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Abstract: As a result of tightened waste regulation across Europe, reports of waste crime have been
on the rise. Significant stockpiles of tyres and plastic materials have been identified as a threat to both
human and environmental health, leading to water and livestock contamination, providing substantial
fuel for fires, and cultivating a variety of disease vectors. Traditional methods of identifying illegal
stockpiles usually involve laborious field surveys, which are unsuitable for national scale management.
Remotely-sensed investigations to tackle waste have been less explored due to the spectrally variable
and complex nature of tyres and plastics, as well as their similarity to other land covers such as water
and shadow. Therefore, the overall objective of this study was to develop an accurate classification
method for both tyre and plastic waste to provide a viable platform for repeatable, cost-effective,
and large-scale monitoring. An augmented land cover classification is presented that combines
Copernicus Sentinel-2 optical imagery with thematic indices and Copernicus Sentinel-1 microwave
data, and two random forests land cover classification algorithms were trained for the detection of
tyres and plastics across Scotland. Testing of the method identified 211 confirmed tyre and plastic
stockpiles, with overall classification accuracies calculated above 90%.

Keywords: Copernicus; EARSeL; land use & land cover; random forests; plastics; tyres; waste crime

1. Introduction

Increased regulatory control of waste, which is partly due to a heightened public sense of
sustainable development, has created the conditions whereby waste crime operates alongside a
legitimate waste sector [1]. Such environmental crime exploits the physical characteristics of waste,
taking advantage of vulnerabilities in regulation enforcement, the complexity of its downstream
infrastructure, and market opportunities for profit; therefore, legitimate economies are short-changed
through the unlawful and often dangerous disposal and storage of waste. While this is a widespread
issue that covers all manner of waste material, tyres and plastics are of particular concern.

Stockpiles of waste tyres have been identified as a significant danger to both human and
environmental health [1]. More than one billion tyres are estimated to exist in poorly managed or
unmanaged stockpiles across Europe, posing several serious risks [2]. While tyres are challenging to
ignite, once lit, they have the potential to burn for months or years. The fire itself not only provides a
serious threat but may also contaminate food and water supplies through the distribution of partially
combusted hydrocarbon. In 1989, an arson attack on the Heyope Tyre Dump in Powys, Wales, led to a
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record burn time with the nine million tyres located at the dump emitting a measurable heat signature
until 2003 and 2004 [3,4]. Similar cases have also been recorded on a global scale, e.g., Rhinehart, USA,
1983 [5]; Westly, USA, 1999 [5]; Watertown USA, 2005 [6]; Fforestfach, Wales, 2011 [7]; and Sulaibiya,
Kuwait, 2012 [8]. In addition to the potential fire risks from stockpiled tyres, if intact waste tyres are
stored improperly, they may also provide a habitat for several disease vectors such as the West Nile
virus, encephalitis, and dengue fever [9,10]. Such risks, alongside the longevity of tyres, highlights the
importance of efficient waste management of the material.

Due to its lightweight and versatile structure, plastics have become a staple of modern life, with an
estimated 60 million tonnes of plastic used every year across Europe [11]. Used for purposes ranging
from packaging to construction, and across a wide range of industries, plastic waste presents a serious
threat to environmental health because the materials are non-biodegradable. Additional concerns have
arisen in recent years with regard to waste materials being wrapped in plastics and disguised as other
forms of legal waste such as silage bales, which increases the difficulty of illegal waste detection and
regulation enforcement [12,13].

With increased pressure on governing bodies to combat pollution and harmful environmental practices,
the European Union has outlined a strategy for becoming a resource-efficient and competitive low-carbon
economy in its “living well, within the means of our planet” proposal [14]. As part of its aim to become
“the most resource-efficient economy in the world,” an innovative partnership was formed in 2014 through
the LIFE SMART Waste (LSW) project, to establish novel ways of understanding, tackling and reducing
waste-crime [15]. Due to the varied ways in which waste is handled by operators and the scale needed to
efficiently monitor waste crime at national and international levels, many attempts to develop an accurate,
prompt, and cost-effective detection methodology have proven challenging. However, thanks to more
recent advances in data quality and increases in accessibility, previously less-applied methods that utilise
satellite remote sensing now offer a viable solution to the problem of waste crime.

