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Abstract: The Geostationary Environment Monitoring Spectrometer (GEMS) onboard the
Geostationary Korean Multi-Purpose Satellite 2B was successfully launched in February 2020. GEMS
is a hyperspectral spectrometer measuring solar irradiance and Earth radiance in the wavelength
range of 300 to 500 nm. This paper introduces the spectral calibration algorithm for GEMS, which uses
a nonlinear least-squares approach. Sensitivity tests for a series of unknown algorithm parameters
such as spectral range for fitting, spectral response function (SRF), and reference spectrum were
conducted using the synthetic GEMS spectrum prepared with the ground-measured GEMS SRF.
The test results show that the required accuracy of 0.002 nm is achievable provided the SRF and
the high-resolution reference spectrum are properly prepared. Such a satisfactory performance is
possible mainly due to the inclusion of additional fitting parameters of spectral scales (shift, squeeze,
and high order shifts) and SRF (width, shape and asymmetry). For the application to the actual
GEMS data, in-orbit SRF is to be monitored using an analytic SRF function and the measured GEMS
solar irradiance, while a reference spectrum is going to be selected during the instrument in-orbit test.
The calibrated GEMS data is expected to be released by the end of 2020.
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1. Introduction

The Geostationary Environment Monitoring Spectrometer (GEMS) is a hyperspectral spectrometer
developed for Korea’s next-generation geostationary multi-purpose satellite program, the GK-2
program, which consists of two satellites, GK-2A and GK-2B. They are collocated at 128.2◦ E over
the equator, where the current GK-1 satellite is stationed. While the GK-2A satellite is dedicated to
weather monitoring with a high-performing imaging instrument (16-channel imagers in the visible and
infrared bands [1]), the GK-2B satellite is for ocean and environmental observation [2,3]. The ocean
mission is a follow-on mission of the current Geostationary Ocean Color Imager (GOCI) of the GK-1
with an improved GOCI-II spectrometer, while the environmental mission is new in the geostationary.
The GEMS is the key instrument for the environmental mission, as it provides information on trace
gases such as ozone, nitrogen dioxide, sulfur dioxide, and formaldehyde, as well as aerosols [2,3].
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Geostationary orbit allows the GEMS instrument to provide unprecedented spatio-temporal resolution
of air quality information, at least eight times per day with about 3.5 km × 8 km spatial resolution from
space. The field-of-regard (FOR) of GEMS, from 5◦ S to 45◦N latitude and from 75◦ E to 145◦ E longitude,
covers the areas of major pollution sources across East and Southeast Asia. Its spectral range includes
ultraviolet and visible wavelengths, from 300 to 500 nm, and thus covers the absorption lines of the
listed trace gases. The primary products of GEMS are derived from geolocated and calibrated radiance
and irradiance data—level 1b (L1b) data—using algorithms including differential optical absorption
spectroscopy (DOAS), optimal estimation, principal component analysis, and lookup tables [4–6].
The accuracy of the retrieval algorithms depends on the quality of the L1b data, many of which are
highly sensitive to wavelength uncertainty [7–9]. Furthermore, the measurement signals of several
trace gases such as sulfur dioxide and formaldehyde are quite low, and thus wavelength uncertainty
could significantly degrade algorithm performance. For example, systematic uncertainties of the slant
columns of formaldehyde for spectral calibration have been shown to be 0.92 × 1015 molecules/cm2 [5].
Therefore, accurate and reliable spectral calibration of the L1b data is essential for derived information
to be meaningful and reliable [10–12]. Currently, the operational L1b process for GEMS is prepared
to provide a spectral accuracy of 0.02 nm (one-tenth of the spectral sampling resolution of GEMS),
which is expected to be sufficient for many applications. However, the requirements for trace gas and
aerosol retrieval are much higher (0.002 nm, an order of magnitude higher); therefore, it is imperative
to prepare an improved spectral calibration algorithm, hereafter called SPECAL.

SPECAL is based on nonlinear least-squares fitting, similar to that implemented for previous
hyperspectral programs such as Global Ozone Monitoring Experiment (GOME-1, 2), Scanning
Imaging Absorption spectroMeter for Atmospheric CHartography (SCIAMACHY), Ozone Monitoring
Instrument (OMI), and Ozone Monitoring Profiler Suite (OMPS) [13–18]. The method basically finds
the best fit between the measured spectrum and a reference spectrum, such as a high-resolution solar
reference, by adjusting spectral parameters such as shift, squeeze, and full width at half maximum
(FWHM) of the spectral response function (SRF) [15,17,18]. While the basic approach is the same,
the specific fitting parameters and algorithm configuration including spectral fitting ranges are
program-specific. For example, the GOME program uses the shift and squeeze parameters for the
whole spectral range, while the OMI program uses multiple spectral fitting windows. On the other
hand, the OMPS program adopts two different fitting parameter bases: spectral shift including the
FWHM of SRF. Although there are possibilities of many different calibration strategies depending
on the spectral fitting range and spectral fitting parameters, only a few studies [14,15] have been
conducted to investigate the algorithm’s behavior for the specific fitting parameters and configurations.

