical factor behind vegetation greenness in high
latitudes especially for spring and autumn temperature in North America and Siberia. Additionally,
some studies showed that vegetation changes and the response of vegetation to climate varied with
seasons [18,21–23]. The relationship between vegetation and climate is not only the response of
vegetation to climate, but also the impact of vegetation on regional climate. Some studies also indicated
that vegetation impacts the regional climate by modulating the land–atmosphere exchanges of heat,
water and momentum [24–26].

Human activities, which is another important factor affecting vegetation, should not be neglected
in analyzing the vegetation dynamic evolution under the changing environment [18]. Zhang et al. [27]
used the Carnegie–Ames–Stanford approach model to assess the status of vegetation in the Three-River
Source Region across different periods from 1982 to 2012 and found that human activities had a
weak negative impact from 1982 to 2000 and a favorable impact from 2001 to 2012 on vegetation
growth or recovery. Hua et al. [28] found that land use change was the dominant factor driving
long-term changes in vegetation greenness in China. Brandt et al. [29] reported that, in Sub-Saharan
Africa, the increases in woody cover were associated with low population growth and were driven
by increases in CO2 in the humid zones and by increase in precipitation in drylands, whereas the
decreases in woody cover were associated with high population growth. In addition, Li et al. [30]
analyzed the main characteristics, spatial-temporal distribution and driving forces of vegetation
restoration in the Shaanxi–Gansu–Ningxia Region, reporting that human activities are the main driving
forces in vegetation restoration. For example, the “Grain for Green Project”, which turns cultivated
land into forest land and aims to protect the ecological environment in China, was identified as the
main cause leading to gradual vegetation stabilization in the Shaanxi–Gansu–Ningxia Region [31,32].
In addition to environmental protection projects, water conservancy project construction may also
has an impact on vegetation. For example, Zhang et al. [33] analyzed the impact of the Three Gorges
Water Conservancy Project on environment and reported that cropland, woodland and grassland
areas reduced continuously, while river and built-up area increased from 2000 to 2005, and significant
changes in land use and vegetation cover have occurred in the Three Gorges Reservoir (TGR) Area.

Climate change and human activities are the two main driving forces of vegetation cover change [4].
It is a key task to distinguish the effects of human activities and climate change on vegetation evolution
for vegetation ecosystem protection and human activities impact assessment. The residual analysis
method was firstly applied to discriminate between climate or human-induced dryland degradation
by Evans et al. [34]. Then, this method began to be widely used to distinguish the impact of climate



Remote Sens. 2020, 12, 2860 3 of 23

and human activities on vegetation [35,36]. For example, Jiang et al. [37] used a residual analysis trend
method to distinguish the effects of climatic change and human activities on vegetation evolution
dynamics in Central Asia. Their research works highlighted that sparse vegetation and the degradation
of some shrubs in the southern part of the Karakum Desert, the southern Ustyurt Plateau and the
wetland delta of the Large Aral Sea were mainly triggered by human activities. Similarly, by using
residual analysis, Sun et al. [38] found that human activities played a major role in vegetation variation
of North China. In addition, based on residual analysis of NDVI variation, Wang et al. [39] pointed out
that human activities had either improved or degraded vegetation cover in some parts in southern China.
In theory, the residual analysis method is feasible, and establishing an ideal model of vegetation–climate
is the key to identify the impact of human activities on vegetation. However, in practice, it is difficult
to find the data without human intervention. Therefore, to overcome the shortcomings of residual
analysis method, this study only investigated the impact of the TGR impoundment and did not
consider other human activities. Then, a vegetation–climate model was established, which is not
affected by impoundment, and the impact of water storage was studied by residual analysis.

The Three Gorges Water Conservancy Project at the upper end of the Yangtze River is currently
the world’s largest water conservancy project. Many studies in the Three Gorges Reservoir Region
focused on the land use/cover changes [33] and the response of vegetation to natural and anthropogenic
driving factors [40]. These studies did not pay attention to the impact of the Three Gorges Reservoir’s
impoundment. At present, there are few studies on the impact of TGR water impoundment on
vegetation–climate relationship. Therefore, this study focused on vegetation–climate relationship and
the impact of impoundment in different zones. The NDVI was chosen as a valid indictor for vegetation
coverage variation, while precipitation and temperature were chosen as climate factors. The aims of this
study were as follows: (1) to establish a vegetation–climate model and explore the relationship between
them; (2) to propose a new method for analyzing the impact of water impoundment; (3) to quantify the
impact of impoundment on climate–vegetation response relationship; and (4) to compare and verify
the proposed new method with the existing method. Hopefully, knowledge of the vegetation variation
and vegetation–climate relationship will promote the protection of the ecological environment in this
region and manage ecosystem under the impacts of climate change and human activities.