The overall objective of this study was to develop an accurate classification method for both tyre
and plastic waste in order to provide a viable platform for repeatable, cost-effective, and large-scale
monitoring. More specifically, this study assessed the suitability of a Sentinel-1 and -2 synergy product
for waste detection and evaluate the use of random forests (RF) as a classification tool for tyres and
plastics. The fusion of Sentinel-1 and -2 for land cover mapping provides the combined spectral and
structural characteristics of the land surface, with the results often having a higher accuracy than using
either of the datasets individually [16].

2. Materials and Methods

2.1. Study Region and Data

A regional subsection of Scotland that spans the breadth of Glasgow to Edinburgh was initially used
for classification training (Figure 1c, blue box). This region covers both urban and rural environments,
with waste sites occurring in both. Also, plastics can be found due to other activities, e.g., artificial
sports pitches and plastic used to cover stockpiles of material with tyres often used to hold the plastic
down. Therefore, the classification results will detect all surfaces with the signature of plastics and tyres.

Due to the sensitive nature of illegal waste monitoring, a single waste study site is shown in detail
(Figure 1a,b), as approved by the Scottish Environment Protection Agency (SEPA). The site, which is
home to an environmental management company, represents a legal waste management operation that
houses both tyre and plastic deposits, and allows the demonstration of the proposed machine learning
satellite data solution to waste monitoring. It is in a rural location, but the site itself is complex with
the waste situated near buildings that are encircled by trees.
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Figure 1. Sentinel-2 RGB imagery of an example waste site located in Alva, Scotland; (a) zoomed-in 
image shows the area covered by the red box from the (b) zoomed-out image. (c) OS OpenMap data 
is provided for a broader geographical context, including the study region (large blue box), Glasgow 
sub-region (smaller blue box) and the waste site (red box); OS data © Crown Copyright (2020). 

A series of Copernicus Sentinel-1 C-band Synthetic Aperture Radar (SAR) and Sentinel-2 Multi-
Spectral Instrument (MSI) images covering the period from May 2016 to October 2018 were compared 
against waste site location reference data, and analysed for the highest amount of visible waste 
material present (in terms of being identifiable with Goggle Earth imagery), minimal cloud cover, 
and temporal synchronicity between Sentinel-1 and Sentinel-2 data. Synchronicity is preferred as the 
two types of remotely sensed imagery should be jointly detecting the land cover types, which 
becomes more critical for waste as it is often accumulated and then moved on to another location. 

This paper focuses on Sentinel data acquired in June 2018, including: 

• Multi-temporal Sentinel-2B images created using MSI data acquired on the 24 June 2018 at 
around 11:20 UTC, 27 June 2018 at around 11:30 UTC and 30 June 2018 at around 11:40 UTC, 
and processed with Sentinel-1A data acquired on the 26 June 2018 at around 06:30 UTC. 

• The example waste study site data acquired on the 27 June 2018 at around 11:30 UTC for the 
Sentinel-2B MSI data, and on 26 June 2018 at around 06:30 UTC for the Sentinel-1A SAR data. 

2.2. Image Processing 

All Sentinel series images were downloaded through the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/) and processed using the European Space Agency’s (ESA) open-source 
Sentinel Application Platform (SNAP) [17] version 7.0. 

2.2.1. Pre-Processing 

Sentinel-1 Level-1 Ground Range Detected (GRD) VV polarised data was converted to 
backscatter values using SNAP through: (i) the application of an orbit file to correct for orbital error; 
(ii) radiometric correction using a Gamma0 coefficient calibration; (iii) Range-Doppler terrain 

Figure 1. Sentinel-2 RGB imagery of an example waste site located in Alva, Scotland; (a) zoomed-in
image shows the area covered by the red box from the (b) zoomed-out image. (c) OS OpenMap data
is provided for a broader geographical context, including the study region (large blue box), Glasgow
sub-region (smaller blue box) and the waste site (red box); OS data© Crown Copyright (2020).

A series of Copernicus Sentinel-1 C-band Synthetic Aperture Radar (SAR) and Sentinel-2
Multi-Spectral Instrument (MSI) images covering the period from May 2016 to October 2018 were
compared against waste site location reference data, and analysed for the highest amount of visible
waste material present (in terms of being identifiable with Goggle Earth imagery), minimal cloud cover,
and temporal synchronicity between Sentinel-1 and Sentinel-2 data. Synchronicity is preferred as the
two types of remotely sensed imagery should be jointly detecting the land cover types, which becomes
more critical for waste as it is often accumulated and then moved on to another location.