SPECAL is designed to account for the space environment and the operational concept of
GEMS, which are different from those of polar-orbiting programs. Scene inhomogeneity, for example,
an important source of wavelength uncertainty in a polar orbiter [16], is expected to be insignificant
considering the scanning mechanism of GEMS (step and dwell) and the fixed, geostationary platform.
As this type of iterative fitting method requires significant computational resources, SPECAL must be
optimized and instrument-specific to meets its requirements while incurring reasonable numerical
costs. A preliminary study [19] examined the significance of several spectral fitting parameters
for SPECAL. Here, we describe further developments and improvements of SPECAL, comprising
improved sensitivity and error analysis using actual measurement data in addition to the theoretical
SRF functions derived from the measurement data. It is also shown to be numerically efficient by
reducing the required number of iterations. Section 2 presents a detailed description of the GEMS
SPECAL method and data used, including processes used for the sensitivity test. Section 3 reports
the performance of SPECAL along with the impacts on the accuracy of uncertainties in the spectral
parameters. Concluding remarks follow in Section 4.
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2. Data and Methods

2.1. GEMS Instrument

GEMS is a space-borne, nadir-viewing imaging spectrometer developed by the Korea Aerospace
Research Institute and Ball Aerospace Technology Company to measure radiation reflected from the
earth and direct solar irradiance in ultraviolet and visible wavelengths with 0.2 nm spectral sampling
and about 0.6 nm FWHM resolution. While solar irradiance is to be measured once per day at night,
Earth radiance is to be observed every hour during the day, from 9:00 to 16:00 Korea Standard Time.
Note that the actual observation duration is only 30 min, even though the observation frequency is
hourly, mainly due to GOCI-II’s stringent requirement of pointing stability. Therefore, the two payloads
share the duty cycle, alternating between observation and rest every half hour. Table 1 summarizes the
major specifications of GEMS.

Table 1. Summary of GEMS top-level specifications.

Property Specification

Main product Ozone, aerosol and their precursors with cloud, surface information

Spectral range 300 to 500 nm

Spectral resolution 0.6 nm (FWHM)

Spectral sampling interval 0.2 nm (3 pixels per FWHM)

Field of regard 5◦ S to 45◦ N latitude, east to west covers 5000 km at the equator

Spatial resolution 3.5 km × 8 km at Seoul

Temporal resolution 1 h

GEMS is designed to have the same optical paths for both Earth radiance and solar irradiance:
light passes through a calibration assembly, scan mirror, telescope, spectrometer, and detectors.
The calibration assembly houses two diffusers consisting of a multi-layer structure including two
panes of UV-grade ground fused silica to reduce the sensitivity on solar incident angel by flatting the
bidirectional transmission distribution function. For daily solar irradiance measurements, the working
diffuser is deployed, while the other diffuser is used semiannually as a reference to monitor changes
in the working diffuser over the mission lifetime. The trends in the solar measurements from the
two diffusers suggest changes in the sensor throughout, given the assumption that the reference
diffuser is stable. When the diffusers are not in use, they are placed inside the calibration housing
to reduce exposure and contamination. As the diffuser is positioned in front of the scan mirror,
the solar irradiance measurements pass through the same optical light path used in Earth radiance
measurements. Therefore, for retrieval algorithms using Earth reflectance, which is the ratio between
the observed solar irradiance and Earth radiance, many of the calibration uncertainties are expected to
be canceled out.

The two-axis scan mirror with position-sensing heads ensures GEMS scans the entire FOR and
controls line-of-sight motion. It scans from east to west with a fixed north–south field of view of
approximately 7.78◦. During the 30 min observation period, the scanner moves and stops 704 times
and, once stopped, observations are performed for 2.53 s to cover one slit, resulting in the full
FOR being observed from the 701 slits. The reflected radiation by the scan mirror is passed into a
three-mirror Schmidt telescope, which projects light onto the spectrometer’s entrance slit. The Offner
spectrometer with a high-precision grating system disperses the radiation and illuminates onto a single
two-dimensional charge-coupled device (CCD), which has an array of 1033 spectral pixels by 2048
spatial pixels. The measurements imaged onto the CCD are converted to digital counts using a 14-bit
analog-to-digital converter. After amplification, these digitized counts are transmitted through the host
spacecraft’s instrument control electronics. Scientific data are then passed to a Consultative Committee
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for Space Data System encoder (protocol 133.0-B-1) and delivered to the GK2B spacecraft over the
broadband SpaceWire data line. Choi et al., (2019) [3], provide more details on the GEMS instruments.

2.2. GEMS Spectral Response Functions

SRFs play important roles, both in SPECAL and in the retrieval algorithms [17]. Essentially,
they determine the spectral response of an instrument to the input signal as well as the center
wavelength of a detector. The GEMS SRFs are characterized using the responses of GEMS to a series
of monochromatic radiation generated by a tunable laser (with accuracy known to be better than
0.006 nm and less than 5 cm−1 of the FWHM) at multiple viewing angles with a discrete number
of wavelengths [2]. The seven nominal wavelengths (301.8, 330, 365, 390, 435, 470, and 498.2 nm)
are selected, considering the retrieval windows used for the retrieval algorithms. The measured
SRFs at each specific location and wavelengths are interpolated to derive a complete set of SRFs for
each CCD pixel. Smooth variations of the SRF characteristics along both the spatial and spectral
directions introduce negligible uncertainties in the interpolated SRFs. However, it is anticipated that
the in-orbit SRF characteristics could vary owing to factors arising during the launch and/or operation
in space [20–24]. For example, variations of the optics’ temperatures, the high and low frequencies
together, and instrument degradation could alter the effective shape and width of the SRFs [25].
As discrepancies between the assumed and actual SRF introduce significant fitting uncertainties in
SPECAL, a measure to characterize in-orbit SRF is essential. This is described in Section 3.3.

2.3. Spectral Calibration Algorithm

The main purpose of SPECAL is to assign accurate wavelength information to each CCD pixel.
Initial spectral assignment is obtained during on-ground laboratory calibration by illuminating the
instrument field of view with signals from the tunable laser. Similar to a spectral line source such as a
PtCrNe hollow cathode lamp, a tunable laser generates monochromatic light to be fed into the GEMS.
Furthermore, it is insensitive to Doppler broadening and provides very sharp, strong emission lines
within an assigned wavelength range [21]. To determine the spectral band center for a CCD pixel,
each line profile measurement of the tunable laser is fitted using a Gaussian function. The centroids of
the line profiles with their wavelength are then fitted to a fourth-order polynomial as a function of the
detector pixel. Using the polynomials, spectral registration at all CCD pixels are determined at the
ground [26].