2. Data and Methods

2.1. Study Area

The study area is the Three Gorges Reservoir Region (TGRR) and its 100-km buffer zone (Figure 1),
which covers about 220,000 km2. TGRR in this paper is a geographical region, which is located in
the Cuntan-Yichang sub-catchment of the upper Yangtze River. The region of the TGRR is slightly
different from the official TGRR, which is commonly defined as an administrative region containing
21 counties impounded by the Three Gorges Reservoir (TGR) [41]. Geographically, the TGRR is located
at the junction of the Sichuan Basin and the middle and lower reaches of the Yangtze River. It crosses
the mountainous canyons in Hubei and the ridge valleys in eastern Sichuan and is adjacent to Daba
Mountain in the north and Hubei Plateau in Sichuan in the south. Its elevation is between −12 and
3070 m. The climate of the study area is a subtropical monsoon climate with an annual rainfall of
1000–1800 mm. The current land use types of the TGRR are farmland and forest (including secondary
forest and virgin forest) that have resulted from long-term anthropogenic activity and a highly dense
population [42].

The water level of TGR was raised from 66 to 135 m in June 2003, and reached the normal water
level of 175 m for the first time in 2010. The impoundment of the TGR caused changes in the underlying
surface along the river. The increase in water area will increase local evaporation and may cause
changes in water vapor vertical movement of the Yangtze River’s water vapor channel. It is likely to
further change local climate and vegetation coverage in the TGRR and its buffer zone.
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Figure 1. Geographic location and elevation of the study area.

2.2. Data

2.2.1. NDVI and Land Use/Land Cover Data

For ecologists, satellite remote sensing has become a potential goldmine for monitoring and
predicting changes in vegetation activities over large regions in a repeatable manner [6,43,44],
which is also widely used by climatologists [24–26,45–47] and researchers in natural disasters [48–50].
Normalized Difference Vegetation Index (NDVI), as an effective indicator to monitor vegetation and
natural environment at regional and global scales, has been widely used in the research on vegetation
activity [51–53]. The NDVI [54,55] is derived from the red, near-infrared reflectance ratio:

NDVI = (NIR − RED)/(NIR + RED) (1)

where NIR and RED are the amounts of near-infrared and red light, respectively, reflected by the
vegetation and captured by the sensor of the satellite.

The formula is based on the fact that chlorophyll absorbs RED, whereas the mesophyll leaf
structure scatters NIR. NDVI values thus range theoretically from −1 to +1, where negative values
correspond to an absence of vegetation [55].

NDVI can accurately reflect the surface vegetation coverage. In this study, 1998–2018 annual and
monthly vegetation index datasets with a spatial resolution of 1 km were used, which are based on the
continuous time series of SPOT/VEGETATION NDVI satellite remote sensing data using the maximum
value composite method [56].This dataset can effectively reflect the vegetation coverage distribution
and change status in various regions of the country on space and time scales, and it is a very important
reference for monitoring the changes of vegetation status, using vegetation resources reasonably and
other research in related fields of ecological environment.
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This study used land use/land cover data in 2000 and 2018 [57]. The land use/land cover
data in 2000 and 2018 are based on Landsat-TM/ETM and Landsat 8 remote sensing image data,
respectively. The classification system of land use/land cover data in China adopts a three-level
classification system [58]. The first level, is divided into six categories based on land resources and their
utilization attributes: arable land, forest land, grassland, water area, construction land and unused
land. The second level is mainly classified according to the natural attributes of land resources, and the
third level is mainly classified according to the topography of the arable land.

2.2.2. Meteorological Data

ERA5 [59] is the fifth generation ECMWF (European Centre for Medium-Range Weather Forecasts)
atmospheric reanalysis of the global climate, and it will replace the ERA-Interim reanalysis, which is
now 10 years old. Reanalysis combines model data with observations from across the world into
a globally complete and consistent dataset using the laws of physics [59]. The 4D-Var assimilation
method, which takes account of the exact timing of the observations and model evolution within
the assimilation window, makes providing estimates worldwide for each hour of the day possible.
This hourly output resolution is quite an improvement with respect to ERA-Interim and provides a
more detailed evolution of particular weather events. Some researchers have compared and found
that ERA5 shows improvements relative to ERA-Interim, which represents the previous generation
reanalysis product [60–62]. For example, the precipitation and precipitable water vapor of ERA5
perform better than those of ERA-Interim in China [46,63,64], while the temperature difference between
ERA5 and ERA-Interim is relatively smaller [65]. The ERA5 dataset has a time scale from 1979 to
the present. The data format is a grid point with a spatial resolution of 0.25◦ × 0.25◦. In this study,
the precipitation and temperature data from 1998 to 2018 in the ERA5 dataset were used.