This paper focuses on Sentinel data acquired in June 2018, including:

• Multi-temporal Sentinel-2B images created using MSI data acquired on the 24 June 2018 at around
11:20 UTC, 27 June 2018 at around 11:30 UTC and 30 June 2018 at around 11:40 UTC, and processed
with Sentinel-1A data acquired on the 26 June 2018 at around 06:30 UTC.

• The example waste study site data acquired on the 27 June 2018 at around 11:30 UTC for the
Sentinel-2B MSI data, and on 26 June 2018 at around 06:30 UTC for the Sentinel-1A SAR data.

2.2. Image Processing

All Sentinel series images were downloaded through the Copernicus Open Access Hub (https:
//scihub.copernicus.eu/) and processed using the European Space Agency’s (ESA) open-source Sentinel
Application Platform (SNAP) [17] version 7.0.

2.2.1. Pre-Processing

Sentinel-1 Level-1 Ground Range Detected (GRD) VV polarised data was converted to backscatter
values using SNAP through: (i) the application of an orbit file to correct for orbital error; (ii) radiometric

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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correction using a Gamma0 coefficient calibration; (iii) Range-Doppler terrain correction through
orthorectification against the Shuttle Radar Topography Mission 1-second HGT Digital Elevation
Model; (iv) the application of a Lee Sigma speckle filter; and (v) conversion to decibels (dB) to produce
a non-linear valued output. This workflow is a modified version of the standard SNAP pre-processing
workflow to determine the radar backscatter in dB [18], but the thermal noise correction was dropped
as it was found to introduce artefacts and is primarily of use for the cross-polarisation channel. The Lee
Sigma filtering was included to reduce the speckle while preserving edges [19]. The terrain flattening
and thermal noise filtering were improved in SNAP version 7.0, and so, the thermal noise filtering will
be reassessed in the future. The vertical single polarisation (VV) rather than cross-polarisation (VH)
data was chosen because it is more sensitive to rough surface scattering [20], and its primary role in the
classification process is the separation of water from land.

Sentinel-2 Level-2A data produced by ESA was used to provide bottom-of-atmosphere reflectance
imagery. Where Level-2A data was unavailable, Level-1C products were atmospherically corrected
through the Sen2Cor processor [21] available in SNAP.

2.2.2. Thematic Indices

To aid in the differentiation between land cover types and waste products, a range of optical
indices were calculated covering vegetation, biophysical, water and soil thematic groups. Following
a review of nineteen such indices (Table 1) and a comparison of training samples across several
feature classes, any indices returning inconsistent or non-discernible spectral relationships, or causing
classification overfitting (as RF training was tested) were removed. This reduction process left a revised
set of three thematic indices to be included as additional classification layers: NDVI, SAVI, NDWI2.

Table 1. Nineteen land processing indices.

Thematic Group Index Acronym

Vegetation Normalised Difference Vegetation Index NDVI
Red-Edge Inflection Point REIP

Ratio Vegetation Index RVI
Sentinel-2 Red-Edge Position S2REP

Soil Adjusted Vegetation Index SAVI
Transformed Normalised Difference Vegetation Index TNDVI

Biophysical Leaf Area Index LAI
Fraction of Absorbed Photosynthetically Active Radiation FAPAR

Fraction of Vegetation Cover FVC
Canopy Chlorophyll Content CCC

Canopy Water Content CWC
Water Modified Normalised Difference Water Index MNDWI

Normalised Difference Pond Index NDPI
Normalised Difference Water Index NDWI

Normalised Difference Water Index 2 NDWI2
Soil Brightness Index BI

Brightness Index 2 BI2
Colour Index CI

Redness Index RI

The normalised difference vegetation index (NDVI) algorithm can be used to exploit the vitality of
vegetation. Designed by Tucker [22], it is based on a high reflectance in the near-infrared (NIR) by plant
matter in contrast to the strong absorption by chlorophyll-a in the red wavelengths, which is known as
the red edge. The NDVI is a measurement of photosynthetic activity and is strongly correlated with
both the density and vitality of vegetation [23].