In the space environment, the wavelengths at CCD could be altered due to the changes in the
temperature gradient of the spectrometer, the effective SRF caused by an inhomogeneous scene,
for example, and the Doppler effect. The Doppler effect is predictable from the relative velocity
between the spacecraft and the Sun [14]. Moreover, as mentioned earlier, spectral changes due to
heterogeneous scenes are negligible in GEMS. The variations of optical bench temperature due to
internal or environmental heat sources could induce changes in both the alignment of the optics and
their optical dispersion [27]. Therefore, the spectral registration of GEMS is primarily perturbed by
thermal changes of the instrument.

To account and correct for the spectral deviation occurring in the space, SPECAL is designed to
run in two steps during the GEMS mission as shown in Figure 1. The first step assigns wavelength
using prelaunch and early orbit calibration data, which are measured at various temperatures covering
the full range of spectrometer temperatures [16]. As shown in Equation (1), the first-step wavelength λ
is obtained by adjusting λi, wavelength determined by on-ground test, as a function of temperature
difference between in-orbit (TOPB) and on-ground (TOPB_ref) with the pre-determined polynomial
coefficients of α0 and α1.

λ = λi + α0(TOPB − TOPB_re f ) + α1(TOPB − TOPB_re f )
2 (1)
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Figure 1. Flow chart of Geostationary Environment Monitoring Spectrometer (GEMS) spectral
calibration algorithm (SPECAL). In-flight SPECAL for GEMS consists of two processes. The first step is
wavelength assignment based on the gradient of the optical bench temperature. Initial wavelengths
measured during the prelaunch laboratory test are modified by considering the actual optical bench
temperature during the on-orbit measurement. In the second step, calibration is performed by fitting
using Fraunhofer lines in the solar spectrum. The fitting parameters such as wavelength scale and
spectral response function (SRF) are updated at each iteration step until the cost function between
reference spectrum and observed solar GEMS satisfies the criteria.

The first step is straightforward and fast, but previous studies have shown that its calibration
accuracy is insufficient for level 2 products such as ozone profiles [14–17]. The uncertainty induced
in the first step could be large enough and propagate to become an unacceptable source of errors
in DOAS-type retrieval algorithms. Therefore, additional SPECAL process and a second step are
necessary for the required level 1b data quality.

The second step of SPECAL uses cross-correlation [14], which fits the spectral features of the
measured solar irradiance or radiance to those of accurately known high-resolution reference spectrum.
It iteratively finds spectral scale parameters (e.g., spectral shift and squeeze) based on nonlinear
least-square fitting, optionally with iterative damping constraints (i.e., the Levenberg–Marquardt
method) [28]. Using the on-ground calibration data as a first estimate, the algorithm calculates Jacobians
with respect to these parameters and the cost function. The wavelength scale is optimally estimated
by updating the spectral fitting parameters until the cost function is minimized and the parameters
converge. As a reference spectrum for comparison with GEMS measurements, the high-resolution solar
reference irradiance spectrum is convolved with the analytical SRF based on the on-ground calibration
result. Several high-resolution reference spectra are currently available for the GEMS spectral range.
Section 3.4 gives a detailed sensitivity analysis for the use of different reference spectra for SPECAL.

Equation (2) shows the baseline formula for the spectral fitting, representing a formula to estimate
the simulated irradiance (IM(λ)) using the reference solar irradiance convolved by fitting parameters.

IM(λ) = [IR(λ+ ∆λ)]
[
S0 + S1dG + S2(dG)2 + S3(dG)3

]
(2)

Here, IR(λ) is the reference spectrum modulated and convolved from a high-resolution solar
reference spectrum, IH(λ) with an analytic SRF, f (λ′), as shown in Equation (3), while dG is the initial
wavelength scale (λ) minus its averaged value (λavg), and Si (i = 0–3) are the coefficients of a third-order
scaling polynomial for IR(λ).

IR(λ) =

∫
IH(λ′) f (λ′)dλ′∫

f (λ′)dλ′
(3)

Thus, the second step of SPECAL iteratively varies dG until the estimated IR(λ) with the measured
IM(λ) are converged. The weighting functions for each fitting parameter are calculated at each iteration
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either analytically or using finite differences, and then used for the inversion. In Equation (2), The Earth
radiance is affected by atmospheric absorption (especially by ozone) and scattering (Ring effect,
and Rayleigh and Mie scattering). Additional fitting parameters are included for the SPECAL of
radiances [15] (not presented in this paper).

As shown in Equations (2) and (3), SRF plays the key role in determining estimated IR(λ), and thus
in the overall fitting procedure. To safely represent any changes in the SRF characteristics during the
operation in space, the fitting algorithm also includes additional SRF parameters (i.e., shape, width,
and asymmetry). For the GEMS SRF mode, we use empirical numerical functions such as asymmetric
and broadened Gaussian [22] or Super-Gaussian [29], which are widely used and proven in prior
studies [24,30,31], for the spectral fitting process.

To examine the sensitivities of SPECAL to the shape parameters, we used the asymmetric
Super-Gaussian (ASG) function [28] as shown in Equation (4).

f (λ) =
k

2wΓ(1/k)

 exp
(
−

∣∣∣ ∆λ
w−aw

∣∣∣k−ak
)

exp
(
−

∣∣∣ ∆λ
w+aw

∣∣∣k+ak
)  for

λ ≤ 0
λ � 0

(4)

where k and w are independent parameters that determine the shape and width of f (λ), respectively,
Γ is the gamma function, and aw and ak are additional asymmetry parameters [28]. When k is 2,
the ASG function becomes a Gaussian function. For k < 2, the function has a more pointed shape with
longer tails.