2.3. Methods

2.3.1. Partial Correlation Coefficient Method

In a multi-factor system, the partial correlation coefficient is used to study the influence or
correlation of one factor to another factor and to exclude the influence of other factors in the process.
This study used this method to analyze the correlation between the monthly NDVI and the monthly
average temperature or monthly precipitation in each grid point. According to the definition, under the
condition that the effect of z remains unchanged, the partial correlation coefficient between the variable
x and the variable y is calculated as:

rxy
z =

rxy − rxzryz√(
1− r2

xz

)
+

(
1− r2

yz

) (2)

where rxy, rxz and ryz, respectively, represent the Pearson correlation coefficient between the three
variables x, y and z, and the calculation formula of the Pearson correlation coefficient of x and y is:

rxy =
Cov(x,y)

√
Var(x)Var(y)

=

N∑
t=1

(xt−x)(yt−y)√[
N∑

t=1
(xt−x)2

][
N∑

t=1
(yt−y)2

] (3)

where N is the number of years, xt is the value of the x-variable in the tth year, yt is the value of the
y-variable in the tth year, x is the average of the x-variables in all years and y is the average of the
y-variables in all years.
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2.3.2. Grid Point Analysis

The resolution of the vegetation index NDVI is 1 km × 1 km. When using 1 km × 1 km grid
points as the benchmark units for statistical analysis, the large number of grid points will lead to
long calculations. Therefore, based on weighing the calculation cost and accuracy, this study used
5 km × 5 km grid points as the benchmark analysis units. Interpolated NDVI, temperature and
precipitation data to the grid by Inverse Distance Weight method. For the boundary grid processing,
take those whose centroid is in the study area as benchmark analysis units. Thus, the research area is
finally divided into 8933 benchmark statistical analysis units.

2.3.3. Establish Vegetation–Climate Regression Model

Regression model is a mathematical model that quantitatively describes statistical relationships.
It studies the relationship between the dependent variable and the independent variable and can
also show the strength of the influence of multiple independent variables on a dependent variable.
Under the double effects of human activities and climate change, vegetation is constantly adapting
to changes in external conditions to make its own activities more favorable. However, this process
is dynamic and nonlinear, and it is necessary to further study this non-linear response relationship.
In this paper, there are two independent variables (temperature and precipitation) and the dependent
variable is NDVI. To express the nonlinear relationship between vegetation and climate, a polynomial
regression model as shown in Equation (8) was selected.

z = p0 + p1x + · · ·+ pnxn + p2y + · · ·+ pmym + p3xy + · · ·+ pixiyi (4)

where z represents dependent variable, x and y represent independent variables and p0, . . . , pi represent
regression coefficients.

Before establishing the model, the correlations between NDVI and temperature/precipitation
was analyzed. According to the results of partial correlation analysis, an appropriately simplified
vegetation–climate regression model was established as Equation (5).

z = p0 + p1x + p2y + p3x2 + p4xy (5)

where z represents NDVI, x represents temperature, y represents precipitation and p0, p1, p2, p3 and p4

are regression coefficients.
After determining the regression model, the least squares method was used to fit the regression

coefficients. Finally, residual sum of squares (SSE), coefficient of determination (R2) and F-test were
used to evaluate the fitting results.

2.3.4. Residual Analysis

The residual analysis approach, which can separate NDVI changes caused by human activities
from those resulting from climatic variations, assumes that there is a strong relationship between
vegetation production and climate [34]. First, the regression between NDVI and climatic factors
(temperature and precipitation) is calculated in each zone. Second, the residual between the observed
NDVI and the predicted NDVI is calculated. Finally, these residuals are regressed on time to obtain
the trends. When the trend of NDVI residuals is insignificant, changes in NDVI are explained by
climatic factors. In contrast, when the trend of NDVI residuals is significant, changes in NDVI are not
explained by climatic factors and may have been caused by human activities. this study took June
2003 as the demarcation point of the water impoundment of TGR and established vegetation–climate
models before and after impoundment. The precipitation and temperature data after impoundment
were input into the regression model before impoundment to obtain the predicted NDVI. The residuals
between the predicted value and the observed value were calculated. Since the impact of human
activities such as environmental engineering and urbanization is continuous, it can be assumed that the
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vegetation–climate relationships before and after impoundment are both affected by human activities.
Therefore, the significant trend of NDVI residuals can be explained by impoundment.

2.3.5. Mann–Kendall Test

Mann–Kendall test (MK test) was first published by Mann [66], and then improved by Kendall [67].
It can effectively distinguish whether a natural process has certain trend or not. Suppose a time series
is X1, X2, · · · , Xn; construct MK test statistics S:

S =
n−1∑
i=1

n∑
j=i+1

sgn(X j −Xi) (6)

where Xi and Xj represent the measured data of continuous time, n represents the length of the
measured data and sgn( ) is a symbolic function with the value:

sgn(θ) =


1 θ> 0
0 θ= 0
−1 θ< 0

(7)

Mann and Kendall proved that the statistical variable S obeyed an asymptotic normal distribution,
and its expected and variance calculation formulas are:

E(S) = 0
Var(S) = n(n− 1)(2n + 5)/18

(8)

In addition, the statistical variable Z is constructed in the following way:

Z =


S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0
(9)

Z follows the standard Gaussian distribution. If a significance level α is given, when |Z| ≥ Z1−α/2,
the null hypothesis is rejected, and the series has a significant trend. A positive (negative) Z value
indicates that the sequence is increasing (declining). In this study, α = 0.05, thus Z1−α/2 = 1.96.