NDVI =
(NIR−Red)
(NIR + Red)

(1)
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The soil adjusted vegetation index (SAVI) provides a hybrid between ratio-based and perpendicular
indices, and is based on simple radiative transfer and more coherent theoretical background than other
vegetation indices. Developed by Huete [24], it is necessary to use a correction value that varies from
0 for very high vegetation cover to 1 for very low. For use across a variety of land cover types, an
intermediate correction value (L) of 0.5 has been used in this instance.

SAVI = (1 ∗ L)
(NIR−Red)

(NIR + Red + L)
(2)

The second normalised difference water index (NDWI2) was developed by McFeeters [25] to detect
surface waters in wetlands and to allow the measurement of the extent of surface water. The index has
been used to reduce errors in the misclassification of both tyres and plastics as water. Investigations
across the study site, as a visual comparison and accuracy assessment of different RF classification
results, demonstrated more consistent values for all target land cover classes for NDWI2 compared to
its predecessor, NDWI.

NDWI2 =
(Green−Red)
(Green + Red)

(3)

All thematic indices were stacked into one file alongside a subset of Sentinel-2 bands, and the
Sentinel-1 Gamma0 VV data. The resulting file used for classification consists of 13 bands, covering a
range of spectra and indices (Table 2). Different layers have different spatial resolutions in the original
Sentinel datasets, and so the coarser spatial resolution layers were resampled to 10 m. For Sentinel-2,
this occurs just before inclusion in the stack using the SNAP raster resampling tool, and for Sentinel-1
it is included as part of the terrain correction.

Table 2. Layers within the classification stack used for tyre and plastics classification, including the
spatial resolution and MSI band and central wavelength for the Sentinel-2 reflectance bands.

Layer
Number

MSI Band Number and
Central Wavelength (nm) Description Original Spatial

Resolution (m)

1 2 (490) Blue 10
2 3 (560) Green 10
3 4 (665) Red 10
4 5 (705) Red Edge 20
5 6 (740) Red Edge 20
6 7 (783) Red Edge 20
7 8 (842) NIR 10
8 8A (865) Red Edge 20
9 10 (1 375) SWIR 20
10 NDVI 10
11 SAVI 10
12 NDWI2 10
13 Gamma0 VV 5∗20

2.2.3. Cloud Masking

For optical imagery, both cloud and cloud shadow present issues for classification in the form of
object obstruction and pixel misclassification. While several cloud masking algorithms were tested,
the classification of industrial and continuous urban regions as cloud was a persistent problem, often
causing the loss of potential areas of interest. Therefore, an alternative approach to cloud removal
was taken where necessary, using a temporal composite of Sentinel-2 imagery to mosaic pixels and
based on keeping the pixel within the temporal time-series with the highest NDVI value. Rather
than the complete removal of pixels affected by cloud cover, this method reduces any loss of data
by substituting pixels with alternate values, thus retaining the entire dataset while reducing any
atmospheric obstruction, as seen in Figure 2.
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Figure 2. Sentinel-2 RGB imagery for MSI for the three individual dates: (a) 15 October 2018, (b) 15
October 2018 and (c) 15 October 2018 with the (d) temporal composite.

2.3. Image Classification

A conceptual framework for using high-resolution multispectral remotely-sensed imagery for
waste tyre detection was developed by Quinlan and Foschi [2]. In general, waste tyre dumps appeared
as dark tones but can be confused with other persistently dark features such as water, shadows, asphalt,
rusted metal, or black plastic used on farms. Therefore, in this research, SAR data was used alongside
the multispectral data to separate dark smooth surfaces from tyres.

The augmented land cover classification is the output of the RF classifiers, and was used to map
surface types across the study site by utilising: (i) the multispectral bands of Sentinel-2; (ii) NDVI,
SAVI and NDWI2 thematic indices; and (iii) Gamma0 VV Sentinel-1 data as the stack input to the
classifier. The classification was separated into nine classes (Table 3, which were adapted from the
CORINE land cover mapping scheme [26], a consistent classification system developed for application
in Europe, by adding Tyres and Plastics as additional Level 2 classes.

Separate tyre and plastics classifiers were trained to minimise any confusion in the classification
of these two classes. Misclassification occurs because of spectral similarities between these two classes
and because this waste often co-exists, i.e., tyre waste is often covered in plastic sheeting and plastic
sheeting is often weighed down with tyres.
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Table 3. Classification of the land cover types through a tiered approach following CORINE, with Tyres
and Plastics as additional Level 2 classes.