Shift (Ch) and squeeze (Cq) are generally used to represent the actual wavelength shift relative
to the initial wavelength scale. Shift describes linear changes in the wavelength scale, while squeeze
denotes non-linear changes. Thus, the wavelength change for each detector pixel is different in the
presence of a squeeze. The wavelength change due to shift and squeeze is modeled as follows:

∆λ = Ch + dG
(
Cq − 1

)
(5)

Based on Equation (5), the actual wavelength grid is the same as the initial grid when the shift is
zero and the squeeze is 1 (i.e., no squeeze).

On the other hand, there are frequent disadvantages to utilizing the squeeze parameter for the
quantification of actual wavelength changes. When an algorithm calculates a value for squeeze in
certain fitting windows, understanding the degree of change in the whole wavelength range is not
straightforward. Additionally, it might not be realistic to separate wavelength changes into a single
shift and squeeze, considering the actual wavelength assignment is non-linear and often parameterized
as a fifth- to over tenth-degree polynomial [32]. Therefore, for simplicity in understanding wavelength
changes and for more straightforward utilization in retrieval processes, it is often the case that only
the shift parameter is fitted. To describe the changes over the entire observational wavelength range
with shift only, we introduced high-order shift coefficients (here, fifth-order polynomial) as shown in
Equation (6), to sufficiently account for the non-linear variation of the wavelength change:

∆λ = Ch0 + Ch1dG + Ch2dG2 + Ch3dG3 + Ch4dG4 + Ch5dG5 (6)

2.4. Sensitivity Tests

A series of sensitivity tests was conducted to estimate the performance of the algorithm with
respect to uncertainties in the fitting parameters. As the GEMS instrument is in the commissioning
phase, observed spectra are currently not available; therefore we used a synthetic spectrum prepared
by convolving a high-resolution solar reference spectrum with the measured GEMS SRF during the
laboratory calibration, with artificially perturbed wavelength parameters over the spectral range
(300 to 500 nm). The synthetic spectrum also includes expected measurement noise, calculated based
on the noise model of GEMS. Figure 2 shows such a synthetic spectrum along with the measured
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SRF at a nominal wavelength of 365 nm. For more realistic and precise error estimation of SPECAL,
detailed spectral parameters were considered, including signal-to-noise ratio (SNR), wavelength scale
parameter, fitting window, SRF, and high-resolution solar reference spectrum. The test results for
each spectral parameter are described in the following subsections. The algorithm is not meaningfully
sensitive to the SNR; therefore, the results for SNR are not presented here.
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(Chance and Kurucz, 2010) and the prelaunch SRF.

The sensitivity test compares the spectral parameters estimated by SPECAL algorithm with the
perturbed spectral parameters used to generate the synthetic spectrum. The prepared synthetic spectra,
including wavelength perturbations and radiometric uncertainty, are assumed to be realistic GEMS
solar measurements. Table 2 summarizes the input and retrieved parameters, revealing that the
retrieved values are consistent with the given perturbations within the expected uncertainty of the
spectral parameters. The performance of the algorithm is also evaluated using mean bias (Bλ) and
root-mean-squared deviation (RMSD, Sλ) between the known (true value before perturbation) and
retrieved wavelength registration. The calculated Bλ and Sλ are less than the required spectral accuracy
of GEMS (i.e., 0.002 nm), also shown in Table 2. Although SPECAL produces optimal values for the
given simulated spectrum and measurement, there are possibilities of additional uncertainties which
are analyzed and quantified in the next section.

Table 2. Input spectral perturbations and output results using simple spectral scale parameters (i.e., Ch

(nm), Cq (unitless), and spectral resolution in σ (nm)). The mean bias (Bλ), root-mean-squared deviation
(Sλ), and cost function (χ2) of spectral fitting results are also shown.

Given Perturbation Retrieved Perturbation

Ch Cq σ Ch Cq σ χ2
× 106 Bλ × 104 Sλ × 104

0.010 0.005 0.600 0.010 0.005 0.601 2.71 8.60 5.04

3. Results and Discussion

3.1. Wavelength Scale Parameter

The wavelength change compared with the initial wavelength scale is represented using
wavelength scale parameters such as shift, squeeze, and shift polynomials. To examine the calibration’s
sensitivity to the wavelength scale parameters, we applied the parameters differently to the synthetic
data and the SPECAL algorithm. For the sensitivity study, we carefully selected the arbitrary
perturbation (Cq = 0.005, Ch1 = 0.001, Ch2 = 0.0002) to reflect realistic spectral shift due to the nonlinear
optical temperature gradient, which results in inhomogeneous spectral change up to a few pixels.
The algorithm’s performance corresponding to the shift and squeeze parameters or the shift polynomial
is compared for the whole GEMS observational wavelength range.
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The obtained cost function and fitted parameter values indicate that the outputs are consistent
with the simulated inputs when the algorithm uses a shift polynomial rather than shift and squeeze
(Table 3). The algorithm fitting a shift polynomial successfully follows the simulated wavelength
change that consists of shift and squeeze, whereas the opposite case does not. As the squeeze parameter
is related to the first-order term of the shift polynomial (Equations (4) and (5)), fitting a shift and
squeeze is not able to correctly capture the actual wavelength variation due to the large spectral shifts.
Therefore, the approaches using shift and squeeze [13–15,18] are insufficient to represent the relatively
nonlinear features and can thus lead to the apparent residual mismatch with the reference spectrum.
Furthermore, fitting a polynomial to account for high-order shifts might converge more quickly with
fewer iterations than fitting with shift and squeeze. When considerable nonlinear wavelength changes
are expected, such as when a sufficient number of fitting radiances are required, it is better to apply the
high-order shift parameters for the spectral fitting procedure.