3. Results

3.1. Vegetation Evolution Pattern around the Reservoir

For each grid point, the annual maximum NDVI value from April 1998 to December 2018 was
tested by Mann–Kendall method with a significance level of α = 0.05 (Figure 2). The results show
that, in study area, the grid points with significant increasing trend of NDVI accounted for 82.01%.
The NDVI changes in 15.93% of the grid points were not significant, and the grid points with significant
decreasing trend of NDVI accounted for 2.06%. NDVI changed insignificantly or decreased significantly
in the areas which were mostly located in the densely populated Sichuan Basin or the lower reaches of
the Yangtze River.



Remote Sens. 2020, 12, 2860 8 of 23

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 23 

 
Figure 2. Trends of annual maximum NDVI from 1998 to 2018. 

  

(a) (b) 

Figure 3. Land use/land cover changes in the study area: (a) land use/land cover in the study area in 
2000; and (b) land use/land cover in the study area in 2018. 

In terms of time evolution, the annual NDVI of the study area from 1998 to 2018 was processed 
into areal means, and the results are shown in Figure 4. Since the NDVI changes showed a fluctuating 
rising trend and NDVI grew fastest in 2003, while the water impoundment level of the TGR increased 
from 66 to 135 m, it is speculated that the water impoundment of the TGR may have some impacts 
on its surrounding vegetation. 

Figure 2. Trends of annual maximum NDVI from 1998 to 2018.

The land use/land cover of the study area in 2000 and 2018 are shown in Figure 3a,b, respectively.
Compared with 2000, there was a significant increase in urban construction land in 2018, such as the
Sichuan Basin, Chongqing and the middle and lower reaches of the Yangtze River.
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Figure 3. Land use/land cover changes in the study area: (a) land use/land cover in the study area in
2000; and (b) land use/land cover in the study area in 2018.

Comparing Figures 2 and 3, it is found that most of the areas where NDVI showed significant
decreasing trends or insignificant trends are urban construction land or arable land. Many people
live in urban construction land and arable land. Thus, human activities are relatively dense. In other
words, intensive human activities may have some negative impacts on vegetation coverage.
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In terms of time evolution, the annual NDVI of the study area from 1998 to 2018 was processed
into areal means, and the results are shown in Figure 4. Since the NDVI changes showed a fluctuating
rising trend and NDVI grew fastest in 2003, while the water impoundment level of the TGR increased
from 66 to 135 m, it is speculated that the water impoundment of the TGR may have some impacts on
its surrounding vegetation.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 23 
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3.2. Screening the Drivers of Vegetation Change

The partial correlation coefficients between the monthly NDVI and the monthly average
temperature, the monthly precipitation from April 1998 to December 2018 in the study area was
calculated. The partial correlation coefficients of NDVI and temperature, which are referred to simply
as rN-t below, are shown in Figure 5a. Similarly, the partial relationship between precipitation and NDVI
is abbreviated as rN-p, and the results are shown in Figure 5b. It is can be seen that, after excluding the
influence of precipitation, rN-t ranged from 0 to 0.87 and was generally high. Area with significant
partial correlation (|rN-t| ≥ 0.4) accounted for 98.47% of the study area, with moderate partial correlation
(0.4 ≤ |rN-t| < 0.6) accounting for 4.18%, high partial correlation (0.6 ≤ |rN-t| < 0.8) accounting for 82.93%
and extremely high partial correlation (|rN-t| ≥ 0.8) accounting for 11.36%. Combining Figures 1, 3
and 5a, it can be seen that the areas with low partial correlation coefficients between temperature and
NDVI were mainly located in the downstream of TGR, where human activities were relatively dense;
the areas with high partial correlation coefficients were mostly located in mountainous areas and have
less human activities. After excluding the influence of temperature, rN-p was generally low, as shown
in Figure 5b. rN-p ranged from −0.39 to 0.26, and no absolute value of partial correlation coefficient
higher than 0.4 was found.

The monthly data of NDVI, temperature and precipitation were divided into four series: spring
(March to May), summer (June to August), autumn (September to November) and winter (December
to February). The correlation coefficients among NDVI, temperature and precipitation in each season
were calculated. Figure 6 shows that rN-t was high in spring and autumn and low in summer and
winter. Combining Figures 3 and 6a,c, it can be seen that the areas with high correlation between
temperature and NDVI in spring and autumn were concentrated in mountainous areas with less
human activities, which were roughly similar to the high correlation area calculated from the total
series. As shown in Figure 7, rN-p was generally low in the four seasons. However, in summer and
winter, the negative correlation between precipitation and NDVI in a few areas was slightly higher.
The average rN-t and rN-p of the study area in the four seasons were calculated, as shown in Table 1.
Comparing the results of the four seasons and the total series, it was found that the temperature and
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NDVI correlation results in spring and autumn were very similar to the results of the total series.
Whether comparing average values or percentages, the correlation between temperature and NDVI
was higher than that between precipitation and NDVI in the four seasons.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 
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Table 1. Average and percentage results of four seasons and total series.