Level 1 Level 2 Level 3 Abbreviation 1

1. Water 1.1. Water WA
1.2. Aqueous Deposits AD

2. Land 2.1. Non-Photosynthetic NP
2.2. Green Vegetation 2.2.1. Woodland WO

2.2.2. Grassland GR
2.3. Urban 2.3.1. Industrial IN

2.3.2. Artificial Surfaces AS
2.4. Tyres TY
2.5. Plastics PL

1 Used within error matrices, see Appendix A, Tables A1 and A2.

The supervised RF classifier available in SNAP, uses decision trees and independent random vectors
and the approach is driven by the relationship between the training and the response dataset rather
than starting with a data model [27]. It provides several benefits over other supervised classification
algorithms, including the ability to calculate internal error estimates and variable importance, as well
as the capacity to handle weak explanatory variables [28]. It has received increasing attention due to
both its classification accuracy and the speed of processing, which made it particularly useful for this
project, which was a six-month feasibility study.

The training data used satellite imagery collected over the study region (see the larger blue box
shown in Figure 1c) with training samples manually identified using Google Earth. For each target
class, up to 2000 homogeneous training samples were taken across the study region, and 15 classifier
decision trees were built. Testing was conducted utilising additional decision trees but was found to
cause overfitting, and so, the number was kept at 15.

Then, for testing, the classifiers were run over the same location for a period that spanned from
March 2018 to October 2018. In this paper, the results are shown for June 2018, which was investigated
in detail as June had the advantage of being a summer month with reduced cloud cover.

2.4. Accuracy Assessment

Classification accuracy was assessed through three metrics: (i) internal SNAP evaluation; (ii)
calculation of error matrices; and (iii) calculation of KAPPA coefficients.

As a by-product of generating the RF classifier, SNAP produces an internally assessed accuracy
value based on the percentage of correct predictions made from an automated test dataset. The size of
the test dataset for assessment is manually defined, in this case it included 10,000 points.

As a more manual alternative calculation of accuracy, a series of error matrices were also created.
The output classification was compared to high-resolution EO data in the form of Google Earth,
Worldview-2, and RapidEye-4. Random points across all land cover classes were generated and
compared against reference data for consistency with user’s (errors of commission) and producer’s
(errors of omission) accuracy, and the overall accuracy was assessed. The producer’s accuracy indicates
the number of samples that were erroneously omitted despite belonging to that class, and may also
be considered a measure of uncertainty, while the user’s accuracy indicates the occurrence of the
erroneous assignment of a pixel to a class to which it does not belong [29].

As an additional measure, Cohen’s KAPPA coefficient was also calculated, which is a statistical
measure of agreement that provides a more robust result than percentage agreement calculations [30].
In the equations below, po is the observed agreement (percentage of instances classified correctly from
the error matrix), and pe is the expected agreement. The overall expected agreement is calculated
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using Equation (5), where the expected agreement is calculated for each class, then these are added
together and divided by the total number of samples.

Kappa =
(po − pe)

(1 + pe)
(4)

pe =
(expectedclass1 + expectedclass2 + . . .)

N
(5)

expectedclass1 =
(actualclass1 ∗ estimatedclass1)

N
(6)

3. Results

3.1. Band Importance

Training data collected from across the study region indicated several potential spectral
relationships that can be exploited to improve the classification of the tyre and plastic waste from
satellite data. An investigation into feature importance, which was performed in SNAP, provided
each input band with a contribution score calculated from the percentage of correct predictions made.
Across all of the classifiers for both tyres and plastics, the utility of Sentinel-1 data was highlighted,
with the band ranking third and second, respectively. Sentinel-2′s 1610 nm SWIR band was calculated
to be of most importance to the classifier, with the rankings also showing the importance of the three
thematic indices used in the classification. A summary of these rankings is presented in Table 4.

Table 4. Feature importance of input bands for tyre and plastics classification. Central wavelengths are
given where Sentinel-2 exhibits multiple bands within similar wavelengths.