Table 3. Comparison of inputs and corresponding outputs to show the algorithm’s sensitivity to
wavelength scale parameters (using shift/squeeze or shift polynomials).

Simulated Input Algorithm Output

Ch Cq σ Ch0 Ch1 σ χ2
× 106 Bλ × 104 Sλ × 104

0.010 0.005 0.600 0.010 0.005 0.601 1.90 7.90 3.34

Ch0 Ch1 × 103 Ch2 × 104 Ch Cq × 104 σ χ2
× 106 Bλ × 104 Sλ × 104

0.010 1.00 2.00 0.030 1.00 0.611 27.0 1360 596

3.2. Fitting Window

Although high-order shifter parameters are recommended, a fitting window that is too wide
for the wavelength range applicable to the calibration can introduce unacceptable fitting errors in
the significant dynamic range of radiance measurements; the errors can be up to about three orders
of magnitude in the GEMS spectral domain (i.e., 300–500 nm) [16]. Therefore, if the fitting can be
performed sufficiently quickly, it is better to perform SPECAL over several narrow fitting windows
across the spectral range rather than fitting a shift polynomial over the entire (single) range. Fitting
with multiple sub-windows allows detailed monitoring of the detector response and provides L1b data
with sufficient accuracy for specific trace gas retrieval. For each selected sub-window (e.g., 10 or 15 nm),
using a single shift parameter (Ch) is appropriate, as nonlinear spectral change is typically negligible
in this case. The derived shift at each sub-window is then fitted to a polynomial as a function of
wavelength to determine the amount of shift for every spectral pixel [14]. The number of sub-windows
should be sufficient to obtain reliable results compared with the use of shift polynomials for the
entire window. However, increasing the number of windows with a single fit parameter increases the
numerical cost for the algorithm to converge. A further consideration is that the polynomial approach
applied to derive the shift for each CCD pixel could affect SPECAL’s accuracy. Changing the fitting
windows while keeping a constant wavelength range (for example, 400–450 nm to 410–460 nm) has an
insignificant effect on the calculation time. Therefore, we focused on the effects of different numbers of
fitting windows on the calculation time and algorithm performance.

Here, the effects of two types of polynomial (power and Chebyshev) are compared. The calibration
is repeatedly performed over 6 to 10 small sub-windows selected within the GEMS coverage. Results
are shown in Figure 3. The magenta lines are the applied simulated wavelength shifts (Ch0: 0.01, Ch1:
0.0001, Ch2: 0.00002), and asterisks are fitted shifts from each fitting window. Purple and blue lines
represent the derived wavelength shifts based on Chebyshev and power polynomials, respectively.
The figure’s right panel (b) shows that the shifts obtained using Chebyshev polynomials achieve
better consistency with the simulated wavelength shift than the power polynomials. Table 4 lists
the corresponding mean bias and RMSD for each fitting window. The results for fitting windows
1 and 2 show that a sufficient number of fitting windows is required to reflect the actual wavelength
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variations for the whole wavelength range. Nevertheless, using fewer fitting windows is numerically
efficient, particularly when wavelength variability can be explained by low-order nonlinearity that
satisfies Nyquist sampling frequency.
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Figure 3. Comparison of wavelength shifts using two polynomials. (a) The derived wavelength shifts
for each wavelength based on fitted shift parameters (asterisks) using three different sets of fitting
windows and different polynomial fitting methods. The fitting windows for each plot are as follows.
Top: 10 sub-windows with 10 nm width at 10 nm intervals. Middle: six sub-windows of 30 nm
width at 30 nm intervals, at 305–335, 335–365, 365–395, 395–425, 425–455, and 455–485 nm. Bottom:
six sub-windows of 10 nm width spaced to include the beginning and end of the wavelength range,
at 300–310, 330–340, 370–380, 400–410, 450–460, and 490–500 nm. Magenta lines are the simulated
wavelength shifts applied in the tests (Ch0: 0.01; Ch1: 0.0001; Ch2: 0.00002), and asterisks are fitted
shifts from each sub-window. Purple and blue lines represent the derived wavelength shifts based on
Chebyshev and power polynomials, respectively. (b) The difference between the simulated and derived
wavelength shifts at each wavelength was obtained using either a power (dotted line) or Chebyshev
(dashed line) polynomial. The Chebyshev polynomial gives more consistent shifts with the simulated
wavelength shifts.

Comparing the results of fitting windows 2 and 3, with the same number of sub-windows,
shows the importance of the locations of the sub-windows. It is necessary to optimize not only
the number of sub-windows but also their ranges. The behavior of the actual wavelength changes
observed during the mission will contribute to the selection and optimization of the fitting windows. In
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addition, the wavelength shift derived for each spectral pixel could depend on the chosen polynomial.
While the algorithm’s performance meets the requirement for GEMS using either Chebyshev or power
polynomials, the former gives better agreement regardless of the fitting window. (For fitting window
2, Bλ and Sλ of the power polynomial are 2.71 and 15.8, respectively, and 1.29 and 5.44, respectively,
for the Chebyshev polynomial). Because the power polynomial used for expansion to the entire
wavelength range [15–17] becomes unreliable near the lower and upper end of the wavelength band
(i.e., below 310 nm, above 490 nm), it is not advisable to use the power polynomial for the SPECAL
of sub-windows.

Table 4. Mean bias and RMSD for fitting windows 1 to 3 depending on the polynomial used.