Spring Summer Autumn Winter Total Series

Average rN-t 0.654 0.268 0.532 0.295 0.718
Percentage of |rN-t| ≥ 0.4 92.086% 23.699% 83.231% 10.075% 98.47%

Average rN-p −0.037 −0.163 0.057 −0.282 −0.090
Percentage of |rN-p| ≥ 0.4 0.034% 9.874% 0 9.123% 0

In summary, the results show that the correlation between temperature and vegetation was
stronger than that between precipitation and vegetation. Some studies used MODIS NDVI to conduct
research in administrational TGRR and found that the correlation between temperature and NDVI
was stronger than that between precipitation and NDVI [68,69]. Temperature can be used as the
main factor for vegetation change. In addition, the extent of partial correlation varies by region.
That is, the dynamic vegetation–temperature and vegetation–precipitation responses had strong spatial
heterogeneity, and there are some differences in the dynamic response relationship in different areas.

3.3. Vegetation–Climate Regression Model

The study in presented in Section 3.2 showed that the correlation between temperature and NDVI
was stronger than that between precipitation and NDVI. Therefore, temperature was considered as a
main factor in the following study on the response of NDVI to climate. In addition, because of the
strong spatial heterogeneity of the response, it was necessary to conduct divisional study. Based on
the water–land boundary after impoundment of TGR, zones were divided every 10 km in the radial
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direction. The monthly temperature and NDVI of each zone from April 1998 to December 2018 were
extracted and averaged. Taking June 2003 as the demarcation point of the water impoundment of TGR,
the least square method was used to fit the relationship between NDVI and temperature/precipitation
before and after water impoundment. The regression coefficient results are shown in Table 2.
The regression coefficients of different zones were different, and the regression coefficients before
water impoundment are also different from those after water impoundment. However, the difference
in regression coefficients caused by different zones was smaller than that caused by impoundment.
From the evaluation index and p-value of Table 3, it can be seen that the regression model fitted well
and passed the hypothesis test with significance level α = 0.01. In other words, the multiple polynomial
regression model established in this paper had good performance in fitting the relationship between
vegetation and climate.

Table 2. Regression coefficients results of relationship between NDVI and climatic factors.

Zones
(km)

Before Impoundment After Impoundment

p0 p1
p2

(10−5)
p3

(10−5)
p4

(10−6)
p0 p1

p2
(10−3)

p3
(10−4)

p4
(10−5)

0–10 0.160 0.026 −1.176 −25.1 4.764 0.212 0.040 −1.136 −8.252 5.065
10–20 0.179 0.025 1.871 −20.29 1.527 0.239 0.041 −1.288 −8.385 5.578
20–30 0.209 0.023 −2.125 −10.44 1.035 0.259 0.039 −1.278 −7.8 5.457
30–40 0.217 0.022 −2.628 −6.946 −0.329 0.264 0.038 −1.231 −7.227 5.175
40–50 0.218 0.022 −12.73 −7.649 3.68 0.255 0.038 −1.298 −7.168 5.442
50–60 0.220 0.023 −14.48 −8.769 4.098 0.258 0.037 −1.261 −6.909 5.274
60–70 0.228 0.022 −18.55 −7.109 5.334 0.261 0.036 −1.21 −6.593 5.072
70–80 0.223 0.021 −18.27 −4.098 5.491 0.255 0.035 −1.15 −6.115 4.889
80–90 0.236 0.021 −18.96 −3.693 5.806 0.266 0.035 −1.087 −5.861 4.53

90–100 0.225 0.021 −14.87 −3.966 4.28 0.256 0.035 −1.075 −5.848 4.444

Table 3. Evaluation index of fitting result.

Zones
Before Impoundment After Impoundment

SSE R2 p SSE R2 p

0–10 0.1171 0.913 1.56 × 10−29 * 0.6394 0.854 7.39 × 10−75 *
10–20 0.1281 0.908 7.82 × 10−29 * 0.6687 0.852 3.12 × 10−74 *
20–30 0.1357 0.902 4.65 × 10−28 * 0.6588 0.853 1.81 × 10−74 *
30–40 0.1508 0.893 5.70 × 10−27 * 0.6262 0.861 8.80 × 10−77 *
40–50 0.1443 0.900 9.82 × 10−28 * 0.5891 0.873 1.78 × 10−80 *
50–60 0.1436 0.899 1.17 × 10−27 * 0.5749 0.876 2.69 × 10−81 *
60–70 0.1409 0.900 9.73 × 10−28 * 0.567 0.878 6.84 × 10−82 *
70–80 0.1304 0.909 5.84 × 10−29 * 0.5479 0.884 6.77 × 10−84 *
80–90 0.1292 0.906 1.43 × 10−28 * 0.5485 0.880 1.26 × 10−82 *

90–100 0.1263 0.910 4.05 × 10−29 * 0.5258 0.887 7.19 × 10−85 *

* Passed the hypothesis test with significance level α = 0.01.