Rank Tyres Plastics

1 SWIR (1610 nm) SWIR (1610 nm)
2 NDWI2 Gamma0 VV
3 Gamma0 VV SAVI
4 NIR Red Edge (740 nm)
5 SAVI NDVI
6 Red Edge (705 nm) Red Edge (705 nm)
7 Red Edge (740 nm) NDWI2
8 Red Edge (783 nm) Red Edge (783 nm)
9 NDVI Red
10 Red Edge (865 nm) Green
11 Blue Red Edge (865 nm)
12 Green NIR
13 Red Blue

3.2. Classification Results for the Study Region

To demonstrate the results of the classification for the broader study region, a sub-region was
extracted for Glasgow (the smaller blue rectangle in Figure 1c) and was processed using the plastics
RF classifier. The results are shown for both the (Figure 3a,b) Sentinel-2 temporal composite and
(Figure 3c,d) the single Sentinel-2 image for 27 June 2018.

In the temporal composite, there are missing pixels (grey) in the river and across the land that
failed to classify (white). Also, there are more individual pixels in the land area with a classification
that is different to the surrounding pixels. Therefore, it was concluded that the single input Sentinel-2
image produces more consistent classification results, and so it should be used in preference, although
the temporal composite is useful during periods when there is significant cloud cover or haze.
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Figure 3. Sentinel-2 RGB imagery and classification output for Glasgow from (a,c) temporal composite
(24, 27 and 30 June 2018) and (b,d) single Sentinel-2 image (27 June 2018), with (b) showing the location
of the zoomed-in insert.

For the entire study region, the classification of tyres returned 71 confirmed waste locations on 26–27
June 2018, while 140 locations were confirmed for plastics; each site was confirmed through the visual
inspection of Google Earth. The classifier showed successful results down to a single pixel scale, and
identified several land uses relating to the waste products of interest including mixed waste sites (e.g.,
landfill), silage bales/pits, and plastic sheeting (e.g., tarpaulin). Many of the classified results returned
single-pixel sites for both tyres and plastic waste, which represented stockpiles measuring approximately
10 × 10 m (Table 5). There were far fewer large tyre deposits with only two confirmed locations with an
area above 100 m2. In contrast, a significant number of large waste plastic stockpiles were detected, with 20
individual locations areas measuring 100 m2 and above, primarily because of landfill complexes.

Table 5. Pixel size of confirmed classified waste locations.

Classifier
Pixel Count Per Site

Total
1 2–5 6–9 10+

Tyres 47 19 3 2 71
Plastics 73 38 9 20 140

3.3. Classification Results for an Example Waste Study Site

This section details the classifier results for a specific waste site, an environmental management
company in Alva, which showed variations in the size and location of tyre and plastic deposits across
the site throughout 2018.

The classifier output for late June is presented in Figure 4, alongside Sentinel-2 RGB data and Google
Earth. The results show several tyre clusters across the site, varying in size from 10 × 10 m to 50 × 20 m.
The classifier also highlighted the plastic deposits. A comparison to Google Earth data shows the presence
of these waste materials in similar clusters (to the north and south of the building on the right). However,
temporally synchronous high-resolution data was not available for validation. Therefore, these results
were validated by SEPA, which confirmed the presence of waste materials and the success of the classifier.
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Figure 4. Example of a waste detection site in Scotland: (a) Sentinel-2 RGB imagery, dated 15 October
2018 (b) Derived Land Cover classification showing both plastic and tyre deposits; (c) Google Earth
imagery, dated 28 June 2018. Note: Temporally synchronous Google Earth imagery was not available
and is shown for context only, Google Earth data© Google (2020).

3.4. Accuracy Assessment

The classification accuracy was assessed through comparison to Google Earth imagery alongside
known waste site locations supplied by the Scottish Environmental Protection Agency. Creation of
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the waste site location reference data was an iterative process. Additional sites were identified using
the RF classifier and then confirmed visually, before being updated in the reference dataset—thus it
contained a set of plastic and tyre locations that was as comprehensive as possible. Three measures of
accuracy were calculated by using an internal SNAP evaluation, an appraisal of error matrices, and
KAPPA coefficient assessment.

An internally assessed accuracy assessment was calculated by SNAP based on the percentage
of correct predictions made from an automated test dataset that included 10,000 points. Accuracy
predictions for the tyre and plastics classifiers were calculated as 99.06% and 99.15%, respectively,
across all classes.

Utilising a more traditional method of accuracy assessment, error matrices were created for both
classifiers. Randomly generated points from all land cover classes were interpreted, with the user’s,
producer’s and overall accuracies calculated. For the primary classes of interest, the overall accuracy
was calculated as 88% for tyres, and 84% for plastics. The overall accuracies for all classes for both
classifications were 94% and 93% for tyres and plastics, respectively. The error matrices for both
classifications are presented in the Appendix A, Tables A1 and A2.