Algorithm Output

Polynomial Method Power Chebyshev

Bλ × 104 Sλ × 104 Bλ × 104 Sλ × 104

Fitting Window 1 12.5 20.7 6.99 19.6
Fitting Window 2 31.5 115 5.05 33.7
Fitting Window 3 2.71 15.8 1.29 5.44

3.3. Spectral Response Function

Figure 4 shows results for the sensitivity tests of the SRF with five ASG functions. Each synthetic
spectrum is then derived by convolution of a high-resolution solar reference spectrum. First, we apply
the algorithm to synthetic irradiances convolved with different SRFs in Table 5, without including SRF
fitting. The algorithm assumes a fixed symmetric Gaussian SRF. The cost function and calibration
results for several synthetic spectra with different SRFs are summarized in Table 5. The algorithm’s
sensitivity increases with the changes of shape (k) and width (w) of the SRF. The results indicate that
the algorithm is significantly more sensitive to the shape (skewness) of the SRF than its width SRF.
This is because the width of the SRF is related to the resolution of the spectrum, while its shape greatly
determines the representative spectral characteristics. The algorithm fails to meet the requirements of
GEMS, except when the simulated SRF is fully Super-Gaussian (k = 2). Therefore, the uncertainty of
the shape of the SRF is a decisive factor determining the algorithm’s accuracy.

Remote Sens. 2020, 11, x FOR PEER REVIEW 10 of 17 

windows and different polynomial fitting methods. The fitting windows for each plot are as follows. 
Top: 10 sub-windows with 10 nm width at 10 nm intervals. Middle: six sub-windows of 30 nm width 
at 30 nm intervals, at 305–335, 335–365, 365–395, 395–425, 425–455, and 455–485 nm. Bottom: six sub-
windows of 10 nm width spaced to include the beginning and end of the wavelength range, at 300–
310, 330–340, 370–380, 400–410, 450–460, and 490–500 nm. Magenta lines are the simulated 
wavelength shifts applied in the tests (Ch0: 0.01; Ch1: 0.0001; Ch2: 0.00002), and asterisks are fitted shifts 
from each sub-window. Purple and blue lines represent the derived wavelength shifts based on 
Chebyshev and power polynomials, respectively. (b) The difference between the simulated and 
derived wavelength shifts at each wavelength was obtained using either a power (dotted line) or 
Chebyshev (dashed line) polynomial. The Chebyshev polynomial gives more consistent shifts with 
the simulated wavelength shifts. 

3.3. Spectral Response Function 

Figure 4 shows results for the sensitivity tests of the SRF with five ASG functions. Each synthetic 
spectrum is then derived by convolution of a high-resolution solar reference spectrum. First, we 
apply the algorithm to synthetic irradiances convolved with different SRFs in Table 5, without 
including SRF fitting. The algorithm assumes a fixed symmetric Gaussian SRF. The cost function and 
calibration results for several synthetic spectra with different SRFs are summarized in Table 5. The 
algorithm’s sensitivity increases with the changes of shape (k) and width (w) of the SRF. The results 
indicate that the algorithm is significantly more sensitive to the shape (skewness) of the SRF than its 
width SRF. This is because the width of the SRF is related to the resolution of the spectrum, while its 
shape greatly determines the representative spectral characteristics. The algorithm fails to meet the 
requirements of GEMS, except when the simulated SRF is fully Super-Gaussian (k = 2). Therefore, the 
uncertainty of the shape of the SRF is a decisive factor determining the algorithm’s accuracy. 

 
Figure 4. Variation of SRFs with changing asymmetric Super-Gaussian (ASG) coefficients: w 
determines the width, and k is related to the shape of the function. When k = 2, the ASG function is 
identical to a Gaussian. The values of ak and aw for the ASG function are zero. 

Table 5. Sensitivity results of the algorithm without SRF parameters applied to solar irradiances 
convolved with different SRFs. 

Simulated Input Algorithm Output 
w k Ch0 Ch1 σ χ2 × 106 Bλ × 104 Sλ × 104 

0.433 1 0.013 0.004 1.03 31.9 1020 586 
0.360 2 0.010 0.005 0.603 2.77 6.43 3.79 
0.339 3 0.009 0.005 0.521 15.1 58.7 33.9 
0.329 4 0.008 0.005 0.500 28.1 98.1 56.6 
0.323 5 0.008 0.005 0.484 39.4 107 61.7 

Figure 4. Variation of SRFs with changing asymmetric Super-Gaussian (ASG) coefficients: w determines
the width, and k is related to the shape of the function. When k = 2, the ASG function is identical to a
Gaussian. The values of ak and aw for the ASG function are zero.

Nevertheless, in-flight characterization of the SRF and its variation/correction can be well described
using an empirical function such as ASG, as it can simultaneously fit the shape and width of the SRF
with sufficient accuracy [28–30]. Table 6 shows that the SPECAL algorithm, with fitted SRF parameters,
successfully estimates the actual SRF except for the unrealistic change of shape and width of the
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SRF (when it changes from a fully Super-Gaussian to a Triangular model). The listed biases between
the input and derived SRFs from the algorithm (denoted as Bf) are less than 0.1%. The calibration
accuracy is improved by up to ten times compared to the previous algorithm [19] without a noticeable
difference in the computational time. Furthermore, retrieval of in-orbit SRF using analytical function is
useful even if the prelaunch SRF is not well known. Spectral convolution of the high-resolution solar
reference spectrum and interpolation of the SRF to a different wavelength grid are the main factors
affecting the computation time. As GEMS observes the Sun during the night, there is enough time to
calibrate the data by deriving the SRF. However, when variations in the SRF are not significant in-orbit,
using a pre-computed reference spectrum convolved with a known nominal SRF (characterized during
commissioning) can reduce the numerical cost.