3.4. Residual Analysis

The precipitation and temperature data after impoundment were input into the regression model
before impoundment to obtain the predicted NDVI. Then, the residuals between the predicted value
and observed value were calculated. The linear regression model was established with time as the
independent variable and residuals as the dependent variable. The results of different zones are shown
in Table 4. Since the residual trends of the 10 zones were roughly similar, the zone of 0–10 km was taken
as an example for specific analysis. The residual variation is shown in Figures 8 and 9. The residuals
were mostly negative values, with a decreasing trend over time. It passed the hypothesis test of
the significance level α = 0.05 with slope k = −6.02981 × 10−4 and p = 7.51 × 10−15. Figures 8 and 9
show that the predicted NDVI was usually smaller than the observed value in the 0–10 km zone.
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This significant variation trend of residual cannot be explained by temperature and precipitation but
can be regarded as the result of impoundment. In other zones, the residual variation trends were also
significant, which were about the same as that of the 0–10 km zone. The predicted NDVI was usually
less than the observed value in all zones, which indicated that the TGR impoundment might have a
partial impact on the increase of NDVI in the study area. However, comparing the linear regression
models of the residuals in different zones (Table 4), it was found that the regression coefficients were
different, and the trends of the residuals were not completely similar. Therefore, it is speculated that
the impact of impoundment on vegetation might be different in different zones.

Table 4. Slopes of residual trends and test results.

Zones k (10−4) p

0–10 km −6.030 7.51 × 10−15 *
10–20 km −6.020 2.09 × 10−14 *
20–30 km −6.015 8.28 × 10−14 *
30–40 km −6.006 1.83 × 10−13 *
40–50 km −6.004 2.73 × 10−13 *
50–60 km −5.999 2.13 × 10−13 *
60–70 km −5.997 2.62 × 10−13 *
70–80 km −6.006 5.72 × 10−13 *
80–90 km −6.005 3.59 × 10−13 *
90–100 km −6.007 4.06 × 10−13 *

* Passed the hypothesis test with significance level α = 0.01.
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3.5. Sensitivity Analysis

To ascertain the evolution of the NDVI–climate response relationship before and after TGR
impoundment, the partial derivatives of Equation (5) were calculated and used as a sensitivity index
(SI) to characterize the vegetation’s sensitivity to temperature or precipitation. When SI is positive,
it indicates that the change direction of vegetation is consistent with that of temperature/precipitation.
When SI is negative, it indicates that the change direction of vegetation is opposite to that of
temperature/precipitation.

SIx = f ′x = p1 + 2p3x + p4y (10)

SIy = f ′y = p2 + p4x (11)

where x represents temperature, y represents precipitation, f ′x is the partial derivative to x and f ′y is the
partial derivative to y. SIx represents the sensitivity of vegetation to temperature and SIy represents
the sensitivity of vegetation to precipitation.

The absolute value of the difference between the sensitivity index before impoundment and after
impoundment was taken as the sensitivity variation index (SVI), calculated through Equations (12)
and (13), and used to observe the variation of the vegetation sensitivity to temperature/precipitation
between before and after water impoundment.

SVIx = SIx2 − SIx1 (12)

SVIy = SIy2 − SIy1 (13)

where SIx1 is the sensitivity of vegetation to temperature before impoundment, SIx2 is the sensitivity
of vegetation to temperature after impoundment, SIy1 is the sensitivity of vegetation to precipitation
before impoundment and SIy2 is the sensitivity of vegetation to precipitation after impoundment.

From Equation (10), it can be indicated that the sensitivity of vegetation to temperature was
affected by precipitation and temperature. Assuming three types of precipitation scenarios (PRE = 100,
200 and 300 mm), the specific analysis based on the zone 0–10 km was carried out. As shown in
Figures 10–12, there was a threshold Tc (marked by a red dashed line) in the temperature. When the
temperature T < Tc, the SI after impoundment was higher than that before impoundment, and the
SVI decreased with temperature increasing; when T > Tc, the SI after impoundment was lower than
that before impoundment, and the SVI increased with the temperature increasing. Under different
precipitation scenarios, the temperature threshold was different, and Tc increased with precipitation
increasing. As shown in Figures 10–12, the temperature increased and then the SI gradually decreased.
The trends of vegetation’s sensitivity to temperature were roughly similar in different zones while
temperature thresholds were different, as shown in Table 5.

Table 5. SI of NDVI–temperature and temperature thresholds.

Zones
Before Impoundment After Impoundment Tc (◦C)

p1
2p3

(10−5)
p4

(10−6)
p1

2p3
(10−4)

p4
(10−5)

Pre =
100 mm

Pre =
200 mm

Pre =
300 mm

0–10 0.026 −50.2 4.764 0.040 −16.50 5.065 16.44 20.43 24.43
10–20 0.025 −40.58 1.527 0.041 −16.77 5.578 16.41 20.68 24.95
20–30 0.023 −20.88 1.035 0.039 −15.60 5.457 16.1 20.06 24.02
30–40 0.022 −13.89 −0.329 0.038 −14.45 5.175 16.02 20.01 24
40–50 0.022 −15.30 3.680 0.038 −14.34 5.442 16.18 20.14 24.1
50–60 0.023 −17.54 4.098 0.037 −13.82 5.274 16.22 20.25 24.29
60–70 0.022 −14.22 5.334 0.036 −13.19 5.072 16.18 20.04 23.9
70–80 0.021 −8.20 5.491 0.035 −12.23 4.889 16.03 19.84 23.64
80–90 0.021 −7.39 5.806 0.035 −11.72 4.53 16.16 19.75 23.35
90–100 0.021 −7.93 4.280 0.035 −11.70 4.444 16.24 19.93 23.61
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The sensitivity of vegetation to precipitation was affected by temperature. There was a threshold
Tc (marked by a red dashed line) in the temperature, as shown in Figure 13. When T < Tc, the SI
before water impoundment was higher than that after impoundment, and the SVI decreased with
temperature increasing; when T > Tc, the SI before water impoundment was lower than that after
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impoundment, and the SVI increased with the temperature increasing. As the temperature increased,
the SI gradually increased. The trends of vegetation’s sensitivity to precipitation were roughly similar
in different zones while temperature thresholds were different, as shown in Table 6.
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Table 6. SI of NDVI–precipitation and temperature thresholds.