Cohen’s KAPPA coefficient was also calculated; this offers a more robust measure than percentage
agreement calculations by including agreement by change [30]. KAPPA coefficients for both classifiers
return an “almost perfect” agreement at a confidence level of 95%.

A summary of all of the accuracy assessment results is presented in Table 6.

Table 6. Accuracy assessment results for tyre and plastics classifiers.

Classifier SNAP User’s Producer’s Overall 1 KAPPA

Tyres 99.06% 86% 89% 87.5% 0.926
Plastics 99.15% 83% 85% 84% 0.919

1 User’s, Producer’s and Overall accuracies presented are class-specific. For full classification results, see the
Appendix A, Tables A1 and A2.

4. Discussion

The highest accuracies were found over rural scenes and less complex environments, in keeping
with the abundance of rural land in the study region. Complex urban environments presented a
problem for the Sentinel-1 and -2 based classification, with the impact of mixed pixels degrading the
overall accuracies. Higher-resolution EO data will be required to address such issues, for example,
initial testing of Worldview-2 data using a similar methodology returned more promising results across
urban regions.

The final RF classifiers were tested across several datasets covering a wide temporal range. While
initial training of the classification was carried for data from June 2018, as demonstrated in this paper,
additional datasets were tested that cover the most recent updates to the format of both sensors’ product
(March 2018–October 2018). Across this timescale, all classifications returned similar accuracies to the
original training data. Still, it is recognised that this study focused on spring/summer imagery and so
the technique may not be so accurate for other seasons, and further work is needed. Preliminary tests
have been conducted on a larger spatial scale, with results across Europe returning accuracies >70%,
thus, expanding the spatial and temporal validity will be the focus of further research.

The RF approach proved to be a powerful yet sensitive tool in the detection of waste. Utilising
data from the Copernicus programme allows for a cost-effective, accurate and repeatable methodology,
with an average revisit period of three days over Scotland for Sentinel-1 and -2. However, any changes
to the product format or the data evolution of either dataset will require the complete retraining of
each classifier.

Results for the plastic classifications also indicate the ability of this approach to detect plastic-based
construction materials (e.g., synthetic roofing) and artificial surfaces (e.g., astroturf) to a high level
of accuracy, as well as high sediment yields and pollution in inland water and coastal environments.
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While the algorithm has not been trained with any marine data, the results indicate the potential for
the methodology to be transposed to more water-orientated classifications.

5. Conclusions

A methodology has been presented for the detection of waste across Scotland from satellite data.
An augmented land cover classification was used that combines Sentinel-2 optical data with NDVI,
SAVI, NDWI2 and Sentinel-1 Gamma0 VV. Two RF classifiers were successfully trained, with the ability
to detect tyres and plastics at an accuracy of 87.5% and 84%, respectively. All other land cover classes
were measured to an accuracy of >90%. The method was proven to be reliable across both a temporal
and spatial range, with data tested across Europe over eight months. Also, preliminary testing of the
same methodology for higher spatial resolution RapidEye-4 and Worldview-2 data shows the potential
for similarly positive results.
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Appendix A

Table A1. Error matrix for tyre classification; bold shows the correct classification.

AD AS IN GR WD NP PL TY WA

AD 85 1 4
AS 96 4 7 2
IN 98 3
GR 280 6
WD 6 138 3
NP 6 5 2 1 100
PL 2 2 1 1 38 3
TY 2 1 1 24
WA 1 102

User’s 94% 88% 97% 98% 94% 88% 81% 86% 99%
Producer’s 91% 91% 95% 97% 94% 90% 84% 89% 97%

Overall 93.76%

Table A2. Error matrix for plastics classification; bold shows the correct classification.

AD AS IN GR WD NP PL TY WA

AD 86 1 5
AS 93 3 11 2
IN 1 87 3 1
GR 284 2 3
WD 8 132 2 2
NP 2 3 3 100 2 1
PL 1 4 1 1 59 4
TY 2 1 1 19
WA 95

User’s 93% 85% 95% 98% 92% 90% 83% 83% 100%
Producer’s 97% 89% 97% 96% 97% 83% 85% 83% 97%

Overall 93.17%
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