Table 5. Sensitivity results of the algorithm without SRF parameters applied to solar irradiances
convolved with different SRFs.

Simulated Input Algorithm Output

w k Ch0 Ch1 σ χ2
× 106 Bλ × 104 Sλ × 104

0.433 1 0.013 0.004 1.03 31.9 1020 586
0.360 2 0.010 0.005 0.603 2.77 6.43 3.79
0.339 3 0.009 0.005 0.521 15.1 58.7 33.9
0.329 4 0.008 0.005 0.500 28.1 98.1 56.6
0.323 5 0.008 0.005 0.484 39.4 107 61.7

Table 6. Sensitivity results of the updated algorithm (including SRF parameters) applied to solar
irradiances convolved with different SRFs.

Simulated Input Algorithm Output

w k w k Ch0 Ch1 χ2
× 106 Bλ × 104 Sλ × 104 Bf × 103

0.433 1 0.435 1.01 0.013 0.004 18.1 603 348 6.5
0.36 2 0.362 2 0.01 0.005 1.82 1.19 0.774 1.47
0.339 3 0.346 3.01 0.01 0.005 7.33 2.02 1.16 1.5
0.329 4 0.33 4 0.01 0.005 2.22 3.06 1.75 1.34
0.323 5 0.323 5 0.01 0.005 3.75 7.3 1.4 1.37

We also perform a similar sensitivity study for the two asymmetric factors (aw and ak) when the
shape and width parameters (w and k) are fixed as 0.360 and 2, respectively. The SRF’s asymmetry is
known to closely correlate with shift (Ch0) [19], which is quantitatively confirmed in our algorithm
results. Both asymmetry parameters are similarly correlated with the shift parameter, shown as Table 7.
Their variation effectively leads to a linear wavelength change. Therefore, increasing asymmetry in the
SRF further changes the wavelength shift (i.e., Ch0 varies from 0.001 to 0.081).

Table 7. Sensitivity results of the algorithm with changes of asymmetries (aw and ak) in the simulated
input SRF.

Simulated Input Algorithm Output

aw ak w k aw ak Ch0 Bλ × 104 Sλ × 104 Bf × 103

0.010 0.010 0.364 2.01 0.010 0.010 0.009 1.06 1.43 3.70
0.030 0.010 0.364 1.99 0.030 0.010 0.088 2.35 1.96 3.38
0.050 0.010 0.367 2.01 0.050 0.010 0.081 2.02 1.23 3.87
0.010 0.030 0.362 1.99 0.010 0.030 0.095 2.03 1.07 1.62
0.010 0.050 0.363 2.01 0.010 0.050 0.009 1.82 0.163 2.59

3.4. High-Resolution Solar Reference Spectrum

The high-resolution solar reference spectrum is critical to spectral and radiometric calibrations for
satellite-based instruments. Specific applications include determination of instrument SRFs, accurate
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radiative transfer calculations, and Ring effect corrections [33–37]. There are various solar reference
spectra with different radiometric accuracy, spectral resolution, wavelength range, and other spectral
characteristics. To make an appropriate selection for GEMS, it is necessary to consider the radiometric
and spectral uncertainty of each reference spectrum. GEMS has the following requirements: the absolute
radiometric uncertainty must be less than the GEMS radiometric accuracy (4%); the resolution of the
solar reference spectrum must be higher than the GEMS resolution (0.6 nm); and, finally, fully Nyquist
sampled spectra are preferred.

Compared to the numerous low-resolution spectra, few suitable higher-resolution spectra are
available due to the limited observations. Here, three candidates are considered for the GEMS solar
reference. One is the Royal Netherlands Meteorological Institute (KNMI) spectrum, developed by
Dobber et al., (2008) [34], which is utilized as the solar reference spectrum for the calibrating OMI
instrument. Another is the SAO2010 spectrum provided by Chance and Kurucz [36], an updated
version of the SAO96 [33] that had been widely used in heritage satellite mission programs. The final
potential spectrum has recently been determined from ground-based measurements by the Quality
Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer and a Fourier transform
spectroradiometer (hereafter referred to as the QAS spectrum) [37]. Figure 5a shows each spectrum
over the GEMS observational wavelength range.
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Figure 5. Comparison of high-resolution solar reference spectra at the resolution and spectral range
of GEMS. (a) High-resolution solar reference spectra used in this study. (SAO2010, KNMI, and QAS
respectively). (b) The blue line represents the relative percentage difference between the QAS and
KNMI spectra, and the orange line shows that between the SAO2010 and KNMI spectra. There is a
remarkable difference between SAO2010 and KNMI near 300 nm (up to 8%). (c) The blue line represents
the relative percentage difference between the QAS and SAO2010 spectra, and the orange line shows
that between SAO2010 and KNMI solar irradiances.

To characterize the differences associated with these spectra, they are compared at the spectral
resolution and range of GEMS, as shown in Figure 5b,c. Each spectrum is known to have similar
radiometric accuracy (uncertainty of less than 4% for the GEMS observational range), and the
average difference among them is less than 1.4%. However, it should be noted that there are
significant differences of up to 8% at shorter wavelengths (see Figure 5). As the hyperspectral solar
reference irradiances considered here are composite spectra from ground-based and/or balloon-based
measurements, they might contain atmospheric absorption features [14]. The large radiative differences
below 310 nm, for example, are likely related to ozone absorption. In addition, as a result of these
radiometric uncertainties, SPECAL is significantly sensitive to the choice of high-resolution solar
reference spectrum, as shown in Table 8.

Table 8. Sensitivity results of the wavelength calibration algorithm using high-resolution reference
solar spectra. Wavelength perturbations applied to the simulated input are identical to the other tests
(Ch0 = 0.01 nm; Ch1 = 0.005 nm).