Zones
Before Impoundment After Impoundment

Tc (◦C)
p2 (10−5) p4 (10−6) p2 (10−3) p4 (10−5)

0–10 −1.176 4.764 −1.136 5.065 24.29
10–20 1.871 1.527 −1.288 5.578 23.91
20–30 −2.125 1.035 −1.278 5.457 23.29
30–40 −2.628 −0.329 −1.231 5.175 22.95
40–50 −12.73 3.680 −1.298 5.442 22.88
50–60 −14.48 4.098 −1.261 5.274 22.75
60–70 −18.55 5.334 −1.210 5.072 22.36
70–80 −18.27 5.491 −1.150 4.889 22.06
80–90 −18.96 5.806 −1.087 4.530 22.47
90–100 −14.87 4.280 −1.075 4.444 22.82

In summary, it was found by comparing SIx (Figures 10–12) and SIy (Figure 13) that the sensitivity
of vegetation to temperature was higher than that to precipitation, meaning that vegetation was more
sensitive to changes in thermal factors [70]. It can be seen from the vegetation–climate regression model
and Figure 13 that, while a slight decrease in precipitation can increase the NDVI at low temperature,
moderate increase in precipitation can increase the NDVI at high temperature. That is, hot and
humid conditions will be more conducive to vegetation growth. Moreover, after TGR impoundment,
the variation trend of vegetation’s sensitivity to temperature or precipitation was slightly more obvious
than that before impoundment. It can be suggested that impoundment might have some effects on the
vegetation’s sensitivity to climate.

3.6. Difference Analysis

To characterize the difference in the response of NDVI to climate between before and after
impoundment, a difference index (DI) was defined as Equations (14) and (15), and calculated in
different zones, as shown Figure 14.

DI =

∣∣∣ f2(α, β) − f1(α, β)
∣∣∣

f1(α, β)
(14)
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[α, β] = argmax
x,y

∣∣∣ f2(x, y) − f1(x, y)
∣∣∣ (15)

where f 1(x, y) is the response of NDVI to temperature and precipitation before water impoundment,
f 2(x, y) is the response of NDVI to temperature and precipitation after water impoundment and [α,β] is
the value of x and y when the absolute value of the difference between function before and after water
impoundment is maximum.
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As shown in Figure 14, the DI, which indicates the difference in the pattern of vegetation response
to climate between before and after water impoundment, showed a decreasing trend. It can be
suggested that vegetation’s response to climate was affected by impoundment, and the degree varied
by the distance from subarea to TGR, following a rule that the distance increased and then the impact
degree decreased.

4. Discussion

Vegetation in most areas showed an increasing trend (Figure 2), while, in Sichuan Basin or
the lower reaches of the Yangtze River, vegetation decreased insignificantly or significantly. Urban
construction land increased in Sichuan Basin, Chongqing, the middle and lower reaches of the Yangtze
River and other places (Figure 3). Combining Figures 2 and 3 to speculate, urbanization and intensive
population activities may be the reasons for the heterogeneous distribution of vegetation evolution.
Furthermore, the relationship between NDVI and precipitation was weaker than that between NDVI
and temperature, and the relationships varied by region.

Combining the vegetation–climate regression model and the sensitivity of vegetation to temperature
(Figures 10–12), it can be seen that NDVI will increase when the temperature increases, but it will
decrease when temperature exceeds a certain limit. The response mechanism of vegetation activity to
temperature is mainly reflected in the degree of warming influence on the processes of photosynthesis
and respiration. Moderate warming can have a positive effect on the enhancement of vegetation
activity process. However, excessively high temperature will adversely affect the vegetation activity
process. As excessive increase in temperature may accelerate the evaporation of soil and form dryness
trends, the vegetation will prevent itself from losing water by reducing leaf area and light saturation
point, resulting in a corresponding reduction in vegetation coverage and a limited photosynthesis
rate [71]. On the other hand, the rising temperature increases the rate of autotrophic respiration and
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transpiration of vegetation, accelerates the consumption of organic matter and leads to a reduction in
the net productivity, resulting in the inhibition of vegetation activity.