Simulated Input Algorithm Output

Reference Spectrum Synthetic Spectrum Ch0 Ch1 σ χ2
× 106 Bλ × 104 Sλ × 104

SAO2010 SAO2010 0.010 0.005 0.603 1.71 4.60 3.04
KNMI KNMI 0.010 0.005 0.604 1.21 3.86 2.17
QAS QAS 0.009 0.006 0.609 2.45 6.59 3.81

SAO2010 KNMI 0.013 0.005 0.604 33.0 32.10 18.50
KNMI SAO2010 0.007 0.005 0.606 30.0 29.40 15.90
QAS SAO2010 0.007 0.004 0.619 22.9 58.00 33.50

SAO2010 QAS 0.020 0.005 0.705 30.0 49.20 28.50
QAS KNMI 0.003 0.002 0.616 48.6 60.20 34.80

KNMI QAS 0.027 0.005 0.624 30.1 52.30 30.90



Remote Sens. 2020, 12, 2846 14 of 17

The calibration accuracy using the QAS spectrum is lower than that achieved with the SAO2010
and KNMI spectra. The minimum chi-squared, mean bias, and RMSD values (2.45, 6.59, and 3.81,
respectively) are larger than those for the other spectra. The shift values (Ch0 and Ch1) retrieved in
the QAS test also indicate that the absolute wavelength calibration of the QAS itself is insufficient
compared with other sources of solar irradiances. The expected value is 0.01 nm for Ch0, but the output
of 0.009 nm indicates a residual of 0.001. Second, using different high-resolution solar reference spectra
for the derivation of the synthetic data and simulated spectrum (reference spectrum) significantly
degrades SPECAL’s performance. The retrieved shift parameter shows an additional wavelength shift
of up to 0.017 nm with the cost function increased by over an order of magnitude when using KNMI
and QAS. This unacceptable calibration result arises owing to radiometric uncertainties between the
solar reference spectra. However, as the SPECAL error is larger with KNMI and QAS compared to
SAO and KNMI, and the calibration result is sensitive not only to the radiometric accuracy [14,19,25]
but also to the spectral accuracy of the solar reference data. Therefore, to further improve SPECAL,
proper choice of the solar reference spectrum is of critical importance. The optimal solar reference
spectrum for GEMS is to be determined using on-orbit solar measurements during the instrument’s
in-orbit tests.

4. Conclusions

A spectral calibration algorithm for GEMS is presented here. To achieve sufficient accuracy for
level 2 products, the calibration is performed using spectral fitting. The algorithm was designed
to minimize the differences between the simulated reference spectrum (derived by convolving a
high-resolution solar reference spectrum with the instrument SRF) and the spectrum measured by
GEMS. To estimate the performance of the algorithm, the effects of several spectral fitting parameters
on the calibration were examined using cost function and fitting residual.

Within the expected wavelength variation (up to a few pixels), the algorithm showed acceptable
performance (accuracy better than 0.002 nm) to the expected uncertainties associated with most of
spectral parameters, such as wavelength perturbation and signal-to-noise ratio. Such a satisfactory
performance is possible mainly due to the inclusion of additional fitting parameters of spectral scales
(shift, squeeze, and high order shifts) and SRF (width, shape, and asymmetry).

Here, it is clearly shown that the choice of the high-resolution solar reference spectrum and
uncertainties in the in-flight SRF are critical to the performance of spectral calibration. The sensitivity
to the SRF is expected to be mitigated by using the derived in-flight SRFs using analytical functions
or modification of prelaunch SRFs. On the other hand, the radiometric disagreement between the
high-resolution solar reference spectra is non-negligible in the GEMS observational range, especially
below 310 nm; therefore, selecting the optimal solar reference spectrum is vital for better calibration
performance. Indeed, the estimated uncertainty of the spectral calibration algorithm (less than 0.8%) is
primarily contributed by the sensitivity to the high-resolution solar reference spectrum (about 0.7%).
Furthermore, the current candidate reference spectra for GEMS might include some atmospheric
absorption features; thus, further improvements are possible for spectral calibration after updating the
current references or using a pure high-resolution solar spectrum measured from space.

As GEMS measures solar irradiance once per day during the night, much earlier than the normal
Earth radiance observation begins, the algorithm could afford a sufficient number of fitting parameters,
while the number of parameters for radiance measurements is limited due to the numerical cost. Hence,
the operational spectral calibration algorithm for solar irradiance is designed to include accurate
SRF fitting parameters together with shift polynomials or shifts based on carefully selected narrow
fitting windows. As GEMS is known to have a very stable optical bench temperature and, thus,
the wavelength variation during the daytime is expected to be small. Therefore, wavelengths of level 1b
radiances are determined by modifying the wavelengths obtained from solar irradiances. The accuracy
of the spectral calibration for radiances could further be improved by the use of radiative transfer
model. Current principal component analysis and machine-learning-based hyperspectral radiative
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transfer models could derive entire high-resolution radiances from a small number of radiances [38,39].
These fast models with modules for Jacobian calculation have potential to perform a real-time spectral
fitting of radiance. It is possible to produce the reference spectrum and fitting parameters at each
iteration step for better calibration result.

Although spectral calibration for solar observations includes the parameters of SRF used to
convolve the high-resolution solar reference spectrum, it incurs huge computational cost. Therefore,
the application of a pre-derived reference spectrum convolved with a known nominal SRF is possible
when the amount of change in the SRF during the mission is insignificant. The effect of applying
wavelength shift can be linearized as a shift spectrum and then included as a pseudo absorber spectrum;
such linearization can also further expedite the fitting process. These approaches will therefore be
investigated during in-orbit tests. After the commissioning phase, calibrated GEMS measurements are
expected to be released for the public at the end of 2020.

5. Patent
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