According to the vegetation–climate regression model and the sensitivity of vegetation to
precipitation (Figure 13), the observation that precipitation has promotion effect and inhibition effect
on vegetation growth can be made. Water participates in physiological and biochemical processes
such as photosynthesis and transpiration of vegetation. Many nutrients and minerals in the soil can
only be absorbed by plants when dissolved in water. Therefore, increasing precipitation will lead to an
increase in photosynthetic rate and organic matter production in vegetation and promote vegetation
activities such as growth and cover [72]. However, when the precipitation exceeds the requirement for
vegetation, it may also adversely affect vegetation activities such as growth and development indirectly
by reducing radiation and increasing relative humidity.

The sensitivity analysis results in Section 3.5 show that the sensitivity of vegetation to temperature
was higher than that of vegetation to precipitation. From a geographical perspective, the study area is
located in the subtropical monsoon climate and humid zone, with abundant precipitation, suitable
temperature, high soil moisture and small evaporation. Thus, vegetation activity is not restricted by
water, and the increase in temperature is conducive to the extension of vegetation growth season and
accumulation of dry matter quality [73].

Residual analysis method and SI and DI indicator method were used to distinguish and quantify
the impact of TGR impoundment on the vegetation–climate response relationship. The results in
Figure 14 show that the vegetation–climate relationship may be affected by impoundment, and impact
degree decreased as the distance from subarea to TGR increased. Judging from the results, the impact of
TGR impoundment may be the reason for vegetation–climate response relationship variation. However,
how TGR impoundment affected the relationship is still unknown. In addition, residual analysis
method and SI and DI indicator method have certain limitations when they are used to study the
impact of human activities. It is more difficult to build a perfectly ideal model without the influence of
human activities, but focusing on a specific impact will make it more feasible to build a model that is
not affected by this specific impact. Improving methods to make it more widely used is also one of the
directions that can be studied in the future.

5. Conclusions

This study used partial correlation analysis, grid point analysis, residual analysis and
Mann–Kendall test methods to analyze and quantify the impact of TGR impoundment on the
vegetation–climate relationship in the TGRR and its 100-km buffer zone, based on SPOT/VEGETATION
NDVI and ERA5 datasets during 1998–2018. Two types of index were proposed and compared with
residual analysis method to quantify the impact of TGR impoundment on the vegetation–climate
relationship. Finally, the conclusion can be drawn as follows:

In the TGRR and its 100-km buffer zones, NDVI in most areas showed a significant increasing trend.
However, in Sichuan Basin or the lower reaches of the Yangtze River, intensive human activities might be
the reason for NDVI decreasing significantly. The partial correlation coefficients of NDVI–temperature
were higher than those of NDVI–precipitation, and the dynamic response of vegetation cover to
temperature and precipitation changes had strong spatial heterogeneity. More importantly, temperature
was the main driving factor of vegetation cover change.

The multiple polynomial regression, which simplified relationship and explained the physical
mechanism, could effectively describe the response of vegetation–climate before and after water
impoundment. The residuals between predicted NDVI and the observed value after impoundment
were mostly negative and decreased significantly. In other words, observed NDVI was higher than
predicted. The significant decreasing residuals that cannot be explained by independent variables
(climatic factors: temperature and precipitation) may be caused by impoundment of TGR. The trends
of the residuals were not completely similar in different zones, but this difference was not intuitive.
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In this study, SI and DI, which are more intuitive and clearer when displaying the results,
were proposed, respectively, to describe and quantify the vegetation’s sensitivity to climate and the
difference between before and after water impoundment. In terms of the sensitivity of vegetation
to climate, SI and SVI indices were defined, which can effectively quantify the difference of
vegetation–climate response between before and after water impoundment. The sensitivity of
vegetation to temperature was affected by precipitation and temperature, while the sensitivity of
vegetation to precipitation was affected by temperature. The variation of sensitivity after impoundment
was slightly more obvious than that before impoundment, and the direction of this sensitivity variation
was related to the temperature threshold. In addition, SI results indicate that vegetation was more
sensitive to changes in temperature. Hot and humid conditions will be more conducive to vegetation
growth. In terms of the difference in the response of NDVI to climate between before and after water
impoundment, the DI results show that water impoundment might have an impact on the response
relationship of vegetation to climate, and the impact degree decreased with increasing the distance
between subarea and TGR.

Comparing residual analysis method and SI and DI indicator method, it can be found that these
two methods are essential to quantify the difference of the vegetation–climate relationship between
before and after impoundment to reflect the impact on vegetation. They can both quantify and show
the difference before and after the impact, but the residual analysis method showed the impact of
impoundment through the significant change trend of the residual, while SI and DI indicators directly
showed this impact degree. The results of the residual analysis method are less intuitive compared
with those of the SI and DI indicators. In addition, it seems that the SI and DI index methods are more
effective when comparing the impact of impoundment on vegetation in different areas. Therefore,
it may be desirable to combine the residual analysis method with SI and DI indicator method to better
and more comprehensively analyze the impact of human activities. A new idea is provided for the
study on the impact of human activities in the future.

This study distinguished and quantified the impact of TGR impoundment on the vegetation–climate
response relationship. However, its impact is a complex and far-reaching process, which needs to be
further studied to find the mechanism and provide a basis for management and decision-making.
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